JPH06222778A - Sound absorbing rubber - Google Patents

Sound absorbing rubber

Info

Publication number
JPH06222778A
JPH06222778A JP5008166A JP816693A JPH06222778A JP H06222778 A JPH06222778 A JP H06222778A JP 5008166 A JP5008166 A JP 5008166A JP 816693 A JP816693 A JP 816693A JP H06222778 A JPH06222778 A JP H06222778A
Authority
JP
Japan
Prior art keywords
pores
rubber
sound absorbing
sound
absorbing rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5008166A
Other languages
Japanese (ja)
Other versions
JPH0769706B2 (en
Inventor
Masakatsu Ogaki
正勝 大垣
Toshiaki Kikuchi
年晃 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOWA SEISAKUSHO KK
Original Assignee
TOWA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOWA SEISAKUSHO KK filed Critical TOWA SEISAKUSHO KK
Priority to JP5008166A priority Critical patent/JPH0769706B2/en
Publication of JPH06222778A publication Critical patent/JPH06222778A/en
Publication of JPH0769706B2 publication Critical patent/JPH0769706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PURPOSE:To provide the sound absorbing rubber of a wide band which well absorbs sounds down to a low-frequency range by providing posts to support porous walls within pores. CONSTITUTION:The pores 13 of one kind of size are sealed at prescribed intervals within a rubber plate 11. The posts 15 are provided within these circular columnar-shaped pares and the pores are formed into a cylindrical shape. Since the posts 15 exist even in the case of the large cylindrical pores, the rubber plate retains its initial strength in spite of the low hardness of the rubber. While the posts 15 may be made of the same material as the rubber, materials, such as plastic having the characteristics approximate to the characteristics of the rubber are usable. Reflection characteristics are lowered down to the low-frequency range and the reflection characteristics of an anechoic water tank to be installed on the wall of the anechoic water tank are lowered down to the low-frequency range if the surface of an underwater object is coated with this sound absorbing rubber. Also, this sound absorbing rubber has the effect as a sound absorbing material in the air and a vibration proof rubber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、音波を吸収するゴム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to rubber that absorbs sound waves.

【0002】[0002]

【従来の技術】実験水槽の壁面と水面の音波の反射波や
水中の物体からの音波の反射波を少なくする水中用の吸
音材には、ゴム中にアルミや鉛などの金属の粉末を混合
したゴム、木材を楔形に加工した吸音楔、ゴム中に多数
の気孔を封入した吸音ゴムなどが従来用いられている。
2. Description of the Related Art A sound absorbing material for underwater that reduces reflected waves of sound waves on the wall and surface of an experimental water tank and reflected waves of underwater objects is mixed with powder of metal such as aluminum or lead in rubber. Conventionally used are rubber, a sound absorbing wedge formed by cutting wood into a wedge shape, and a sound absorbing rubber in which a large number of pores are enclosed in rubber.

【0003】ゴム中にアルミや鉛などの金属の粉末を封
入したゴムは、ゴム中の金属の粉末の振動が熱に変換さ
れ吸音するもので、数10kHz以上の高周波数で効果
がある。
Rubber in which powder of metal such as aluminum or lead is enclosed in rubber absorbs sound by converting vibration of powder of metal in rubber into heat, and is effective at a high frequency of several tens of kHz or more.

【0004】また、木材の吸音楔は、先端を細くして徐
々に音波を木材中に吸収して吸音するもので、音波の半
波長以上の長さが必要である。そのため10kHz以上
で実用化されているが、低周波にまで効果をもたせるに
は寸法が長くなり、実用的でない。また、木材は腐食す
る欠点もある。
Further, the sound absorbing wedge of wood has a thin tip and gradually absorbs sound waves into the wood to absorb sound, and it is necessary that the sound absorbing wedge has a length equal to or longer than a half wavelength of the sound waves. Therefore, it has been put to practical use at 10 kHz or higher, but it is not practical because the dimension becomes long to have an effect even at low frequencies. In addition, wood has the drawback of corroding.

【0005】さらに、ゴム中に多数の気孔を封入した吸
音ゴムでは、ゴムと気孔の混合体の音響インピーダンス
を気孔の大きさと数とで水の音響インピーダンスに順次
等しくなるようにして、ゴムの材質中で吸音させている
(実吉ほか、超音波技術便覧pp.470〜476 日
刊工業新聞社刊、昭和41年10月31日およびE.
G.Richardson、Technical As
pects of Sound pp.281 Els
evier Publishing Company
Amsterdam−New York, 195
7)。
Further, in a sound-absorbing rubber in which a large number of pores are enclosed in rubber, the acoustic impedance of a mixture of rubber and pores is made equal to the acoustic impedance of water sequentially by the size and number of pores, and the material of the rubber is made. (Mikichi et al., Ultrasonic Technology Handbook, pp. 470-476, published by Nikkan Kogyo Shimbun, October 31, 1966, and E.I.
G. Richardson, Technical As
ects of Sound pp. 281 Els
evi Publishing Company
Amsterdam-New York, 195
7).

【0006】また、ゴム中に微小球の気孔を封入し、微
小球の気孔の振動による吸音をMeyerは報告してい
る。(Meyerほか、J.Acoust.Soc.A
m.30.pp.1116−1124,1958)。
Meyer also reported sound absorption due to vibration of the pores of the microspheres by encapsulating the pores of the microspheres in rubber. (Meyer et al., J. Aust. Soc. A.
m. 30. pp. 1116-1124, 1958).

【0007】さらにまた、微小球の共振周波数は、微小
球の直径に反比例するため従来の吸音ゴムは、例えばゴ
ム板に直径2〜8mm程度の円柱状の気孔を多数個配列
して設け、その両面にゴム板を張り合わせて、ゴム板中
に多数の気孔を封入した構造もある。この場合の吸音特
性は、ほぼ4〜5kHz以上の高周波数で効果がある
が、それ以下の低周波数領域まで吸音特性を広げるに
は、気孔の直径を大きくする必要がある。しかし、従来
の吸音ゴムでは、ゴムの硬度が低いのでゴム板中に外周
寸法が8mm程度の大きさの気孔の封入が限度であり、
大きな外周寸法の気孔を封入することは困難であった。
従って、4〜5kHz以下の低周波数領域での吸音は困
難であった(伊藤 豊ほか:気孔入りゴムの吸音特性
防衛庁技報181号 pp.49−55 堀井 浩ほ
か:吸音楔の水圧特性の改善 海洋音響学会講演論文集
pp.1−2,1991年5月17日)。
Furthermore, since the resonance frequency of the microspheres is inversely proportional to the diameter of the microspheres, the conventional sound absorbing rubber has, for example, a large number of cylindrical pores having a diameter of 2 to 8 mm arranged on a rubber plate. There is also a structure in which a large number of pores are enclosed in the rubber plate by laminating rubber plates on both sides. The sound absorption characteristics in this case are effective at a high frequency of approximately 4 to 5 kHz or higher, but it is necessary to increase the diameter of the pores in order to extend the sound absorption characteristics to a low frequency range lower than that. However, in the conventional sound-absorbing rubber, since the hardness of the rubber is low, it is limited to enclose pores having a peripheral dimension of about 8 mm in the rubber plate.
It has been difficult to enclose pores with large peripheral dimensions.
Therefore, it was difficult to absorb sound in the low frequency region of 4 to 5 kHz or less (Yutaka Ito et al .: Sound absorption characteristics of rubber with pores).
Defense Agency Technical Bulletin 181 pp. 49-55 Hiroi Horii et al .: Improvement of water pressure characteristics of sound absorbing wedge Proceedings of Ocean Acoustics Society pp. 1-2, May 17, 1991).

【0008】以上のように、これまでは2kHz程度の
低周波数から10kHz以上の高周波数までの十分な広
帯域特性を有する吸音ゴムが得られないという問題があ
った。
As described above, there has been a problem that a sound absorbing rubber having a sufficient wide band characteristic from a low frequency of about 2 kHz to a high frequency of 10 kHz or more cannot be obtained so far.

【0009】[0009]

【発明が解決しようとする課題】水中音響機器の使用周
波数は、4〜5kHz以下の低周波数領域の場合も多く
あり、従来の吸音ゴムでは十分な効果がなく、実験水槽
では4〜5kHz以下での機器の特性に関する測定は困
難であった。また、吸音ゴムの吸音特性を低周波数領域
まで広げるには、気孔の寸法を大きくする必要がある
が、従来の吸音ゴムでは硬度が低いため、気孔の形が変
形してしまい、低周波数領域での吸音が困難であった。
The frequency of use of the underwater acoustic equipment is often in the low frequency region of 4 to 5 kHz or less, and the conventional sound absorbing rubber is not sufficiently effective, and in the experimental water tank it is 4 to 5 kHz or less. It was difficult to measure the characteristics of the equipment. Also, in order to expand the sound absorption characteristics of the sound absorbing rubber to the low frequency region, it is necessary to increase the size of the pores, but since the conventional sound absorbing rubber has low hardness, the shape of the pores will be deformed, and in the low frequency region. It was difficult to absorb sound.

【0010】この発明の目的は、吸音特性が、10kH
z以上の高周波領域はもとより、4〜5kHz以下の低
周波数領域までの十分な広帯域特性となる吸音ゴムを提
供することにある。
An object of the present invention is to have a sound absorption characteristic of 10 kHz.
It is to provide a sound-absorbing rubber having a sufficient wide band characteristic not only in a high frequency region of z or more but also in a low frequency region of 4 to 5 kHz or less.

【0011】この発明の他の目的は、気孔の外周寸法が
大きくても、気孔が吸音ゴムの吸音特性が十分広帯域特
性を維持できる程度にしか変形しない構造の吸音ゴムを
提供することにある。
Another object of the present invention is to provide a sound-absorbing rubber having a structure in which the pores are deformed to such an extent that the sound-absorbing characteristics of the sound-absorbing rubber can sufficiently maintain a wide-band characteristic even when the outer peripheral dimension of the pore is large.

【0012】[0012]

【課題を解決するための手段】この目的の達成を図るた
め、この発明によれば、ゴム中に多数の気孔を封入した
吸音ゴムにおいて、気孔の内部に気孔壁を支える支柱を
有することを特徴とする。
In order to achieve this object, according to the present invention, in a sound absorbing rubber in which a large number of pores are enclosed in a rubber, a column for supporting the pore wall is provided inside the pores. And

【0013】また、この発明による吸音ゴムによれば、
気孔の外周寸法比が2n (n:整数)又は、ほぼ2n
なる複数の大きさの異なる気孔を封入して成ることを特
徴とする。
According to the sound absorbing rubber of the present invention,
It is characterized in that a plurality of different sized pores having a peripheral dimension ratio of pores of 2 n (n: integer) or approximately 2 n are enclosed.

【0014】[0014]

【作用】上述したこの発明の構成によれば、気孔に支柱
を設けてあるので、外周寸法の大きな気孔の場合、ゴム
の硬度が小さくてもゴム板の強度を低下することがな
く、従って、気孔が潰れたり、または吸音特性に悪影響
を及ぼすような変形を生じたりすることがない。従っ
て、支柱のある気孔をゴム中に封入した場合は、気孔の
外周寸法を、支柱のない気孔を封入したゴムに比べてゴ
ム板の強度をあまり低下することなく大きくできるの
で、より低周波数での吸音特性が可能となる。
According to the above-mentioned structure of the present invention, since the columns are provided with the columns, the strength of the rubber plate does not decrease even if the hardness of the rubber is small in the case of the pores having a large outer peripheral dimension. The pores will not be crushed or deformed to adversely affect the sound absorption characteristics. Therefore, when the pores with columns are enclosed in rubber, the outer diameter of the pores can be increased without significantly lowering the strength of the rubber plate compared to rubber with pores without columns, so at a lower frequency. The sound absorption characteristics of are possible.

【0015】また、この発明の上述した構成によれば、
外周寸法比が2n (n:整数)または、ほぼ2n となる
複数の異なる寸法の気孔を組み合わせ封入してあるの
で、一番小さい寸法の気孔に対応する共振周波数が一番
高い周波数で、その次に小さい寸法の気孔に対応する共
振周波数がその周波数の半分の周波数、順に、さらに半
分の周波数ごとに共振する吸音特性を有する。一番大き
い寸法の気孔に対応する共振周波数は一番低周波数であ
る。気孔の共振のQは小さく、気孔の大きさに対応する
吸音特性はなだらかに変化するので、隣り合う寸法の共
振による吸音特性は、スタガーとなるので、気孔の外周
寸法を、倍、倍となる気孔を組み合わせて配列すると、
高周波数から低周波数までの広帯域で吸音特性の良好な
吸音ゴムが実現できる。このとき、外周寸法の大きな気
孔は支柱を有する気孔とする。
According to the above-mentioned structure of the present invention,
Since a plurality of differently sized pores having a peripheral dimension ratio of 2 n (n: integer) or approximately 2 n are combined and enclosed, the resonance frequency corresponding to the smallest pore has the highest frequency, The resonance frequency corresponding to the next smaller pore has a sound absorbing characteristic that resonates at a frequency of half the frequency, and in sequence, at each half frequency. The resonance frequency corresponding to the pore with the largest size is the lowest frequency. Since the Q of the resonance of the pores is small and the sound absorption characteristics corresponding to the size of the pores change gently, the sound absorption characteristics due to the resonance of adjacent dimensions become a stagger, so the outer peripheral dimensions of the pores are doubled or doubled. If you combine and arrange the pores,
It is possible to realize a sound absorbing rubber having a wide range of high to low frequencies and good sound absorbing characteristics. At this time, pores having a large outer peripheral dimension are pores having columns.

【0016】また、同一ゴム板中に上述した支柱を有す
る気孔と支柱を有しない気孔とを混在させてもよく、ま
たそれぞれの気孔の外周寸法比を2n (nを固定値)と
して一定値としてもよく、いずれの組み合わせの場合で
も吸音特性を低周波数領域から高周波領域まで、従来よ
りも十分広い領域までに広げることができる。
It is also possible to mix the above-mentioned pores having a strut and pores having no strut in the same rubber plate, and the outer peripheral dimension ratio of each pore is set to a constant value of 2 n (n is a fixed value). In any combination, the sound absorption characteristics can be expanded from the low frequency region to the high frequency region, to a region sufficiently wider than the conventional one.

【0017】[0017]

【実施例】以下、図面を参照しながら、この発明の実施
例について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】なお、図はこの発明が理解できる程度に、
各構成成分の形状、大きさ、および配置関係は概略的に
示してあるにすぎない。また、ここで説明する実施例
は、単なる一例であって、ここに説明される具体的な動
作、順序、および具体的な数値は、これに限定されるも
のではなく、部分的に動作を追加したり、あるいは削除
したり、また別の動作、および数値で置き換えても同様
な効果を達成することができる。
It should be noted that the drawings are such that the present invention can be understood.
The shape, size, and positional relationship of each component are only schematically shown. Further, the embodiments described here are merely examples, and the specific operations, sequences, and specific numerical values described herein are not limited thereto, and some operations may be added. The same effect can be achieved by doing or deleting or replacing with another operation and a numerical value.

【0019】図1、図2は、この発明を説明するための
図で、図1は、図2の吸音ゴム10のI−I線断面図、
図2は、吸音ゴム10の部分的平面図である。ゴム板1
1中に、例えば1種類の大きさの気孔13を所定の間隔
で封入する。気孔としては球形、楕円形、円板形、円筒
形、矩形、半円板形、半円柱形などとする。ここでは製
作の容易な円柱形の気孔の場合について説明する。
1 and 2 are views for explaining the present invention. FIG. 1 is a sectional view of the sound absorbing rubber 10 of FIG.
FIG. 2 is a partial plan view of the sound absorbing rubber 10. Rubber plate 1
For example, the pores 13 of one size are enclosed in 1 at predetermined intervals. The pores may be spherical, elliptical, disk-shaped, cylindrical, rectangular, semi-circular, semi-cylindrical, or the like. Here, the case of a cylindrical pore that is easy to manufacture will be described.

【0020】円柱形の気孔の内部に支柱15を設け気孔
の形状を円筒状とする。円筒の外周寸法の大きな気孔の
場合でも支柱15があるため、ゴムの硬度が小さくても
ゴム板の強度を低下することが少ない。ゴム中に封入し
た球形の気孔の壁の外周寸法がゴム中の音波の横波の2
波長に等しい周波数で気孔が共振振動して吸音すること
が報告されている(菊地 年晃:ゴム中の気泡振動と吸
音特性 海洋音響学会誌 15巻3号、1988年7月
pp.148−151)、円筒状気孔の場合には、円
筒直径の外周寸法が近似的に球形の外周寸法に相当す
る。外周寸法の大きな気孔の共振周波数は低くなる。従
って、支柱のある気孔をゴム中に封入した場合は、気孔
の外周寸法を支柱のない気孔を封入したゴムに比べて、
ゴム板の強度をあまり低下することなく大きくできるの
で、より低周波数での吸音特性が可能となる。
The columns 15 are provided inside the cylindrical pores to make the pores cylindrical. Even in the case of a hole having a large outer peripheral dimension of the cylinder, since the pillars 15 are provided, the strength of the rubber plate is less likely to decrease even if the hardness of the rubber is small. The peripheral dimension of the wall of the spherical pores enclosed in the rubber is the transverse wave of the sound wave in the rubber.
It has been reported that the pores resonate and absorb sound at a frequency equal to the wavelength (Kikuchi Toshiaki: Bubble vibration in rubber and sound absorption characteristics, Journal of the Ocean Acoustic Society, Vol. 15, No. 3, July 1988, pp. 148-151. ), In the case of cylindrical pores, the outer peripheral dimension of the cylinder diameter approximately corresponds to the spherical outer peripheral dimension. The resonance frequency of the pore having a large outer peripheral dimension becomes low. Therefore, when the pores with columns are enclosed in rubber, the outer diameter of the pores is smaller than that of rubber with pores without columns.
Since the strength of the rubber plate can be increased without significantly lowering it, sound absorption characteristics at lower frequencies are possible.

【0021】支柱15としては、ゴムと同一の材質でよ
いが、ゴムと特性が近いプラスチックなどの材質を用い
てもよい。
The pillar 15 may be made of the same material as rubber, but may be made of a material such as plastic having similar characteristics to rubber.

【0022】図1、図2では、同一寸法の気孔を規則的
に配列した例を図示したが、気孔の大きさと間隔は、所
定の範囲内であれば任意の大きさと配列でよい。このこ
とは、以下の説明でも同じである。
Although FIG. 1 and FIG. 2 show examples in which pores of the same size are regularly arranged, the size and interval of the pores may be any size and arrangement as long as they are within a predetermined range. This also applies to the following description.

【0023】気孔の外周寸法比が2n (n:整数)とな
る複数の異なる寸法の気孔を組み合わせて封入すれば、
一番小さい寸法の気孔に対応する共振周波数が一番高い
周波数で、その次に小さい寸法の気孔に対応する共振周
波数がその周波数の半分の周波数、順に、さらに半分の
周波数ごとに共振する吸音特性を有する。一番大きい寸
法の気孔に対応する共振周波数は一番低周波数である。
気孔の共振のQは小さく、気孔の大きさに対応する吸音
特性はなだらかに減少するので、隣り合う寸法の共振に
よる吸音特性は、スタガーとなるので、気孔の外周寸法
を、倍、倍となる気孔を組み合わせて配列すると、高周
波数から低周波数までの広帯域で吸音特性の良好な吸音
ゴムが実現できる。このとき、外周寸法の大きな気孔は
支柱を有する気孔とする。
By combining a plurality of pores having different outer diameters of 2 n (n: an integer) with different dimensions,
A sound absorption characteristic in which the resonance frequency corresponding to the pore with the smallest size is the highest frequency, and the resonance frequency corresponding to the pore with the next smallest size resonates at a frequency that is half that frequency, in that order, and at each half frequency. Have. The resonance frequency corresponding to the pore with the largest size is the lowest frequency.
Since the Q of the resonance of the pores is small and the sound absorption characteristics corresponding to the size of the pores are gradually reduced, the sound absorption characteristics due to the resonance of adjacent dimensions become a stagger, so the outer peripheral dimension of the pores is doubled or doubled. By arranging the pores in combination, it is possible to realize a sound absorbing rubber having a wide range of high to low frequencies and good sound absorbing characteristics. At this time, pores having a large outer peripheral dimension are pores having columns.

【0024】例えば、製作の容易な円柱形の気孔の一例
として、直径を4mm、8mm,16mm、32mmの
円柱形の気孔を封入した場合の一例を図3、図4に示
す。図3は、図4の一点鎖線III上の吸音ゴム16の
部分的断面図、図4は、図3の一点鎖線II上の吸音ゴ
ム16の平面図である。ゴム板17中の気孔21は直径
4mm、気孔23は直径8mmで外周寸法が小さいので
支柱がなく、気孔25は直径16mm、気孔27は直径
32mmで外周寸法が大きいのでそれぞれ支柱29、3
1を有する。
For example, as an example of a cylindrical pore that is easy to manufacture, an example in which cylindrical pores having a diameter of 4 mm, 8 mm, 16 mm, and 32 mm are enclosed is shown in FIGS. 3 and 4. 3 is a partial cross-sectional view of the sound absorbing rubber 16 on the alternate long and short dash line III in FIG. 4, and FIG. 4 is a plan view of the sound absorbing rubber 16 on the alternate long and short dash line II in FIG. Since the pores 21 in the rubber plate 17 have a diameter of 4 mm, the pores 23 have a diameter of 8 mm and a small outer peripheral dimension, there is no column, and the pores 25 have a diameter of 16 mm and the pores 27 have a diameter of 32 mm and a large outer dimension, so that the columns 29 and 3 respectively.
Has 1.

【0025】硬度約45度の天然ゴム中の横波の音速を
約100m/secとすると前記4種類の各々の気孔に
対応する理論的な共振周波数は、それぞれ約16kH
z、8kHz、4kHz、2kHzとなる。それぞれの
共振特性は、なだらかな周波数特性を有するので、これ
ら4種類の寸法の気孔を封入した場合の吸音特性は、2
kHz付近から16kHz付近までの広帯域で吸音特性
を有する吸音ゴムが実現できる。
When the acoustic velocity of transverse waves in natural rubber having a hardness of about 45 degrees is about 100 m / sec, the theoretical resonance frequencies corresponding to the above-mentioned four types of pores are about 16 kHz, respectively.
z, 8 kHz, 4 kHz, 2 kHz. Since each resonance characteristic has a gentle frequency characteristic, the sound absorption characteristic when the pores of these four sizes are enclosed is 2
It is possible to realize a sound absorbing rubber having a sound absorbing characteristic in a wide band from around kHz to around 16 kHz.

【0026】図3、図4では、寸法の異なる気孔を同じ
数として示しているが、各寸法の気孔の数は同一である
必要はなく、それぞれ異なる割合で封入してもよい。各
々の気孔の大きさに対応した各周波数領域において、各
気孔の数に対応した吸音特性を得ることができる。
3 and 4, the same number of pores having different sizes is shown, but the number of pores having different sizes does not have to be the same and may be filled in different proportions. In each frequency region corresponding to the size of each pore, it is possible to obtain sound absorption characteristics corresponding to the number of each pore.

【0027】また、図3、図4では、異なる寸法の気孔
を同一のゴム板中17に配列した場合として示してある
が、同一のゴム板中に必要な、異なる寸法の気孔をすべ
て封入する必要はなく、1枚のゴム板中に同一の寸法の
気孔を封入し、気孔の寸法がゴム板間で異なるゴム板を
複数枚組み合わせ、全体として必要な寸法の気孔をすべ
て含むようにしても同様の効果が得られる。例えば、一
例として図5の部分的断面図に示すように、ゴム板33
には一番小さい気孔41を、ゴム板35には2番目に小
さい気孔43を、ゴム板36には支柱49を有する2番
目に大きい気孔45を、ゴム板37には支柱51を有す
る一番大きい気孔47を各々封入し、33、35、3
7、39のゴム板を重ね合わせて吸音ゴム30としても
同様の効果がある。
Although FIGS. 3 and 4 show the case where the pores of different sizes are arranged in the same rubber plate 17, all the pores of different sizes required are enclosed in the same rubber plate. It is not necessary to fill the pores of the same size in one rubber plate, combine a plurality of rubber plates with different pore sizes between the rubber plates, and include all the pores of the required size as a whole. The effect is obtained. For example, as shown in the partial sectional view of FIG.
Has the smallest pores 41, the rubber plate 35 has the second smallest pores 43, the rubber plate 36 has the second largest pores 45 having columns 49, and the rubber plate 37 has the largest columns 51. Enclose large pores 47, 33, 35, 3
The same effect can be obtained by stacking the rubber plates 7 and 39 to form the sound absorbing rubber 30.

【0028】また、ゴム板中に複数の異なる寸法の気孔
を組み合わせて封入し、複数の異なる寸法の気孔の組み
合わせが、ゴム板間で異なるゴム板を組み合わせても同
様の効果が得られる。例えば、一例として図6の部分的
断面図に示すように、ゴム板53には一番小さい気孔4
1と2番目に小さい43を、ゴム板55には2番目に小
さい気孔43と支柱49を有する2番目に大きい気孔4
5を、ゴム板57には一番小さい気孔41と支柱51を
有する一番大きい気孔47を各々封入し、53、55、
57の3枚のゴム板を重ね合わせて吸音ゴム40として
も同様の効果がある。ここでは1枚のゴム板中に2種類
の大きさの気孔を封入した例で説明したが、1枚のゴム
板中に封入する気孔の大きさは、1種類でも、2種類で
も、3種類以上でもよい。また、同じ大きさの気孔を異
なるゴム板中に封入してもよいことは、いうまでもな
い。このような構造により、目的とする吸音特性にあわ
せて、異なった気孔を含むゴム板を選択して複数組み合
わせて目的を達成できる利点がある。
Further, a plurality of pores having different sizes are combined and enclosed in the rubber plate, and the same effect can be obtained by combining the plurality of pores having different sizes with each other. For example, as shown in the partial sectional view of FIG. 6 as an example, the rubber plate 53 has the smallest pores 4
The first and second smallest pores 43, the rubber plate 55 has the second smallest pores 43, and the second largest pores 4 having struts 49.
5, the rubber plate 57 is filled with the smallest pores 41 and the largest pores 47 having the columns 51, 53, 55,
The same effect can be obtained by stacking the three rubber plates 57 to form the sound absorbing rubber 40. Here, the example in which two kinds of pores are sealed in one rubber plate has been described, but the size of the pores sealed in one rubber plate is one kind, two kinds, or three kinds. Or more. Needless to say, pores of the same size may be enclosed in different rubber plates. With such a structure, there is an advantage that a rubber plate having different pores can be selected and combined in plural in accordance with a desired sound absorption characteristic to achieve the purpose.

【0029】図7および図8は、本発明の吸音ゴムの一
実施例の損失特性および吸音特性の実施例で、直径3m
m,6mm,13mm,16mmの気孔を厚さ2mmの
ゴム板に空け、その両面に厚さ2mmのゴム板を張り合
わせた場合の測定結果である。白丸の曲線60は、透過
損失、黒丸の曲線62は反射損失である。
FIGS. 7 and 8 show examples of loss characteristics and sound absorption characteristics of one embodiment of the sound absorbing rubber of the present invention, which has a diameter of 3 m.
It is a measurement result when the pores of m, 6 mm, 13 mm, and 16 mm are formed in a rubber plate having a thickness of 2 mm, and the rubber plates having a thickness of 2 mm are attached to both surfaces thereof. A white circle curve 60 is a transmission loss, and a black circle curve 62 is a reflection loss.

【0030】図7の吸音率は次式で表される。 吸音率=1−(透過率+反射率) 図7の透過損失と反射損失の測定結果から吸音率を算出
し図8に示す。
The sound absorption coefficient of FIG. 7 is expressed by the following equation. Sound absorption coefficient = 1- (transmittance + reflectance) The sound absorption coefficient is calculated from the measurement results of the transmission loss and the reflection loss in FIG. 7 and is shown in FIG.

【0031】図9は、従来の吸音ゴムの反射特性の測定
結果の一例である。厚さ3mmのゴム板に直径2mmか
ら8mmまでの気孔を設け、その両面に厚さ3mm,6
mm,および9mmのゴム板を張り合わせて、ゴム板の
全厚が9mm,15mm,および21mmの3通りの場
合の反射損失(ERで表してある)の測定結果である
り、それぞれ曲線80、82、および84で示してあ
る。(堀井 浩ほか:吸音楔の水圧特性の改善、海洋音
響学会講演論文集pp.1−2,1991年5月17
日)。
FIG. 9 shows an example of the measurement result of the reflection characteristic of the conventional sound absorbing rubber. A rubber plate with a thickness of 3 mm is provided with pores with a diameter of 2 mm to 8 mm, and both sides have a thickness of 3 mm, 6 mm.
mm and 9 mm rubber plates are pasted together, and the measurement results of the reflection loss (represented by ER) are shown when the total thickness of the rubber plates is 3 mm of 9 mm, 15 mm, and 21 mm. , And 84. (Hori Hori et al .: Improvement of water pressure characteristics of sound absorbing wedge, Proceedings of JSCE, pp.1-2, May 1991, 17)
Day).

【0032】従来の吸音ゴムに比べて5kHz以下での
吸音特性が著しく向上し、約1kHzから10kHzま
での広帯域で吸音特性の良好な吸音ゴムが実現できた。
Compared with the conventional sound absorbing rubber, the sound absorbing characteristic at 5 kHz or less is remarkably improved, and the sound absorbing rubber having a good sound absorbing characteristic in a wide band from about 1 kHz to 10 kHz can be realized.

【0033】なお、気孔の共振のQは小さく、気孔の大
きさに対応する吸音の周波数特性は、なだらかで帯域が
あるので、気孔の外周寸法比は、厳密に2n (n:整
数)でなくてもよく、ほぼ倍、倍となる寸法であれば十
分目的は達成できる。
Since the resonance Q of the pores is small and the frequency characteristic of sound absorption corresponding to the size of the pores has a smooth band, the outer peripheral dimension ratio of the pores is strictly 2 n (n: integer). It does not need to be provided, and the object can be sufficiently achieved as long as the dimension is approximately doubled.

【0034】また、気孔の外周寸法比が2n (n:整
数)以外の大きさの気孔を有していてもよい。また、気
孔の外周寸法比が2n (n:整数)である気孔のうち、
ある寸法の気孔の代わりに、その寸法より少し大きい寸
法と、少し小さい寸法の大きさの異なる複数の気孔に分
けても同様の効果が得られる。
Further, the outer peripheral size ratio of the pores may have pores having a size other than 2 n (n: integer). In addition, among the pores whose outer peripheral dimension ratio is 2 n (n: integer),
The same effect can be obtained by substituting a plurality of pores having a slightly larger size and a slightly smaller size instead of the pores having a certain size.

【0035】ここでの説明ではゴム板は、図2に示すよ
うに矩形としたが、実際に実験水槽の壁などに使用する
場合には、任意の形状を組み合わせて使用しても同様の
効果がある。
In the description here, the rubber plate has a rectangular shape as shown in FIG. 2, but when it is actually used as a wall of an experimental water tank or the like, the same effect can be obtained by combining arbitrary shapes. There is.

【0036】また、水中で使用する場合について説明し
たが、空中で使用すれば広帯域の吸音特性を持つ良好な
吸音材として効果がある。
Further, although the case of using in water has been described, it is effective as a good sound absorbing material having wide band sound absorbing characteristics when used in the air.

【0037】また、振動を減衰する防振ゴムとして使用
すれば、減衰量の大きく、かつ広帯域の良好な防振ゴム
として効果がある。
When it is used as a vibration isolating rubber that damps vibrations, it is effective as a good vibration isolating rubber having a large attenuation amount and a wide band.

【0038】[0038]

【発明の効果】上述の説明で明らかなように、この発明
の吸音ゴムによれば、低周波領域まで良好に吸音する広
帯域の吸音特性を実現できるので、水中物体の表面をこ
の発明の吸音ゴムで覆うと反射特性を低周波域まで低減
でき、また無響水槽の壁に設置すると無響水槽の反射特
性を低周波数域まで低減できる効果がある。また、空中
での吸音材や防振ゴムとしても効果がある。
As is apparent from the above description, according to the sound absorbing rubber of the present invention, it is possible to realize a wide band sound absorbing characteristic that absorbs sound well in the low frequency region. The effect of reducing the reflection characteristics of the anechoic aquarium to the low frequency range can be achieved by covering with a wall, and the reflection characteristics of the anechoic aquarium can be reduced to the low frequency range. It is also effective as a sound-absorbing material or vibration-proof rubber in the air.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の吸音ゴムの一実施例の説明のための
断面図である。
FIG. 1 is a sectional view for explaining an embodiment of a sound absorbing rubber of the present invention.

【図2】この発明の吸音ゴムの一実施例の説明のための
平面図である。
FIG. 2 is a plan view for explaining one embodiment of the sound absorbing rubber of the present invention.

【図3】この発明の吸音ゴムの一実施例の断面図であ
る。
FIG. 3 is a sectional view of an embodiment of the sound absorbing rubber of the present invention.

【図4】この発明の吸音ゴムの一実施例の断面図であ
る。
FIG. 4 is a sectional view of an embodiment of the sound absorbing rubber of the present invention.

【図5】この発明の吸音ゴムの一実施例の断面図であ
る。
FIG. 5 is a sectional view of an embodiment of the sound absorbing rubber of the present invention.

【図6】この発明の吸音ゴムの一実施例の断面図であ
る。
FIG. 6 is a sectional view of an embodiment of the sound absorbing rubber of the present invention.

【図7】この発明の吸音ゴムの一実施例の測定データの
一例である。
FIG. 7 is an example of measurement data of one embodiment of the sound absorbing rubber of the present invention.

【図8】この発明の吸音ゴムの一実施例の吸音特性測定
データの一例である。
FIG. 8 is an example of sound absorption characteristic measurement data of an embodiment of the sound absorbing rubber of the present invention.

【図9】従来の吸音ゴムの反射特性測定データの一例で
ある。
FIG. 9 is an example of reflection characteristic measurement data of a conventional sound absorbing rubber.

【符号の説明】[Explanation of symbols]

10,16,30,40:吸音ゴム 11,17,33,35,37,39:吸音ゴム 13,21,23,25,27,41,43,45,4
7:気孔 15,29,31,49,51:支柱 60,62:測定データ
10, 16, 30, 40: Sound absorbing rubber 11, 17, 33, 35, 37, 39: Sound absorbing rubber 13, 21, 23, 25, 27, 41, 43, 45, 4
7: Porosity 15, 29, 31, 49, 51: Support 60, 62: Measurement data

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年5月12日[Submission date] May 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】ゴム中に多数の気孔を封入した吸音ゴムの
構造は、気孔を封入した大きさの異なる楔形のゴムを組
合せている(E.Meyerほか、Acoustic
a、Vol.10,pp.281−287,196
0)。ゴム中に多数の気孔を封入した吸音ゴムの吸音機
構は気孔の共振振動によっている。ゴム中の微小の気孔
の共振周波数は気孔の形状に関係せず、気孔の体積に依
存することをMeyerは報告している。図10はMe
yerが文献中に報告している図である(Meyerほ
か、J.Acoust.Soc.Am.30.pp.1
116−1124,1958)。ゴム中に封入した球、
楕円、円筒および正方形の形状の気孔の共振周波数の測
定値(νmax)の逆数(縦軸)を気孔の体積の3乗根
(横軸)に対して図示している。この図より、ゴム中の
微小の気孔の共振周波数は気孔の形状に関係せず、気孔
の体積の3乗根に依存することを示している。
The structure of a sound-absorbing rubber in which a large number of pores are enclosed in rubber is a combination of wedge-shaped rubbers in which pores are enclosed and having different sizes (E. Meyer et al., Acoustic).
a, Vol. 10, pp. 281-287,196
0). The sound absorbing mechanism of sound absorbing rubber in which a large number of pores are enclosed in rubber is based on the resonance vibration of the pores. Meyer reported that the resonance frequency of minute pores in rubber is not related to the shape of the pores but depends on the volume of the pores. Figure 10 is Me
It is the figure which yer has reported in the literature (Meyer et al., J.Acoust.Soc.Am.30.pp.1).
116-1124, 1958). Sphere enclosed in rubber,
The reciprocal (vertical axis) of the measured value (νmax) of the resonance frequency of the pores having an elliptical shape, a cylindrical shape, and a square shape is shown with respect to the cube root of the pore volume (horizontal axis). From this figure, it is shown that the resonance frequency of minute pores in rubber is not related to the shape of the pores but depends on the cube root of the volume of the pores.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】従来の気孔を封入した吸音ゴムの構造は、
図10の関係を応用すると共に、ゴムと気孔の混合体の
音響インピーダンスを水の音響インピーダンスに順次等
しくなるよう気孔の大きさと数とを決めている(E.
G.Richardson、Technical As
pects of Sound p.281 Else
vier Publishing Company A
msterdam−New York,1957)。例
えば、ゴム板に直径2〜8mm程度の円柱状の気孔を多
数個配列して設け、その両面にゴム板を張り合わせて、
ゴム板中に多数の気孔を封入している。吸音の周波数特
性はほぼ4〜5kHz以上の高周波数で効果がある。そ
れ以下の低周波数領域まで吸音効果を広げるには、気孔
の直径を大きくする必要がある。
The structure of the conventional sound-absorbing rubber in which pores are enclosed is
While applying the relationship of FIG. 10, the size and number of pores are determined so that the acoustic impedance of the rubber / pore mixture becomes equal to that of water sequentially (E.
G. Richardson, Technical As
pects of Sound p. 281 Else
vier Publishing Company A
msterdam-New York, 1957). For example, a large number of columnar pores having a diameter of about 2 to 8 mm are arranged on a rubber plate, and the rubber plates are attached to both sides thereof,
A large number of pores are enclosed in a rubber plate. The frequency characteristics of sound absorption are effective at high frequencies of approximately 4 to 5 kHz or higher. In order to extend the sound absorbing effect to the low frequency region below that, it is necessary to increase the diameter of the pores.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】しかし、従来の吸音ゴムでは、ゴムの硬度
が低いのでゴム板中に外周寸法が8mm程度の大きさの
気孔の封入が限度であり、大きな外周寸法の気孔を封入
することは困難であった。従って、4〜5kHz以下の
低周波数領域に於ても吸音の効果を有する吸音ゴムの実
現は困難であった(E.Meyerほか:Acoust
ica、Vol.10,pp.281−287,196
0、伊藤 豊ほか:気孔入りゴムの吸音特性、防衛庁技
報181号、pp.49−55、堀井 浩ほか:吸音く
さびの水圧特性の改善、海洋音響学会講演論文集pp.
1−2,1991年5月17日)。そのため、2kHz
程度の低周波数から10kHz以上の高周波数までの十
分な広帯域特性を有する吸音ゴムが得られないという欠
点があった。
However, in the conventional sound absorbing rubber, since the hardness of the rubber is low, it is limited to fill the pores with a peripheral dimension of about 8 mm in the rubber plate, and it is difficult to fill the pores with a large peripheral dimension. there were. Therefore, it has been difficult to realize a sound absorbing rubber having a sound absorbing effect even in a low frequency region of 4 to 5 kHz or less (E. Meyer et al .: Acost
ica, Vol. 10, pp. 281-287,196
0, Yutaka Ito et al .: Sound absorption characteristics of rubber with pores, Defense Agency Technical Report 181, pp. 49-55, Hiroi Horii et al .: Improvement of water pressure characteristics of sound absorbing wedge, Proceedings of Ocean Acoustics Society, pp.
1-2, May 17, 1991). Therefore, 2 kHz
There is a drawback in that a sound absorbing rubber having a sufficient wide band characteristic from a low frequency of about 10 kHz to a high frequency of 10 kHz or more cannot be obtained.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】気孔の外周寸法比が2n (n:整数)とな
る複数の異なる寸法の気孔を組み合わせて封入すれば、
一番小さい寸法の気孔に対応する共振周波数が一番高い
周波数で、その次に小さい寸法の気孔に対応する共振周
波数がその周波数の半分の周波数である。以下順に、さ
らに半分の周波数ごとに共振する吸音特性を有する。一
番大きい寸法の気孔に対応する共振周波数は一番低周波
数である。気孔の共振のQは小さく、気孔の大きさに対
応する吸音特性はなだらかに減少するので、隣り合う寸
法の共振による吸音特性は、スタガーとなるので、気孔
の外周寸法を、倍、倍となる気孔を組み合わせて配列す
ると、高周波数から低周波数までの広帯域で吸音特性の
良好な吸音ゴムが実現できる。このとき、外周寸法の大
きな気孔は支柱を有する気孔とする。
By combining a plurality of pores having different outer diameters of 2 n (n: an integer) with different dimensions,
The resonance frequency corresponding to the pore of the smallest size is the highest frequency, and the resonance frequency corresponding to the pore of the next smallest size is half the frequency. In the following order, it further has a sound absorption characteristic that resonates for each half frequency. The resonance frequency corresponding to the pore with the largest size is the lowest frequency. Since the Q of the resonance of the pores is small and the sound absorption characteristics corresponding to the size of the pores are gradually reduced, the sound absorption characteristics due to the resonance of adjacent dimensions become a stagger, so the outer peripheral dimension of the pores is doubled or doubled. By arranging the pores in combination, it is possible to realize a sound absorbing rubber having a wide range of high to low frequencies and good sound absorbing characteristics. At this time, pores having a large outer peripheral dimension are pores having columns.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】図7の透過損失と反射損失の測定結果から
吸音率を算出し図8に示す。吸音率は次式で表される。 吸音率=1−(透過率+反射率)
The sound absorption coefficient was calculated from the measurement results of the transmission loss and the reflection loss in FIG. 7 and is shown in FIG. The sound absorption coefficient is expressed by the following equation. Sound absorption rate = 1- (transmittance + reflectance)

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】図9は従来の吸音ゴムの反射損失特性の測
定結果の一例である。厚さ3mmのゴム板に直径2mm
から8mmまでの気孔を設け、その両面に厚さ3mm、
6mmおよび9mmのゴム板を貼り合わせて、ゴム板の
全厚が9mm、15mmおよび21mmの3通りの場合
について Target strength を測定し
た結果から反射損失(ERで表してある)を求めて、そ
れぞれ曲線80、82および84で示してある(堀井
浩ほか:吸音くさびの水圧特性の改善、海洋音響学会講
演論文集pp.1−2,1991年5月17日)。
FIG. 9 shows an example of the measurement result of the reflection loss characteristic of the conventional sound absorbing rubber. 2 mm diameter on a 3 mm thick rubber plate
To 8mm, and 3mm thick on both sides,
6 mm and 9 mm rubber plates were pasted together, and the reflection loss (expressed as ER) was calculated from the results of measuring the target strength for three cases where the total thickness of the rubber plates was 9 mm, 15 mm and 21 mm, and the curves were obtained. It is shown at 80, 82 and 84 (Horai
Hiro et al .: Improving the water pressure characteristics of a sound absorbing wedge, Proceedings of the Acoustical Society of Japan pp. 1-2, May 17, 1991).

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図10】ゴム中の気孔の共振周波数の逆数と気孔の体
積の3乗根との関係を示すデータである。
FIG. 10 is data showing the relationship between the reciprocal of the resonance frequency of the pores in the rubber and the cube root of the pore volume.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図10】 ─────────────────────────────────────────────────────
[Figure 10] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月21日[Submission date] September 21, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】図9は支柱が無い気孔が設けられている従
来の3種類の吸音ゴムの反射損失特性の測定結果の一例
である。厚さ3mmの一枚のゴム板に直径2mm、4m
mおよび8mmの気孔を設け、このゴム板の両面に厚さ
3mmのゴム板を貼り合わせて全厚が9mmのものと、
6mmのゴム板を貼り合わせて全厚が15mmのもの
と、および9mmのゴム板を貼り合わせて全厚が21m
mのものと3通りの場合についてターゲット・ストレン
グス(Target strength)を測定した結
果から反射損失(ERで表してある)を求めて、それぞ
れ曲線80、82および84で示してある(堀井 浩ほ
か:吸音くさびの水圧特性の改善、海洋音響学会講演論
文集pp.1−2,1991年5月17日)。図9から
も明らかなように、従来の吸音ゴムでは、約2kHz以
下ではその反射損失が測定できず、また、透過損失はい
ずれの周波数でも測定できなかった。また、上述したこ
の発明の実施例では、使用したゴムシートに設けられた
気孔の直径は13mmと16mmであって、直径12m
mおよび24mmの気孔ではない。直径が2n mmであ
るのが理想的ではあるが、直径が13mm、16mm、
12mmおよび24mmの気孔は、いずれも5kHzよ
りも低い周波数帯で反射損失または吸音率にピーク値を
与えるので、本来12mmおよび24mmであるべき気
孔の直径を13mmおよび16mmの直径の気孔として
も大した相違はなく、吸音ゴムの特性に支障は無い。図
11は、この発明の吸音ゴムと従来の吸音ゴムとの相違
を説明するための反射損失−周波数特性をそれぞれ示す
図である。図11において、図7に示した反射損失曲線
62を曲線100として示してあり、また、図9に示し
た反射損失曲線を曲線102として示してある。これら
曲線100および102の比較から、4kHz以下の周
波数帯域では、この発明の実施例の反射損失は従来のも
のよりも大きく、従って、この発明の吸音ゴムは従来の
吸音ゴムよりも優れていることがわかる。
FIG. 9 shows an example of measurement results of reflection loss characteristics of three types of conventional sound absorbing rubbers provided with pores having no support. Diameter of 2mm and 4m on one rubber plate with thickness of 3mm
m and 8 mm pores are provided, and a rubber plate having a thickness of 3 mm is attached to both sides of the rubber plate to have a total thickness of 9 mm,
The total thickness is 15 mm with a 6 mm rubber plate attached, and the total thickness is 21 m with a 9 mm rubber plate attached.
The reflection loss (represented by ER) was calculated from the results of measuring the target strengths for m and three cases, and they are shown by curves 80, 82 and 84, respectively (Horii Hiro et al .: Improvement of water pressure characteristics of sound absorbing wedge, Proceedings of Ocean Acoustics Society, pp. 1-2, May 17, 1991). As is clear from FIG. 9, in the conventional sound absorbing rubber, its reflection loss could not be measured at about 2 kHz or less, and the transmission loss could not be measured at any frequency. Further, in the above-described embodiment of the present invention, the diameter of the pores provided in the used rubber sheet is 13 mm and 16 mm, and the diameter is 12 m.
Not m and 24 mm pores. Ideally the diameter is 2 n mm, but the diameter is 13 mm, 16 mm,
Since the 12 mm and 24 mm pores both give a peak value to the reflection loss or the sound absorption coefficient in the frequency band lower than 5 kHz, the diameters of the pores originally supposed to be 12 mm and 24 mm were also large as 13 mm and 16 mm diameter pores. There is no difference and the characteristics of the sound absorbing rubber are not affected. FIG. 11 is a diagram showing reflection loss-frequency characteristics for explaining the difference between the sound absorbing rubber of the present invention and the conventional sound absorbing rubber. 11, the reflection loss curve 62 shown in FIG. 7 is shown as a curve 100, and the reflection loss curve shown in FIG. 9 is shown as a curve 102. From the comparison of these curves 100 and 102, in the frequency band of 4 kHz or less, the reflection loss of the embodiment of the present invention is larger than that of the conventional one, so that the sound absorbing rubber of the present invention is superior to the conventional sound absorbing rubber. I understand.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図11[Name of item to be corrected] Figure 11

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図11】図9に示した、支柱を有さない気孔が形成さ
れている従来の吸音ゴムの反射損失特性と、図7に示し
た、支柱を有する気孔が形成されているこの発明の吸音
ゴムの反射損失特性との相違を説明するためのグラフで
ある。
11 is a reflection loss characteristic of a conventional sound absorbing rubber in which pores having no columns are formed as shown in FIG. 9 and sound absorption of the present invention in which pores having columns are formed as shown in FIG. It is a graph for explaining the difference with the reflection loss characteristic of rubber.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】 [Figure 10]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図11[Name of item to be corrected] Figure 11

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図11】 FIG. 11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ゴム中に多数の気孔を封入した吸音ゴム
において、気孔の内部に気孔壁を支える支柱を有するこ
とを特徴とする吸音ゴム。
1. A sound-absorbing rubber in which a large number of pores are enclosed in the rubber, wherein the sound-absorbing rubber is provided with pillars for supporting the pore walls inside the pores.
【請求項2】 ゴム中に多数の気孔を封入した吸音ゴム
において、気孔の外周寸法比が2n (n:整数)、 また
はほぼ2n となる複数の大きさの異なる気孔を封入して
成ることを特徴とする吸音ゴム。
2. A sound-absorbing rubber in which a large number of pores are enclosed in rubber, wherein a plurality of pores of different sizes are enclosed such that the outer peripheral dimension ratio of the pores is 2 n (n: integer) or approximately 2 n. Sound absorbing rubber characterized by that.
【請求項3】 気孔の外周寸法が異なる複数の大きさの
支柱のない気孔と、気孔の外周寸法が異なる複数の大き
さで、かつ支柱を有する気孔とを封入したことを特徴と
する吸音ゴム。
3. A sound-absorbing rubber, characterized in that a plurality of pore-free pores having different outer circumferential dimensions of pores and a plurality of pores having different circumferential dimensions of pores and having pillars are enclosed. .
【請求項4】 気孔の外周寸法が1種類または2種類以
上の複数の大きさの異なる気孔を封入した吸音ゴムを複
数複合して、複数複合したゴム全体の中で気孔の外周寸
法比が2n (n:整数)または、 ほぼ2n となることを
特徴とする吸音ゴム。
4. A plurality of sound-absorbing rubbers containing a plurality of pores having different sizes of one or two or more outer circumferences of the pores are compounded, and the ratio of the outer circumferences of the pores is 2 in the whole compounded rubber. n (n: integer) or almost 2 n .
JP5008166A 1993-01-21 1993-01-21 Sound absorbing rubber plate Expired - Lifetime JPH0769706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5008166A JPH0769706B2 (en) 1993-01-21 1993-01-21 Sound absorbing rubber plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5008166A JPH0769706B2 (en) 1993-01-21 1993-01-21 Sound absorbing rubber plate

Publications (2)

Publication Number Publication Date
JPH06222778A true JPH06222778A (en) 1994-08-12
JPH0769706B2 JPH0769706B2 (en) 1995-07-31

Family

ID=11685756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5008166A Expired - Lifetime JPH0769706B2 (en) 1993-01-21 1993-01-21 Sound absorbing rubber plate

Country Status (1)

Country Link
JP (1) JPH0769706B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160965A (en) * 1994-12-08 1996-06-21 Tech Res & Dev Inst Of Japan Def Agency Sound absorbing and shielding material
JP2004286808A (en) * 2003-03-19 2004-10-14 Mitsubishi Heavy Ind Ltd Sound absorbing structure
JP2009080487A (en) * 2008-10-21 2009-04-16 Mitsubishi Heavy Ind Ltd Underwater sound absorbing device
WO2013136909A1 (en) * 2012-03-13 2013-09-19 株式会社 日立ハイテクノロジーズ Soundproof cover for charged-particle beam device, and charged-particle beam device
JP2013541741A (en) * 2010-11-09 2013-11-14 カリフォルニア インスティチュート オブ テクノロジー Acoustic suppression system and related method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533242A (en) * 1976-06-29 1978-01-12 Nippon Telegr & Teleph Corp <Ntt> Recording system
JPH02276629A (en) * 1989-04-19 1990-11-13 Hayakawa Rubber Co Ltd Vibration-damping and soundproofing panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533242A (en) * 1976-06-29 1978-01-12 Nippon Telegr & Teleph Corp <Ntt> Recording system
JPH02276629A (en) * 1989-04-19 1990-11-13 Hayakawa Rubber Co Ltd Vibration-damping and soundproofing panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160965A (en) * 1994-12-08 1996-06-21 Tech Res & Dev Inst Of Japan Def Agency Sound absorbing and shielding material
JP2004286808A (en) * 2003-03-19 2004-10-14 Mitsubishi Heavy Ind Ltd Sound absorbing structure
JP2009080487A (en) * 2008-10-21 2009-04-16 Mitsubishi Heavy Ind Ltd Underwater sound absorbing device
JP2013541741A (en) * 2010-11-09 2013-11-14 カリフォルニア インスティチュート オブ テクノロジー Acoustic suppression system and related method
WO2013136909A1 (en) * 2012-03-13 2013-09-19 株式会社 日立ハイテクノロジーズ Soundproof cover for charged-particle beam device, and charged-particle beam device
JP2013191333A (en) * 2012-03-13 2013-09-26 Hitachi High-Technologies Corp Noise-proof cover for charged particle beam device and charged particle beam device

Also Published As

Publication number Publication date
JPH0769706B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US7395898B2 (en) Sound attenuating structures
CN108847211B (en) Acoustic structure and design method thereof
Varanasi et al. Experiments on the low frequency barrier characteristics of cellular metamaterial panels in a diffuse sound field
CN108133700A (en) A kind of acoustics black hole vibration and noise reducing device
EP2446433A2 (en) Sound barrier for audible acoustic frequency management
CN216388742U (en) Acoustic insulation panel and assembly comprising an acoustic insulation panel
Jackson Some aspects of the performance of acoustic hoods
CN101908338B (en) Novel low-frequency sound insulating material
AU607008B2 (en) Anechoic coating for acoustic waves
Langfeldt et al. Improved sound transmission loss of glass wool with acoustic metamaterials
JPH06222778A (en) Sound absorbing rubber
CN113920972A (en) Three-dimensional local resonance type phononic crystal structure and parameter optimization method thereof
Laly et al. Numerical modelling of acoustic metamaterial made of periodic Helmholtz resonator containing a damping material in the cavity
CN110277485A (en) Composite lay bending vibration element and preparation method thereof
US11849295B2 (en) Flat loudspeaker
Chen et al. Anchor loss reduction of quartz resonators utilizing phononic crystals
CN212032641U (en) Device for reducing reflecting intensity of end face of water tank
CN113066463A (en) Sound absorption and insulation structure for controlling sound vibration of transformer oil tank, transformer oil tank and transformer
JP2002178999A (en) Soundproof structure of rocket fairing
RU2196206C2 (en) Sound-measuring echo-free acoustic chamber ( variants )
Chojnacka et al. Sound transmission loss calculation for metamaterial plate using combined analytical and numerical approach
CN116543736A (en) Sound absorption and insulation inhibition type noise-reduction photonic crystal, acoustic metamaterial and noise reduction device
TWI281959B (en) Adjusting method of resonance frequency of soundproof structure
Li et al. Noise transmission control studies on a chamber core composite cylinder
CN205609210U (en) Compound sound absorbing structure who contains hollow soft resonance body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960123

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 18

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 18