JPH06223821A - Manufacture of negative electrode for lithium secondary battery - Google Patents

Manufacture of negative electrode for lithium secondary battery

Info

Publication number
JPH06223821A
JPH06223821A JP5027233A JP2723393A JPH06223821A JP H06223821 A JPH06223821 A JP H06223821A JP 5027233 A JP5027233 A JP 5027233A JP 2723393 A JP2723393 A JP 2723393A JP H06223821 A JPH06223821 A JP H06223821A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
secondary battery
film
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5027233A
Other languages
Japanese (ja)
Inventor
Toshiharu Uei
敏治 上井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP5027233A priority Critical patent/JPH06223821A/en
Publication of JPH06223821A publication Critical patent/JPH06223821A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To manufacture a lithium secondary battery negative electrode body of graphite type which exert excellent charging/discharging performance through combining with an electrolyte particularly containing ethylene carbonate. CONSTITUTION:A film-form molding of 200mum thick or less made from aromatic polyimide is baked and turned into graphite at a temp, over 2300 deg.C in a non- oxidative atmosphere. The graphite film obtained is used as it is as the body of negative electrode or fine crushed into the mean particle size 100mum followed by molding together with components of organic binder material to yield a body of negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池にお
いて活物質となるリチウムを担持させるための黒鉛系負
極体を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a graphite-based negative electrode body for carrying lithium as an active material in a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、小型電子機器の電源あるいは電力
貯蔵用の電池として、高エネルギー密度のリチウム二次
電池が注目されている。しかし、金属リチウムが負極と
して用いられているため、充電時のデンドライド生成等
によりサイクル寿命が短いという欠点がある。また、金
属リチウムの使用は安全性の面でも問題がある。
2. Description of the Related Art In recent years, lithium secondary batteries with high energy density have been attracting attention as batteries for power sources or electric power storage of small electronic devices. However, since metallic lithium is used as the negative electrode, there is a drawback that the cycle life is short due to dendrite formation during charging. Further, the use of metallic lithium has a problem in terms of safety.

【0003】このような問題の解消を図る電池組成とし
て、負極活物質であるリチウムをある種の炭素材に担持
させて負極とする試みが盛んにおこなわれており、担持
炭素材の性状を対象とした提案も数多くなされている
(特開昭62-90863号公報、特開昭62-193463 号公報、特
開昭63-236259 号公報、特開昭64-2258 号公報、特開平
1-274360号公報、特開平2-44644 号公報、特開平2-6685
6 号公報、特開平2-230660公報、特開平3-93162 号公報
等) 。ところが、炭素系ドープ基材を用いたこの種の二
次電池は、概して金属リチウムを負極としたものに比べ
てエネルギー密度が低く、自己放電特性も悪化する。こ
のため、リチウムのドープ量を多くし、可逆的なドープ
/アンドープのサイクル化を円滑にし、同時に安定なド
ープ体を得ることが当該タイプの電池開発における不可
欠の課題になっており、前記した先行技術の多くはこれ
らの課題解決を図るために金属リチウムをドープさせる
炭素質負極体の黒鉛結晶面間距離を主要な規制対象とす
るものによって占められている。
As a battery composition for solving such a problem, many attempts have been made to carry out a negative electrode by supporting lithium, which is a negative electrode active material, on a certain kind of carbon material, and the characteristics of the supported carbon material are targeted. Many proposals have been made (JP-A-62-90863, JP-A-62-193463, JP-A-63-236259, JP-A-64-2258, JP-A-64-2258).
1-274360, JP2-44644, JP2-6685
No. 6, JP-A-2-230660, JP-A-3-93162, etc.). However, this type of secondary battery using a carbon-based doped base material generally has a lower energy density than a negative electrode using metallic lithium, and the self-discharge characteristics are also deteriorated. For this reason, increasing the lithium doping amount, facilitating reversible doping / undoping cycle, and at the same time obtaining a stable doped body have become indispensable subjects in the development of the battery of the type described above. In order to solve these problems, most of the technologies are dominated by those in which the distance between graphite crystal planes of the carbonaceous negative electrode body doped with metallic lithium is the main subject of regulation.

【0004】ところで、一般的なプロピレンカーボネー
ト系の電解液を用いる場合には、負極体を構成する炭素
材が余り黒鉛化させていない方が大きな充放電容量を示
すことが知られている。しかし、黒鉛化が進行していな
い炭素負極体では電位の平坦性(充放電に伴って電位が
徐々に変動する特性)が減退し、用途によってはこの特
性低下が実用化の障害となっている。
By the way, when a general propylene carbonate-based electrolytic solution is used, it is known that the carbon material constituting the negative electrode body shows a larger charge / discharge capacity when it is not graphitized too much. However, in a carbon negative electrode body in which graphitization has not progressed, the flatness of the potential (the characteristic that the potential gradually changes with charging and discharging) is diminished, and this characteristic deterioration is an obstacle to practical use depending on the application. .

【0005】一方、最近、エチレンカーボネートを含む
電解液を使用したときに限り、例えば天然黒鉛のように
十分に黒鉛化が進行した炭素材料が円滑なLiの挿入脱
離反応を進行させることが報告され、リチウム二次電池
の負極体としての利用が期待されている。エチレンカー
ボネートは融点が高く、粘度が大きい関係で使用範囲に
制約を受けるが、この系では6C+Li+ +e- →Li
6 式によりLiC6が合成されたとした場合に理論容
量372mAh/g に相当する充放電容量が得られ、かつ優
れた電位の平坦性を示す特徴がある。
On the other hand, recently, it has been reported that a carbon material, such as natural graphite, which has undergone sufficient graphitization promotes a smooth Li insertion / desorption reaction only when an electrolytic solution containing ethylene carbonate is used. Therefore, it is expected to be used as a negative electrode body of a lithium secondary battery. Due to the high melting point and high viscosity of ethylene carbonate, the range of use is restricted, but in this system, 6C + Li + + e → Li
When LiC 6 is synthesized by the C 6 formula, a charge / discharge capacity corresponding to a theoretical capacity of 372 mAh / g is obtained, and excellent flatness of potential is exhibited.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、エチレ
ンカーボネート系電解液との組合せで最も優れた特性を
示す天然黒鉛は、天然物であるため品質の安定性が低く
て精密工業製品の原料としての適格性に乏しく、これと
同一性状の人造黒鉛製品を製造しようとすると煩雑な操
作を必要とし、量産化が困難となるため極めて高価なも
のになる。
However, natural graphite, which exhibits the most excellent properties when combined with an ethylene carbonate-based electrolytic solution, is a natural product and therefore has low quality stability and is suitable as a raw material for precision industrial products. The artificial graphite product, which is poor in properties and has the same properties as that of the product, requires a complicated operation and is difficult to mass-produce, which is extremely expensive.

【0007】本発明の目的は、エチレンカーボネート系
の電解液と組み合わせて優れた充放電容量ならびに電位
の平坦性を示す新規な黒鉛系のリチウム二次電池負極体
を工業的に製造する方法を提供しようとするところにあ
る。
An object of the present invention is to provide a method for industrially producing a novel graphite-based negative electrode for a lithium secondary battery that exhibits excellent charge / discharge capacity and potential flatness in combination with an ethylene carbonate-based electrolytic solution. It's about to be tried.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるリチウム二次電池負極体の製造方法
は、芳香族ポリイミドからなる厚さ200μm 以下のフ
ィルム状成形体を非酸化性雰囲気中で2300℃以上の
温度により焼成黒鉛化することを構成上の特徴とする。
In order to achieve the above object, a method for producing a negative electrode for a lithium secondary battery according to the present invention comprises a step of forming a film-like molded article of aromatic polyimide having a thickness of 200 μm or less in a non-oxidizing atmosphere. The constitutional feature is that it is calcined and graphitized at a temperature of 2300 ° C. or higher.

【0009】一般に芳香族ポリイミドには、酸成分とア
ミン成分の組成により多種類の製品が市販されている
が、本発明の目的には特に組成上の限定はなく、イミド
結合を直鎖中に含む全ての高分子が炭素源原料の対象と
なる。しかし、芳香族ポリイミドの形状としては、厚さ
200μm 以下のフィルム状成形体が選定される。通常
樹脂材料で薄いシートを形成する場合には成形方法に分
子が配向するが、特に極めて薄膜としての成形が可能な
芳香族ポリイミドでは分子配向性に優れるフィルムが形
成でき、この性状が後の焼成工程において黒鉛化を円滑
に進行させる要件となる。この場合、芳香族ポリイミド
のフィルム状成形体が200μm を越える膜厚であると
分子配向度が低くなって、高度の黒鉛結晶組織が円滑に
得られ難くなる。
In general, various kinds of aromatic polyimides are commercially available depending on the composition of the acid component and the amine component, but there is no particular limitation on the composition for the purpose of the present invention, and the imide bond is formed in a straight chain. All of the included polymers are targets for carbon source materials. However, as the shape of the aromatic polyimide, a film-shaped molded body having a thickness of 200 μm or less is selected. Usually when forming a thin sheet with a resin material, the molecules are oriented in the molding method, but especially in the case of an aromatic polyimide that can be molded as an extremely thin film, a film with excellent molecular orientation can be formed, and this property makes it possible to perform subsequent firing. It is a requirement for smooth graphitization in the process. In this case, if the film shape of the aromatic polyimide film has a film thickness of more than 200 μm, the degree of molecular orientation becomes low, and it becomes difficult to smoothly obtain a high degree of graphite crystal structure.

【0010】上記性状の芳香族ポリイミドからなるフィ
ルム状成形体は、窒素、アルゴンなどの非酸化性雰囲気
に保持されて加熱炉に入れて焼成黒鉛化処理する。処理
に当たっては予め芳香族ポリイミドのフィルム状成形体
を平滑面を有する黒鉛板で挟み付け、適度の圧力が加わ
った状態で炉内に装入すると、得られる黒鉛フィルムが
平滑となるうえ、リチウムのドープに有効な黒鉛六角網
目の配向を高めるために効果がある。挟み付ける黒鉛板
には、少なくとも20g/cm2 の押え圧力を付与すること
が好ましい。焼成黒鉛化の処理温度は、2300℃以上
に設定しなければならない。2300℃を下廻る温度で
は十分に黒鉛化が進行せず、高水準なリチウムの充放電
容量が得られなくなる。
The film-shaped molded product made of the aromatic polyimide having the above-mentioned properties is held in a non-oxidizing atmosphere such as nitrogen or argon and placed in a heating furnace for firing graphitization. In the treatment, the aromatic polyimide film-shaped molded product is sandwiched in advance by a graphite plate having a smooth surface, and charged into a furnace with an appropriate pressure applied. It is effective for increasing the orientation of hexagonal graphite network effective for dope. It is preferable to apply a pressing pressure of at least 20 g / cm 2 to the sandwiched graphite plates. The treatment temperature for the firing graphitization must be set to 2300 ° C. or higher. At a temperature below 2300 ° C., graphitization does not proceed sufficiently, and a high level charge / discharge capacity of lithium cannot be obtained.

【0011】上記の工程で得られる炭素質物は適度の可
撓性を備える黒鉛フィルムであり、炭素面間隔d(00
2)が0.335nm程度で、c軸方向の結晶子の大きさ
Lc(002)は100nmを越える優れた黒鉛化度を示
す。したがって、そのままリチウム二次電池用の炭素負
極体として適用することができる。この場合には、結合
剤成分を含まない100%炭素質の電極となるから、電
池内部での負極活物質の充填密が大きくなってエネルギ
ー密度の高い負極体となる。
The carbonaceous material obtained in the above process is a graphite film having appropriate flexibility, and the carbon spacing d (00
2) is about 0.335 nm, and the crystallite size Lc (002) in the c-axis direction shows an excellent graphitization degree exceeding 100 nm. Therefore, it can be directly applied as a carbon negative electrode body for a lithium secondary battery. In this case, since the electrode is a 100% carbonaceous electrode containing no binder component, the packing density of the negative electrode active material inside the battery is large, and the negative electrode body has a high energy density.

【0012】本発明による別のリチウム二次電池負極体
の製造方法は、上記の黒鉛フィルムを平均粒径100μ
m 以下に微粉砕し、有機結合剤成分とともに成形するこ
とを構成要件とするものである。
Another method for producing a negative electrode for a lithium secondary battery according to the present invention is the above graphite film having an average particle size of 100 μm.
The constituent requirement is that the particles are finely pulverized to m or less and molded together with the organic binder component.

【0013】黒鉛フィルムの微粉砕処理は、平均粒径と
して100μm 以下になるように調整する必要があり、
100μm を越えるとリチウムのドープ/アンドープの
円滑化が図れなくなる。結合剤としては、例えばテトラ
フルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVDF)、
ポリエチレン(PE)、ポリプロピレン(PP)のような樹脂類
が使用され、微粉砕された黒鉛粉末と混合したのち加圧
成形するか、金属導体上の塗布成形してリチウム二次電
池の負極体とする。
The fine pulverization process of the graphite film needs to be adjusted so that the average particle size is 100 μm or less.
If it exceeds 100 μm, smooth doping / undoping of lithium cannot be achieved. As the binder, for example, tetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF),
Resins such as polyethylene (PE) and polypropylene (PP) are used and mixed with finely pulverized graphite powder and then pressure-molded, or by coating and molding on a metal conductor to form a negative electrode body of a lithium secondary battery. To do.

【0014】本発明による黒鉛系の負極体を用いてリチ
ウム二次電池を構成するには、電解液として適量の電解
質を添加してエチレンカーボネート単独もしくはエチレ
ンカーボネートを含有する有機溶媒が選択使用される。
添加する電解質は、電池用として通常使用されているL
iClO4 、LiBF4 、LiPF6 等のリチウム塩で
ある。リチウム二次電池にはこれら負極体および電解液
のほか、正極体およびセパレーターにより構成され、ペ
ーパー型、ボタン型、円筒型等の構造に形成される。正
極体には、遷移金属のカルコゲン化合物を成形化したも
のが好ましく適用され、遷移金属としてはモリブデン、
チタン、バナジウム、コバルト、ニッケル、マンガン等
が、またカルコゲン化合物としては酸化物、硫化物、セ
レン化物等が用いられる。セパレーターには特に材質的
な限定はなく、合成樹脂の不織布で形成された通常の多
孔質膜を用いることができる。
To construct a lithium secondary battery using the graphite negative electrode according to the present invention, ethylene carbonate alone or an organic solvent containing ethylene carbonate is selectively used by adding an appropriate amount of electrolyte as an electrolytic solution. .
The electrolyte to be added is L, which is usually used for batteries.
It is a lithium salt such as iClO 4 , LiBF 4 , and LiPF 6 . The lithium secondary battery is composed of a positive electrode body and a separator in addition to the negative electrode body and the electrolytic solution, and is formed into a paper type, a button type, a cylindrical type or the like. The positive electrode is preferably formed by molding a transition metal chalcogen compound, and the transition metal is molybdenum,
Titanium, vanadium, cobalt, nickel, manganese, and the like, and chalcogen compounds such as oxides, sulfides, and selenides are used. The separator is not particularly limited in terms of material, and an ordinary porous film formed of a synthetic resin non-woven fabric can be used.

【0015】[0015]

【作用】本発明により製造されるリチウム二次電池負極
体は、芳香族ポリイミドを焼成黒鉛化したフィルム状の
黒鉛成形体であって、従来技術では負極体として注目さ
れたことのない新規な炭素質材料である。該黒鉛系の負
極体は、芳香族ポリイミドからなる厚さ200μm 以下
のフィルム状成形体を炭素源原料として2300℃以上
の温度で焼成黒鉛化しているため、極めて円滑に高度の
黒鉛結晶構造に組織転換される。この黒鉛化構造は、エ
チレンカーボネート系電解液と組み合わせた系において
特に好適な電池性能を示し、高水準の充放電容量ならび
に電位の平滑性を示す。
The negative electrode body of a lithium secondary battery manufactured according to the present invention is a film-shaped graphite molded body obtained by firing and graphitizing an aromatic polyimide, and is a novel carbon that has not been noticed as a negative electrode body in the prior art. It is a quality material. Since the graphite-based negative electrode body is formed by calcining and graphitizing a film-shaped molded body made of an aromatic polyimide and having a thickness of 200 μm or less at a temperature of 2300 ° C. or higher as a carbon source material, it has an extremely smoothly structured graphite crystal structure. Will be converted. This graphitized structure exhibits particularly suitable battery performance in a system combined with an ethylene carbonate-based electrolytic solution, and exhibits a high level of charge / discharge capacity and potential smoothness.

【0016】前記の黒鉛フィルムは、他の炭素質フィル
ムと異なり緻密質でありながら適度の可撓性を備えてい
るため、電池への組み込みも容易におこなうことができ
る。黒鉛フィルムを微粉砕したのち有機結合剤とともに
成形する態様の負極体は、黒鉛フィルム自体を電極とす
る100%炭素質の前記負極体に比べて製造工程が増加
し、またリチウムの充填密度の面でも劣るようになる
が、黒鉛フィルムを微粉砕することにより黒鉛層間に取
り込まれるリチウムの拡散距離が短くなり、リチウムの
脱挿入口が多くなる点で負極性能が向上する利点があ
る。したがって、目的によっては有利な電池性能を付与
することが可能となる。
Unlike the other carbonaceous films, the above graphite film is dense and has appropriate flexibility, so that it can be easily incorporated into a battery. The negative electrode body of the embodiment in which the graphite film is finely pulverized and then molded together with the organic binder has more manufacturing steps than the negative electrode body of 100% carbonaceous material having the graphite film itself as an electrode, and has a lithium packing density. However, it becomes inferior, but by finely pulverizing the graphite film, the diffusion distance of lithium taken in between the graphite layers is shortened, and there is an advantage that the negative electrode performance is improved in that the number of lithium insertion / removal ports is increased. Therefore, it is possible to provide advantageous battery performance depending on the purpose.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0018】実施例1 化1に示す化学構造式の芳香族ポリイミドからなる厚さ
75μm のフィルム状成形体を黒鉛板に挟み付け、60
g/cm2 の押え圧力を付加した状態で窒素雰囲気に保持さ
れた焼成炉に入れて2700℃の温度によって焼成黒鉛
化処理をおこなった。
Example 1 A film-like molded body having a thickness of 75 μm and made of an aromatic polyimide having the chemical structural formula shown in Chemical formula 1 was sandwiched between graphite plates, and 60
It was placed in a firing furnace maintained in a nitrogen atmosphere with a pressing pressure of g / cm 2 applied, and subjected to firing graphitization at a temperature of 2700 ° C.

【0019】[0019]

【化1】 [Chemical 1]

【0020】得られた黒鉛フィルムの黒鉛化性状をX線
回折により学振法に基づいて測定したところ、炭素面間
隔d(002)は0.3355nm、c軸方向における結
晶子の大きさLc(002)は100nm以上であった。
The graphitization property of the obtained graphite film was measured by X-ray diffraction based on the Gakushin method. The carbon spacing d (002) was 0.3355 nm, and the crystallite size Lc (in the c-axis direction was Lc ( 002) was 100 nm or more.

【0021】次に、上記の黒鉛フィルムをそのまま負極
体の試料極とし、対極および参照極に金属リチウム、電
解液に1mol/l のLiPF6 を溶解させたエチレンカー
ボネートを電解液として単電池を作製し、定電流充放電
試験法により負極としての性能評価をおこなった。定電
流充放電試験法は、充放電終止電位を0Vvs. Li/L
+ (充電時)、1.5Vvs. Li/Li+ (放電時)
とし、電流密度を30mA/gに設定した。
Then, the above graphite film was directly used as a sample electrode of the negative electrode, metallic lithium was used as the counter electrode and the reference electrode, and ethylene carbonate in which 1 mol / l of LiPF 6 was dissolved in the electrolytic solution was used as the electrolytic solution to prepare a single cell. Then, the performance as a negative electrode was evaluated by the constant current charge / discharge test method. The constant current charge / discharge test method uses a charge / discharge end potential of 0 V vs. Li / L.
i + (when charging), 1.5 V vs. Li / Li + (when discharging)
And the current density was set to 30 mA / g.

【0022】得られた充放電曲線を図1に示した。図1
から充電、放電ともに電位の平坦性に優れていることが
確認された。また、この際の充放電容量を負極製造条件
および黒鉛化性状と対比させて表1に示した。
The resulting charge / discharge curve is shown in FIG. Figure 1
From this, it was confirmed that the flatness of the potential was excellent in both charging and discharging. The charge / discharge capacity at this time is shown in Table 1 in comparison with the negative electrode production conditions and the graphitization property.

【0023】実施例2 化1に示す化学構造式の芳香族ポリイミドからなる厚さ
185μm のフィルム状成形体を炭素源原料とし、その
他は実施例1と同一の条件により黒鉛フィルムの負極体
を製造した。この負極体を用いて実施例1と同様に電池
性能の評価をおこなったところ、充放電曲線は図2に示
すように良好な電位の平坦性を示した。また、充放電容
量は表1のとおりであった。
Example 2 A negative electrode body of a graphite film was produced under the same conditions as in Example 1 except that a film-like molded body having a thickness of 185 μm and made of an aromatic polyimide having the chemical structural formula shown in Chemical formula 1 was used as a carbon source material. did. When this negative electrode body was used to evaluate the battery performance in the same manner as in Example 1, the charge / discharge curve showed good flatness of the potential as shown in FIG. The charge / discharge capacity was as shown in Table 1.

【0024】[0024]

【化1】[Chemical 1]

【0025】実施例3 実施例1における焼成黒鉛化処理の温度を2350℃に
変え、その他は全て同一の条件により黒鉛フィルムの負
極体を製造した。この負極体を用いて実施例1と同様に
電池性能の評価をおこなったところ、充放電曲線は図3
に示すように良好な電位の平坦性を示した。また、充放
電容量は表1のとおりであった。
Example 3 A negative electrode body of a graphite film was manufactured under the same conditions except that the temperature of the firing graphitization treatment in Example 1 was changed to 2350 ° C. When the battery performance was evaluated using this negative electrode body in the same manner as in Example 1, the charge / discharge curve was as shown in FIG.
As shown in, the flatness of the potential was good. The charge / discharge capacity was as shown in Table 1.

【0026】比較例1 実施例1における焼成黒鉛化処理の温度を2200℃に
変え、その他は全て同一の条件により黒鉛フィルムの負
極体を製造した。得られた負極体を用いて実施例1と同
様に電池性能を評価した。この例での充放電曲線は図4
に示すように電位の平坦性が著しく劣るものであった。
充放電容量は表1のとおりであった。
Comparative Example 1 A negative electrode body of a graphite film was manufactured under the same conditions except that the temperature of the firing graphitization treatment in Example 1 was changed to 2200 ° C. Using the obtained negative electrode body, the battery performance was evaluated in the same manner as in Example 1. The charge / discharge curve in this example is shown in FIG.
As shown in, the flatness of the potential was extremely poor.
The charge / discharge capacity was as shown in Table 1.

【0027】比較例2 実施例2における芳香族ポリイミドを厚さ220μm の
フィルム状成形体に変え、その他は全て同一の条件によ
り黒鉛フィルムの負極体を製造した。この負極体を用い
て実施例1と同様に電池性能を評価した結果、充放電曲
線は図5に示すように電位の平坦性が劣るものであっ
た。充放電容量は表1のとおりであった。
Comparative Example 2 A negative electrode body of a graphite film was manufactured under the same conditions except that the aromatic polyimide used in Example 2 was changed to a film-like molded body having a thickness of 220 μm. As a result of evaluating the battery performance using this negative electrode body in the same manner as in Example 1, the charge / discharge curve was inferior in the flatness of the potential as shown in FIG. The charge / discharge capacity was as shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から、各実施例による負極体を
用いた場合の充放電容量は本発明の要件を外れる比較例
品に比べて大幅に増大しており、エネルギー密度が高い
ことが認められた。
From the results shown in Table 1, the charge and discharge capacities in the case of using the negative electrode bodies according to the respective examples are significantly increased as compared with the comparative example products which deviate from the requirements of the present invention, and it is confirmed that the energy density is high. Was given.

【0030】実施例4 実施例1で製造した黒鉛フィルムを乳鉢で微粉砕し、平
均粒径90μm の粉末とした。この黒鉛粉末90重量部
に対し、市販のテトラフルオロエチレン(PTFE)粉末10
重量部を配合して十分に混練し、ロール成形により厚さ
0.1mmのシートに成形して負極体を作製した。この負
極体につき実施例1と同様にして電池性能を評価した。
その結果、図6に示すような優れた充放電曲線を示し、
その際の充放電容量は370mAh/g で実施例1を上廻る
ものであった。
Example 4 The graphite film produced in Example 1 was pulverized in a mortar to obtain a powder having an average particle size of 90 μm. To 90 parts by weight of this graphite powder, commercially available tetrafluoroethylene (PTFE) powder 10
Parts by weight were mixed and sufficiently kneaded, and then molded into a sheet having a thickness of 0.1 mm by roll forming to prepare a negative electrode body. The battery performance of this negative electrode was evaluated in the same manner as in Example 1.
As a result, it shows an excellent charge-discharge curve as shown in FIG.
The charge / discharge capacity at that time was 370 mAh / g, which was higher than that in Example 1.

【0031】[0031]

【発明の効果】以上のとおり、本発明によれば芳香族ポ
リイミドからなる薄膜のフィルム状成形体を焼成黒鉛化
し、あるいは前記工程で得られた黒鉛フィルムを微粉砕
して有機結合剤成分とともに成形することにより、特に
エチレンカーボネートを含む電解液を組み合わせて高水
準の放充電容量と優れた電位の平坦性を示すリチウム二
次電池用の黒鉛系負極体を得ることができる。そのう
え、負極体の原料は品質が安定であり、製造プロセスも
比較的簡単であるから高性能の負極体を工業的に安価に
生産することが可能となる。
As described above, according to the present invention, a thin film-shaped molded product made of an aromatic polyimide is subjected to firing graphitization, or the graphite film obtained in the above step is finely pulverized and molded with an organic binder component. By doing so, it is possible to obtain a graphite-based negative electrode body for a lithium secondary battery, which exhibits a high level of discharge and charge capacity and excellent flatness of potential by combining an electrolytic solution containing ethylene carbonate. Moreover, the quality of the raw material of the negative electrode body is stable, and the manufacturing process is relatively simple, so that a high-performance negative electrode body can be industrially produced at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1による単電池の充放電曲線を示したグ
ラフである。
FIG. 1 is a graph showing a charge / discharge curve of a unit cell according to Example 1.

【図2】実施例2による単電池の充放電曲線を示したグ
ラフである。
FIG. 2 is a graph showing a charge / discharge curve of a unit cell according to Example 2.

【図3】実施例3による単電池の充放電曲線を示したグ
ラフである。
FIG. 3 is a graph showing a charge / discharge curve of a unit cell according to Example 3.

【図4】比較例1による単電池の充放電曲線を示したグ
ラフである。
FIG. 4 is a graph showing a charge / discharge curve of a single cell according to Comparative Example 1.

【図5】比較例2による単電池の充放電曲線を示したグ
ラフである。
5 is a graph showing a charge / discharge curve of a single cell according to Comparative Example 2. FIG.

【図6】実施例4による単電池の充放電曲線を示したグ
ラフである。
FIG. 6 is a graph showing a charge / discharge curve of a unit cell according to Example 4.

【化2】 [Chemical 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 芳香族ポリイミドからなる厚さ200μ
m 以下のフィルム状成形体を非酸化性雰囲気中で230
0℃以上の温度により焼成黒鉛化することを特徴とする
リチウム二次電池負極体の製造方法。
1. A thickness of 200 μm made of aromatic polyimide.
230 m or less of a film-shaped molded product in a non-oxidizing atmosphere
A method for producing a negative electrode for a lithium secondary battery, which comprises firing and graphitizing at a temperature of 0 ° C. or higher.
【請求項2】 請求項1で得られた黒鉛フィルムを平均
粒径100μm 以下に微粉砕し、有機結合剤成分ととも
に成形することを特徴とするリチウム二次電池負極体の
製造方法。
2. A method for producing a negative electrode for a lithium secondary battery, characterized in that the graphite film obtained in claim 1 is finely pulverized to have an average particle size of 100 μm or less and molded together with an organic binder component.
JP5027233A 1993-01-22 1993-01-22 Manufacture of negative electrode for lithium secondary battery Pending JPH06223821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5027233A JPH06223821A (en) 1993-01-22 1993-01-22 Manufacture of negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5027233A JPH06223821A (en) 1993-01-22 1993-01-22 Manufacture of negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH06223821A true JPH06223821A (en) 1994-08-12

Family

ID=12215361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5027233A Pending JPH06223821A (en) 1993-01-22 1993-01-22 Manufacture of negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH06223821A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888430A (en) * 1996-03-14 1999-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Graphite composite and method for producing the same
JP2002050356A (en) * 2000-05-26 2002-02-15 Ube Ind Ltd Secondary battery electrode material and its manufacturing method
JP2003534636A (en) * 2000-05-24 2003-11-18 リテック,リミテッド ライアビリテイ カンパニー Lithium ion electrochemical battery and storage battery
US6673492B2 (en) * 2000-05-26 2004-01-06 Ube Industries, Ltd. Electrode material for a secondary cell and its production process
KR100480858B1 (en) * 1996-12-24 2005-05-16 소니 가부시끼 가이샤 Non-Aqueous Electrolyte Secondary Battery
JP2009196887A (en) * 2002-03-06 2009-09-03 Kaneka Corp Method for manufacturing film-like graphite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888430A (en) * 1996-03-14 1999-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Graphite composite and method for producing the same
KR100480858B1 (en) * 1996-12-24 2005-05-16 소니 가부시끼 가이샤 Non-Aqueous Electrolyte Secondary Battery
JP2003534636A (en) * 2000-05-24 2003-11-18 リテック,リミテッド ライアビリテイ カンパニー Lithium ion electrochemical battery and storage battery
JP2002050356A (en) * 2000-05-26 2002-02-15 Ube Ind Ltd Secondary battery electrode material and its manufacturing method
US6673492B2 (en) * 2000-05-26 2004-01-06 Ube Industries, Ltd. Electrode material for a secondary cell and its production process
JP2009196887A (en) * 2002-03-06 2009-09-03 Kaneka Corp Method for manufacturing film-like graphite

Similar Documents

Publication Publication Date Title
KR102409817B1 (en) Porous silicone composite cluster strucutre, carbon composite including the same, preparing method thereof, electrode, lithium battery, and device including the same
KR102617731B1 (en) Silicon-containing structure, carbon composite using the same, electrode, lithium battery, and electronic device
KR20220088648A (en) Porous silicone composite cluster strucutre, carbon composite including the same, preparing method thereof, electrode, lithium battery, and device including the same
EP1720211B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery
CN111106329A (en) Porous silicon-containing composite, method for producing same, carbon composite, electrochemically active material composite, electrode, lithium battery, and device
TW201306362A (en) Method of manufacturing cathode material for lithium secondary battery
WO2012147837A1 (en) Method for manufacturing positive electrode active material for lithium secondary cell, positive electrode active material for lithium secondary cell, and lithium secondary cell
JP4632016B2 (en) Non-aqueous electrolyte battery
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
KR20190032119A (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
EP3627607B1 (en) Electrode material for zinc secondary batteries
JP4014637B2 (en) Lithium ion secondary battery negative electrode material, manufacturing method thereof, and lithium ion secondary battery using the negative electrode material
CN112978730A (en) Preparation method of silicon-carbon alkene material and preparation method of electrode active material of silicon-carbon alkene material
KR101631753B1 (en) Manufacturing method of lithium nickel complex oxide, lithium nickel complex oxide manufactured thereby, and cathode active material comprising the same
KR20200023241A (en) Negative electrode active material, negative electrode and lithium secondary battery comprising the same
KR20000068703A (en) Carbonaceous Precursor, Carbonaceous Anode Material, and Nonaqueous Rechargeable Battery
JP2017088437A (en) Method for producing graphite-covered silicon composite body
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JPH06223821A (en) Manufacture of negative electrode for lithium secondary battery
KR20100117895A (en) Method of preparing olivine type cathode active material for lithium secondary batteries and lithium secondary batteries using the same
US20230202863A1 (en) Method of preparing positive electrode active material for lithium secondary battery
US20160156028A1 (en) Positive active material, lithium batteries including the positive active material, and method of preparing the positive active material
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JP6975435B2 (en) Non-aqueous electrolyte secondary battery Negative electrode manufacturing method