JPH0622198B2 - Position adjustment method for electron beam stop of electron beam exposure apparatus - Google Patents

Position adjustment method for electron beam stop of electron beam exposure apparatus

Info

Publication number
JPH0622198B2
JPH0622198B2 JP59244436A JP24443684A JPH0622198B2 JP H0622198 B2 JPH0622198 B2 JP H0622198B2 JP 59244436 A JP59244436 A JP 59244436A JP 24443684 A JP24443684 A JP 24443684A JP H0622198 B2 JPH0622198 B2 JP H0622198B2
Authority
JP
Japan
Prior art keywords
diaphragm
electron beam
adjustment
rectangular
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59244436A
Other languages
Japanese (ja)
Other versions
JPS61124129A (en
Inventor
徳郎 斉藤
照雄 岩崎
重雄 窪田
進 小笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59244436A priority Critical patent/JPH0622198B2/en
Publication of JPS61124129A publication Critical patent/JPS61124129A/en
Publication of JPH0622198B2 publication Critical patent/JPH0622198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電子線露光装置の電子線絞りの位置調整方法に
関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for adjusting the position of an electron beam diaphragm of an electron beam exposure apparatus.

〔発明の背景〕[Background of the Invention]

半導体ウエハー上にパターンを作成する場合、電子線レ
ジストをウエハーに塗布して電子ビームにより露光する
ことが行なわれる。この露光時間を短縮するために可変
成形電子ビーム描画装置が最近よく用いられる。
When forming a pattern on a semiconductor wafer, an electron beam resist is applied to the wafer and exposed with an electron beam. In order to shorten this exposure time, a variable shaped electron beam drawing apparatus has been often used recently.

可変成形電子ビーム描画装置の描画方式を点状電子ビー
ム描画装置の描画方式と比べて第1図に示した。第1図
(a)では台形状の図形1を描画する場合、点状ビーム2
を矢印方向に走査しつつ図形を塗りつぶしていく。第1
図(b)では寸法が変化できる矩形ビームにより図形を塗
りつぶす場合を示した。描画の最初では最大矩形3によ
り、矢印Aの方向に一個ずつハンコを押すように図形を
描画していく。斜め部になるとビーム形状は4のように
横長の矩形に変化し、図形の端では5のように残り寸法
に応じて縦長の矩形になる。図形を塗りつぶすための単
位となる個々の矩形を描画することはシヨツトと言われ
る。
The drawing method of the variable shaped electron beam drawing apparatus is shown in FIG. 1 in comparison with the drawing method of the dot-shaped electron beam drawing apparatus. Fig. 1
In (a), when drawing a trapezoidal figure 1, a point beam 2
While scanning in the direction of the arrow, fill the figure. First
FIG. 6B shows a case where a figure is filled with a rectangular beam whose dimensions can be changed. At the beginning of drawing, figures are drawn by pushing the stamps one by one in the direction of arrow A with the maximum rectangle 3. At the slanted portion, the beam shape changes to a horizontally long rectangle like 4 and becomes a vertically long rectangle according to the remaining dimension like 5 at the end of the figure. Drawing individual rectangles, which are the units for filling a figure, is called a shot.

上記に説明したように図形を塗りつぶすためのシヨツト
数は矩形ビームの場合には点状ビームの場合よりはるか
に少ない。実際上は1/100程度となり描画時間の大
幅な短縮が可能となる。
As explained above, the number of shots for filling the figure is much smaller in the case of the rectangular beam than in the case of the point beam. Actually, it is about 1/100, and the drawing time can be greatly shortened.

このようにシヨツト毎に寸法が変化するビームをつくる
電子光学系の例を第2図に示す。図中6は電子銃、7は
電子ビーム、8,9,10,11は電子レンズ、12は
第1の矩形絞り、13は第2の矩形絞り、14はビーム
寸法を変える偏向器、15は描画試料となる半導体ウエ
ーハである。
FIG. 2 shows an example of an electron optical system that produces a beam whose size changes for each shot. In the figure, 6 is an electron gun, 7 is an electron beam, 8, 9, 10, 11 are electron lenses, 12 is a first rectangular diaphragm, 13 is a second rectangular diaphragm, 14 is a deflector for changing the beam size, and 15 is A semiconductor wafer used as a drawing sample.

第1絞り12を通つた電子ビーム7は絞り12の像12
aをレンズ8,9により第2絞り13上に結像する。絞
り13と重なつた斜線部16のビームが下方に通過し、
レンズ10,11によりウエハ15上に縮小・結像され
る。レンズ8,9の中間にある偏向器14の印加電圧を
変えると像12aの位置を移動させることができ、した
がつて重なり部16の大きさすなわち、ウエハ上のビー
ムの大きさを変えることができるわけである。重なり部
の矩形寸法をW,H、縮小率を1/Mとするとウエハ1
5上にはw=W/M,h=H/Mの矩形ビームができ
る。ここで通常Mは4〜50の値がとられる。
The electron beam 7 that has passed through the first diaphragm 12 has an image 12 of the diaphragm 12.
The image of a is formed on the second diaphragm 13 by the lenses 8 and 9. The beam of the shaded portion 16 overlapping the diaphragm 13 passes downward,
The images are reduced and imaged on the wafer 15 by the lenses 10 and 11. By changing the voltage applied to the deflector 14 located between the lenses 8 and 9, the position of the image 12a can be moved, thus changing the size of the overlapping part 16, that is, the size of the beam on the wafer. It can be done. Wafer 1 where the rectangular dimensions of the overlapping portion are W and H and the reduction ratio is 1 / M
A rectangular beam with w = W / M and h = H / M is formed on the beam 5. Here, a value of 4 to 50 is usually taken as M.

さて、このような光学系では第1及び第2絞り12,1
3の空間的な位置調整が重要である。すなわち光軸に垂
直な面内での位置調整(以下軸調整という)と光軸のま
わりの回転調整が不可欠である。特に回転調整は丸形絞
りを用いるポイントビーム装置では不要であつた。した
がつて、絞りの支持体は軸調整のみ可能な構造、すなわ
ち鏡体の側面から抜き差し可能で若干の首振り運動がで
きる構造でよかつた。このような構造では絞りを支持体
ごと引き抜くことが可能で、全絞りの軸調整をおこなう
ことは容易であつた。
Now, in such an optical system, the first and second diaphragms 12, 1
The spatial adjustment of 3 is important. That is, it is indispensable to adjust the position in a plane perpendicular to the optical axis (hereinafter referred to as axis adjustment) and adjust the rotation around the optical axis. Especially, the rotation adjustment was not necessary in the point beam device using the round diaphragm. Therefore, the diaphragm support has a structure in which only the axial adjustment is possible, that is, a structure in which it can be inserted and removed from the side surface of the mirror body and a slight swinging motion is possible. With such a structure, the diaphragm can be pulled out together with the support, and it is easy to adjust the axis of the entire diaphragm.

しかし、可変成形装置では軸調整に加えて回転調整も必
要で、支持体は複雑な構造となり、抜き状態をつくるこ
とは容易ではない。
However, in the variable molding device, rotation adjustment is required in addition to axial adjustment, and the support body has a complicated structure, and it is not easy to create a drawn state.

従来の可変矩形ビームをつくる光学系では矩形絞り1
2,13は同じ大きさの正方形絞りが用いられていた
(ジャーナル・オブ・バキューム・サイエンス・アンド
・テクノロジー:Journal of Vacuum Science and Tech
nology B第1巻,第4号(1983年10〜12月)
第995頁〜第1004頁)。絞りの空間的な位置調整
にはウエハ15面内の標準マーク上をビームを走査して
得られる反射電子等の信号を用いて行なう必要がある。
したがつて軸調整及び回転調整の可能な支持台にのつた
小さな矩形絞りを二つも通してビームを試料上に照射し
つつ、絞りの軸調整および回転調整をおこなうことは熟
練のオペレータをもつてしても大変困難な作業であつ
た。
In the conventional optical system that creates a variable rectangular beam, a rectangular diaphragm 1
2 and 13 used the same size of the diaphragm (Journal of Vacuum Science and Tech:
nology B Volume 1, Issue 4 (October to December 1983)
Pp. 995-1004). The spatial position adjustment of the diaphragm needs to be performed using signals such as backscattered electrons obtained by scanning the beam over the standard mark on the surface of the wafer 15.
Therefore, it is necessary for a skilled operator to perform the axis adjustment and the rotation adjustment of the diaphragm while irradiating the beam on the sample through two small rectangular diaphragms mounted on the support table capable of the axis adjustment and the rotation adjustment. But it was a very difficult task.

〔発明の目的〕[Object of the Invention]

本発明の目的は質のよい矩形ビームをウエハ面上に形成
するため、二つの絞り位置及び回転調整が容易に行える
電子線露光装置の電子線絞りの位置調整方法を提供する
ことにある。
An object of the present invention is to provide a method for adjusting the position of an electron beam diaphragm of an electron beam exposure apparatus, which can easily adjust two diaphragm positions and rotations in order to form a high quality rectangular beam on a wafer surface.

〔発明の概要〕[Outline of Invention]

発明者等の検討によれば、第1の絞り及び第2の絞りの
機械的な位置調整及び回転調整はウエハーに近い第2の
絞りからおこない、次に、第1の絞りの調整をおこなう
というのが実験上最善の方法であることがわかつた。本
発明では光軸に垂直な面内で可動で且つ、光軸のまわり
に回転可能な台上に第1の絞り及び第2の絞りを搭載
し、その絞りの大きさは第2の絞りの調整時には第1の
絞りが実質上無視できる状態をつくれるよう第1の絞り
の大きさを第2の絞りに対し十分大きく、そして第2の
絞りは最大ビーム寸法に対応する大きさに形成される。
According to a study by the inventors, mechanical position adjustment and rotation adjustment of the first diaphragm and the second diaphragm are performed from the second diaphragm close to the wafer, and then the first diaphragm is adjusted. It turns out that is the best method experimentally. In the present invention, the first diaphragm and the second diaphragm are mounted on a base that is movable in a plane perpendicular to the optical axis and is rotatable around the optical axis, and the size of the diaphragm is the same as that of the second diaphragm. The size of the first diaphragm is large enough relative to the second diaphragm so that the first diaphragm can be made substantially negligible during adjustment, and the second diaphragm is sized to correspond to the maximum beam size. .

本発明の要旨は、電子線源と、前記電子線源から放出さ
れる電子線を絞るための矩形形状の第一の開口よりなる
第一の絞りを有する第一の絞り台と、前記第一の絞りを
通過した前記電子線を絞るための矩形形状の第二の開口
よりなる第二の絞りを有する第二の絞り台とを有し、 前記第一の開口の形状を規定する四辺全ての辺の長さが
前記第二の開口の形状を規定する四辺のうちのどの辺の
長さよりも長くなるように相対的に規定された前記第一
および第二の開口を有する電子線露光装置を準備し、 前記第二の絞りに到達する前記電子線が前記第一の絞り
の存在によって実質的に遮られないように、前記第一の
絞りと前記第二の絞りとの相対的な位置関係を調整した
状態で前記第二の絞りの軸調整および回転調整を行い、 前記第二の絞りの軸調整および回転調整を行った後に、
前記第一の絞りの軸調整および回転調整を行うことを特
徴とする電子線露光装置の電子線絞りの位置調整方法に
ある。
The gist of the present invention is to provide an electron beam source, a first diaphragm base having a first diaphragm having a rectangular first opening for narrowing an electron beam emitted from the electron beam source, and the first diaphragm. And a second diaphragm base having a second diaphragm consisting of a rectangular second opening for narrowing the electron beam that has passed through the diaphragm, and all four sides that define the shape of the first opening. An electron beam exposure apparatus having the first and second openings relatively defined such that the side length is longer than any of the four sides defining the shape of the second opening. Prepared, the relative positional relationship between the first diaphragm and the second diaphragm so that the electron beam reaching the second diaphragm is not substantially blocked by the presence of the first diaphragm. Adjust the axis and rotation of the second aperture in the state of adjusting, the axis of the second aperture After the settling and rotational adjustment,
In the method of adjusting the position of the electron beam diaphragm of the electron beam exposure apparatus, the axis adjustment and the rotation adjustment of the first diaphragm are performed.

ここで、「前記第一の開口の形状を規定する四辺全ての
辺の長さが前記第二の開口の形状を規定する四辺のうち
のどの辺の長さよりも長くなるように相対的に規定され
た前記第一および第二の開口」の意義は、本発明による
第二の絞りの調整時には第一の絞りの存在が実質的に無
視できる状態、即ち、抜き状態とできるように、第一の
開口の大きさ・形状と第二の開口の大きさ・形状との相
対的な関係を規定することにある。
Here, “relatively defined such that the lengths of all four sides defining the shape of the first opening are longer than any of the four sides defining the shape of the second opening. The meaning of `` the first and second openings described above '' means that when the second diaphragm is adjusted according to the present invention, the existence of the first diaphragm can be substantially ignored, that is, the first diaphragm can be in the extracted state. The purpose is to define the relative relationship between the size and shape of the second opening and the size and shape of the second opening.

「前記第二の絞りに到達する前記電子線が前記第一の絞
りの存在によって実質的に遮られないように、前記第一
の絞りと前記第二の絞りとの相対的な位置関係を調整し
た状態」とは、いわゆる「抜き状態」をいう。
“Adjusting the relative positional relationship between the first diaphragm and the second diaphragm so that the electron beam reaching the second diaphragm is not substantially blocked by the presence of the first diaphragm. The "done state" means a so-called "pulled state".

〔発明の実施例〕Example of Invention

以下本発明の実施例を用いて詳述する。 The present invention will be described in detail below with reference to examples.

レンズ系等の構成は第2図に示す通りである。実施例で
は絞り12の像は絞り13上に1:1で結像されてい
る。また重なり部16はウエハ15面上に略々1/25
(M=25)で縮小結像される。実施例の装置ではウエ
ハ15上のビーム最大寸法は6.5μmである。した
がつて絞り13の大きさは25〜6.5μm≒163
μmすなわちほぼ165〜170μmで形成してあ
る。これに対し絞り12は1〜2mmと、絞り13にく
らべ10倍近い大きさで形成してある。これらの絞りは
真空外より光軸に垂直な面内で半径2mmの範囲で可動、
かつ光軸のまわりに360゜回転可能(もちろん真空外
よりの操作による)な台上に取りつけられている。この
ような構造体の例を第3図に示す。17は鏡体、18は
絞り台、19,20は光軸に垂直な面内で移動させるツ
マミ、21は回転用ツマミである。
The configuration of the lens system and the like is as shown in FIG. In the embodiment, the image of the diaphragm 12 is formed on the diaphragm 13 at a ratio of 1: 1. The overlapping portion 16 is approximately 1/25 on the surface of the wafer 15.
A reduced image is formed at (M = 25). In the apparatus of the embodiment, the maximum beam size on the wafer 15 is 6.5 μm . Therefore, the size of the diaphragm 13 is 25 to 6.5 μm ≈163.
[mu] m That is formed almost 165~170μm □. On the other hand, the diaphragm 12 is formed to have a size of 1 to 2 mm □, which is about 10 times larger than that of the diaphragm 13. These diaphragms can be moved within a radius of 2 mm in the plane perpendicular to the optical axis from outside the vacuum,
Moreover, it is mounted on a table that can be rotated 360 ° around the optical axis (of course by operation from outside the vacuum). An example of such a structure is shown in FIG. Reference numeral 17 is a mirror body, 18 is a diaphragm base, 19 and 20 are knobs for moving in a plane perpendicular to the optical axis, and 21 is a knob for rotation.

このように形成された本実施例の装置では2つの絞り回
転調整と、軸調整が極めて容易である。
In the apparatus of this embodiment formed in this way, it is extremely easy to adjust the rotations of the two diaphragms and the axis.

I)先ず最初に第2の絞り13の軸調整を行う。レンズ
の使用条件は第4図(a)に示すように9のみ励起する。
この時第1の絞り12は非常に大きいので、絞り12の
台は大略の位置に設定するだけでビームは第2の絞り1
3を通過できる。絞り13の下方に軸調整用蛍光板22
を設置しておき、22上の13の投影を外部より適宜の
窓を通して観察する。この時レンズ9の励磁を変えると
上記投影の大きさは変化するが、投影の中心が不動とな
るように絞り13の位置を調整する。これで軸調整が完
了したことになる。このような操作を従来のように、絞
り12が絞り13と同程度の大きさの場合に行なおうと
すると、絞り13の移動に伴つて、ビームが下方に通ら
なくなることがあつた。本実施例のように第1の絞りを
第2の絞りに対して10倍近い大きさにしておくとビー
ムの通過に関して全く問題ないが、上記比率が3倍程度
でも問題は十分軽減される。
I) First, the axis of the second diaphragm 13 is adjusted. As for the use condition of the lens, only 9 is excited as shown in FIG.
At this time, since the first diaphragm 12 is very large, the beam of the second diaphragm 1 can be obtained only by setting the base of the diaphragm 12 at a roughly position.
You can pass 3. An axis adjusting fluorescent plate 22 is provided below the diaphragm 13.
Is installed, and 13 projections on 22 are observed from the outside through an appropriate window. At this time, if the excitation of the lens 9 is changed, the size of the projection changes, but the position of the diaphragm 13 is adjusted so that the center of the projection remains stationary. This completes the axis adjustment. If such an operation is attempted when the diaphragm 12 is about the same size as the diaphragm 13 as in the conventional case, the beam may not pass downward due to the movement of the diaphragm 13. If the first diaphragm is made 10 times larger than the second diaphragm as in the present embodiment, there is no problem with respect to the passage of the beam, but even if the ratio is about 3 times, the problem is sufficiently reduced.

II)次は絞り13の回転調整である。この時のレンズの
使用条件を第4図(b)に示す。即ち絞り13以下のレン
ズを正規の状態に励磁し、上のレンズ8,9は励磁しな
い。この時も絞り12が十分に大きいのでビームはけら
れることなく絞り13を通過してウエハ面上に絞り13
の像を形成している。回転調整はウエハと同一高さの面
に形成された標準マーク上をビーム走査することにより
おこなう。本実施例では標準マークとしてビーム寸法に
比べ十分小さい金ドツト(0.2〜0.3μm球)をS
i上に形成したものを用いた。金ドツト上を矩形ビーム
を走査し反射電子信号で例えばSEM像をつくるとCRT
上に矩形ビームを表示できるので絞り13の回転方向の
不整が検知できる。もし矩形像が走査方向(通常はウエ
ハを乗せるステージのX,Y移動方向と一致)と回転し
た状態にあるなら、絞り13を外部より回転し、方向を
走査方向にそろえる。この時、絞り13の軸がずれる
が、絞り12が大きいのでビームはカツトされることは
ない。この状態で再びI)の手続を踏めば絞り13の軸
調及び回転調整が完了したことになる。
II) Next is rotation adjustment of the diaphragm 13. The conditions of use of the lens at this time are shown in FIG. 4 (b). That is, the lenses below the diaphragm 13 are excited to the normal state, and the upper lenses 8 and 9 are not excited. At this time as well, the diaphragm 12 is sufficiently large so that the beam is not eclipsed and passes through the diaphragm 13 onto the wafer surface.
Form an image of. The rotation adjustment is performed by beam scanning on a standard mark formed on the surface having the same height as the wafer. In this embodiment, a gold dot (0.2 to 0.3 μm sphere), which is sufficiently smaller than the beam size, is used as the standard mark.
What was formed on i was used. If a rectangular beam is scanned on the gold dot and a SEM image is created with reflected electron signals, a CRT
Since a rectangular beam can be displayed on the upper side, irregularities in the rotation direction of the diaphragm 13 can be detected. If the rectangular image is rotated in the scanning direction (usually coincident with the X and Y movement directions of the stage on which the wafer is placed), the diaphragm 13 is rotated from the outside to align the direction with the scanning direction. At this time, the axis of the diaphragm 13 is displaced, but the beam is not cut because the diaphragm 12 is large. If the procedure of I) is again performed in this state, the axial adjustment and rotation adjustment of the diaphragm 13 are completed.

III)次は第1の絞り12の軸調整及び回転調整であ
る。この時のレンズの使用条件は第2図に示すように、
全てのレンズを正規の条件で励磁する。したがつて絞り
12の面は絞り13の面上に結像している。前記(I),
および(II)の絞り13の調整状態では絞りの位置関係は
電子銃の方からみて第5図(a)のように、絞り12は抜
き状態にある。そこで絞り12を光軸に垂直な面内で移
動する(矢印)。1コーナ23が絞り13にかかると重
なり部16は一般に矩形ではない。そこで絞り12の回
転をしながらSEM像によりたて長(b)又は横長(c)の
ビームが得られるように回転を追い込む。こうして絞り
12の回転調整が終了すると次に位置の調整を行う。実
施例では絞り13がシステムの許容する最大ビームをつ
くれるような大きさに選んであるので、成形偏向板14
の印加電圧を0に保つた状態で重なり部16の各辺が第
2絞りの各辺の〜1/2になるまで第1の絞り12を近
づければよいわけである(第4図(c))。こうして全絞
りの軸調及び回転調整を完了する。
III) Next is the axial adjustment and rotation adjustment of the first diaphragm 12. The usage conditions of the lens at this time are as shown in FIG.
Excite all lenses under normal conditions. Therefore, the surface of the diaphragm 12 is imaged on the surface of the diaphragm 13. (I),
In the adjustment state of the diaphragm 13 of (II) and (II), the positional relationship of the diaphragm 12 is as shown in FIG. Then, the diaphragm 12 is moved in a plane perpendicular to the optical axis (arrow). When the one corner 23 overlaps the diaphragm 13, the overlapping portion 16 is generally not rectangular. Therefore, while rotating the diaphragm 12, the rotation is driven so that a vertically long beam (b) or a horizontally long beam (C) can be obtained from the SEM image. When the rotation adjustment of the diaphragm 12 is completed in this way, the position is adjusted next. In the embodiment, the diaphragm 13 is selected to have a size capable of producing the maximum beam allowed by the system.
It is sufficient to bring the first diaphragm 12 closer until each side of the overlapping portion 16 becomes ½ of each side of the second diaphragm with the applied voltage of 0 maintained at 0 (FIG. 4 (c)). )). In this way, the axial adjustment and rotation adjustment of all apertures are completed.

以上から明らかなように、本実施例によれば、二つの成
形用絞りの軸調整、回転調整がきわめて容易に、高度の
熟練を要さずに行うことができる。また、第一の絞りの
矩形は第二の絞りに比してきわめて大きいので、一つの
コーナを用いているとき、他の3つのコーナに電子銃か
らのビームは照射されないから、用いているコーナのビ
ームによる汚染が問題となった時、前に述べた手順によ
り絞り12の他のコーナを用いるごとく調整を行えば、
絞りの交換の頻度も少なくできる。
As is apparent from the above, according to the present embodiment, the axial adjustment and the rotational adjustment of the two forming diaphragms can be extremely easily performed without requiring a high degree of skill. Further, since the rectangle of the first diaphragm is much larger than that of the second diaphragm, when one corner is used, the other three corners are not irradiated with the beam from the electron gun. When contamination by the beam of the above becomes a problem, if adjustment is performed by using the other corners of the diaphragm 12 according to the procedure described above,
The frequency of replacement of the diaphragm can be reduced.

[発明の効果] 本発明によれば、第一の絞りと第二の絞りの軸調整、回
転調整を容易に行うことができる。
[Advantages of the Invention] According to the present invention, it is possible to easily perform axial adjustment and rotation adjustment of the first diaphragm and the second diaphragm.

【図面の簡単な説明】[Brief description of drawings]

第1図は点ビーム及び可変成形ビーム描画方式を示す平
面図、第2図は可変成形ビーム光学系の構成の一例を示
す縦断面図、第3図は矩形絞りを固定する台の構造を示
す平面図、第4図は第2の絞りの軸および回転調整の手
順を示すビーム光学系の縦断面図、第5図は第1絞り調
整の手順を示す絞りの相対的位置関係の平面図である。 1……描画すべき図形、2……点ビーム、3,4,5…
…矩形ビーム、6……電子源、8,9,10,11……
電子レンズ、12……第1成形絞り、13……第2成形
絞り、14……成形偏向板、18……成形絞り支持台、
19,20……支持台移動ネジ、21……回転ネジ。
FIG. 1 is a plan view showing a point beam and a variable shaped beam drawing system, FIG. 2 is a vertical sectional view showing an example of the configuration of a variable shaped beam optical system, and FIG. 3 shows a structure of a base for fixing a rectangular diaphragm. FIG. 4 is a plan view of a beam optical system showing the procedure of adjusting the axis and rotation of the second diaphragm, and FIG. 5 is a plan view of the relative positional relationship of the diaphragm showing the procedure of adjusting the first diaphragm. is there. 1 ... Graphic to be drawn, 2 ... Point beam, 3, 4, 5 ...
... rectangular beam, 6 ... electron source, 8,9,10,11 ...
Electron lens, 12 ... First molding diaphragm, 13 ... Second molding diaphragm, 14 ... Molding deflection plate, 18 ... Molding diaphragm support,
19, 20 ... Support stand moving screw, 21 ... Rotating screw.

フロントページの続き (72)発明者 小笹 進 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭57−87130(JP,A) 特開 昭53−57764(JP,A)Front page continuation (72) Inventor Susumu Kosasa 1-280, Higashi Koigakubo, Kokubunji, Tokyo (56) References JP-A-57-87130 (JP, A) JP-A-53-57764 (JP) JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電子線源と、前記電子線源から放出される
電子線を絞るための矩形形状の第一の開口よりなる第一
の絞りを有する第一の絞り台と、前記第一の絞りを通過
した前記電子線を絞るための矩形形状の第二の開口より
なる第二の絞りを有する第二の絞り台とを有し、 前記第一の開口の形状を規定する四辺全ての辺の長さが
前記第二の開口の形状を規定する四辺のうちのどの辺の
長さよりも長くなるように相対的に規定された前記第一
および第二の開口を有する電子線露光装置を準備し、 前記第二の絞りに到達する前記電子線が前記第一の絞り
の存在によって実質的に遮られないように、前記第一の
絞りと前記第二の絞りとの相対的な位置関係を調整した
状態で前記第二の絞りの軸調整および回転調整を行い、 前記第二の絞りの軸調整および回転調整を行った後に、
前記第一の絞りの軸調整および回転調整を行うことを特
徴とする電子線露光装置の電子線絞りの位置調整方法。
1. An electron beam source, a first diaphragm base having a first diaphragm having a rectangular first opening for narrowing an electron beam emitted from the electron beam source, and the first diaphragm. A second diaphragm base having a second diaphragm having a rectangular second opening for narrowing the electron beam that has passed through the diaphragm, and all four sides that define the shape of the first opening. An electron beam exposure apparatus having the first and second openings relatively defined such that the length of the two is longer than any of the four sides defining the shape of the second opening. However, so that the electron beam reaching the second diaphragm is not substantially blocked by the presence of the first diaphragm, the relative positional relationship between the first diaphragm and the second diaphragm is changed. In the adjusted state, the axis adjustment and the rotation adjustment of the second diaphragm are performed, and the axis adjustment of the second diaphragm is performed. After the preliminary rotation adjustment,
A method for adjusting the position of an electron beam diaphragm of an electron beam exposure apparatus, which comprises performing axis adjustment and rotation adjustment of the first diaphragm.
JP59244436A 1984-11-21 1984-11-21 Position adjustment method for electron beam stop of electron beam exposure apparatus Expired - Lifetime JPH0622198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59244436A JPH0622198B2 (en) 1984-11-21 1984-11-21 Position adjustment method for electron beam stop of electron beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59244436A JPH0622198B2 (en) 1984-11-21 1984-11-21 Position adjustment method for electron beam stop of electron beam exposure apparatus

Publications (2)

Publication Number Publication Date
JPS61124129A JPS61124129A (en) 1986-06-11
JPH0622198B2 true JPH0622198B2 (en) 1994-03-23

Family

ID=17118622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59244436A Expired - Lifetime JPH0622198B2 (en) 1984-11-21 1984-11-21 Position adjustment method for electron beam stop of electron beam exposure apparatus

Country Status (1)

Country Link
JP (1) JPH0622198B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541278B2 (en) * 1988-04-07 1996-10-09 富士通株式会社 Electronic beam exposure system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040186B2 (en) * 1976-11-04 1985-09-10 富士通株式会社 Magnetic field forming device
JPS5469075A (en) * 1977-11-14 1979-06-02 Hitachi Ltd Electron beam drawing device
JPS5787130A (en) * 1980-11-19 1982-05-31 Nec Corp Exposure device of charged particle beam

Also Published As

Publication number Publication date
JPS61124129A (en) 1986-06-11

Similar Documents

Publication Publication Date Title
US5591970A (en) Charged beam apparatus
US4967088A (en) Method and apparatus for image alignment in ion lithography
US7425703B2 (en) Electron beam apparatus, a device manufacturing method using the same apparatus, a pattern evaluation method, a device manufacturing method using the same method, and a resist pattern or processed wafer evaluation method
JP3689516B2 (en) Electron beam exposure system
US4528452A (en) Alignment and detection system for electron image projectors
EP0298495B1 (en) Method and apparatus for correcting defects of x-ray mask
JPS6335094B2 (en)
US4460827A (en) Scanning electron microscope or similar equipment with tiltable microscope column
US4469949A (en) Electron beam pattern transfer device and method for aligning mask and semiconductor wafer
US7439525B2 (en) Demagnification measurement method for charged particle beam exposure apparatus, stage phase measurement method for charged particle beam exposure apparatus, control method for charged particle beam exposure apparatus, and charged particle beam exposure apparatus
US5023462A (en) Photo-cathode image projection apparatus for patterning a semiconductor device
JPH11191529A (en) Charge beam exposure
JPH0732111B2 (en) Charged beam projection exposure apparatus
JPH0622198B2 (en) Position adjustment method for electron beam stop of electron beam exposure apparatus
JPH0414490B2 (en)
JPH07122468A (en) Electron beam lithography equipment and drawing method using the same
JP3830041B2 (en) Stage base and substrate processing apparatus
JP2959710B2 (en) Area beam shape detection system, charged particle beam writing apparatus and electron beam writing apparatus including the same, and electron beam writing method thereof
Beasley et al. An electron beam maskmaker
JP2898726B2 (en) Charged particle beam exposure method
JP3369835B2 (en) Shape evaluation method of shaping aperture in charged beam writing apparatus and rotation adjustment method of shaping aperture
JP3168032B2 (en) Electron beam exposure apparatus and method for inspecting drawing pattern
JPH0521320A (en) X-ray aligner
JP3494785B2 (en) Electron beam drawing apparatus and drawing method
JPH1027749A (en) Charged particle beam lithography method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term