JPH0622188Y2 - Optical power meter - Google Patents

Optical power meter

Info

Publication number
JPH0622188Y2
JPH0622188Y2 JP857789U JP857789U JPH0622188Y2 JP H0622188 Y2 JPH0622188 Y2 JP H0622188Y2 JP 857789 U JP857789 U JP 857789U JP 857789 U JP857789 U JP 857789U JP H0622188 Y2 JPH0622188 Y2 JP H0622188Y2
Authority
JP
Japan
Prior art keywords
light
optical power
measuring
heat
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP857789U
Other languages
Japanese (ja)
Other versions
JPH0299344U (en
Inventor
明弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP857789U priority Critical patent/JPH0622188Y2/en
Publication of JPH0299344U publication Critical patent/JPH0299344U/ja
Application granted granted Critical
Publication of JPH0622188Y2 publication Critical patent/JPH0622188Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、光パワーメータに係るものであり、詳しくは
大出力パルス光のパワー測定を行う光パワーメータに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to an optical power meter, and more particularly to an optical power meter for measuring the power of large output pulsed light.

<従来の技術> 従来、光パワーの測定で良く用いられるのは、フォトダ
イオードのような半導体の光電変換方式と、光熱変換方
式(即ちカロリーメータ法)がある。
<Prior Art> Conventionally, a photoelectric conversion method of a semiconductor such as a photodiode and a photothermal conversion method (that is, a calorimeter method) are often used in the measurement of optical power.

以下この従来技術を図面を用いて説明する。This prior art will be described below with reference to the drawings.

第3図は従来の技術の説明に供する図であり、この第3
図においては光電変換方式の代表例としてのフォトダイ
オードの原理の説明に供する図を表わす。
FIG. 3 is a diagram for explaining the conventional technique.
In the figure, a diagram for explaining the principle of a photodiode as a typical example of a photoelectric conversion system is shown.

第3図において、受光面(P層)1を通して測定光αin
が入射すると、P層1とN基板2が接合することで形成
されるPN接合部(空乏層)3で光励起により電子正孔
対4が発生し、これが光パワーに比例した光電流L
して回路上を流れる。光電変換方式は、この電流値を測
定することで、測定光αinの光パワーを測定している。
In FIG. 3, the measurement light α in passes through the light receiving surface (P layer) 1.
Is incident, an electron-hole pair 4 is generated by photoexcitation in a PN junction (depletion layer) 3 formed by joining the P layer 1 and the N substrate 2, and this is converted into a photocurrent L i proportional to the optical power. Flowing on the circuit. The photoelectric conversion method measures the optical power of the measurement light α in by measuring this current value.

第4図は従来の技術の説明に供する図であり、この第4
図においてはカロリーメータ法の代表例の原理の説明に
供する図を表わす。
FIG. 4 is a diagram for explaining the conventional technique.
In the figure, a diagram for explaining the principle of a typical example of the calorimeter method is shown.

第4図において、カロリーメータ法は、周囲温度変動の
影響を低減するための断熱ジャケット5の内部に、その
入射口5aから入射する測定光αinを受光し吸収して熱エ
ネルギーに変換する例えばアルミニウム等の熱良導体で
円筒状又はディスク状に形成され、受光面に光吸収率の
高い材料がコーティングされた光吸収体6が設置され、
この光吸収体6で前記測定光αinを熱エネルギーに変換
し、その時の熱エネルギーを、光吸収体6と基準温度体
(光吸収体6に比べて充分大きな熱容量をもち、短時間
の温度変動がほとんどないように作られている)7との
温度差として温度差検出素子8で検出して出力
(Eout)することで測定光αinの光パワーを測定して
いる。
In FIG. 4, in the calorimeter method, the measurement light α in entering from the entrance 5a is received and absorbed inside the heat insulating jacket 5 for reducing the influence of ambient temperature fluctuations, and is converted into thermal energy, for example. A light absorber 6 which is formed of a good heat conductor such as aluminum into a cylindrical shape or a disk shape and whose light-receiving surface is coated with a material having a high light absorption rate is installed.
The measurement light α in is converted into heat energy by the light absorber 6, and the heat energy at that time is converted into heat energy and a reference temperature body (having a sufficiently large heat capacity as compared with the light absorber 6 and a temperature of a short time). The optical power of the measuring light α in is measured by detecting the temperature difference with the temperature difference detector 7 and the output (E out ).

<考案が解決しようとする課題> これ等従来の技術においては以下のような問題点があ
る。
<Problems to be Solved by the Invention> These conventional techniques have the following problems.

:第3図の光電変換方式は、測定感度が高く、高速に
応答するため、微小光パワーの測定や高速光パルスのパ
ワー波形測定には適するものの、光パワーが大きくなる
と光電流の飽和や素子の破壊が起こり、50mW程度が限
界である。
: The photoelectric conversion method of FIG. 3 has high measurement sensitivity and responds at high speed, so it is suitable for measuring minute optical power and power waveform of high-speed optical pulse, but when the optical power increases, saturation of photocurrent and device Is destroyed, and the limit is about 50 mW.

:第4図のカロリーメータ法にあっては、絶対パワー
が測定でき、光吸収体6の耐熱性を良くすることで数W
から数KW以上の大出力光パワーの測定に充分に対応でき
るという利点はあるものの、光吸収体の光熱変換の応答
性は低く、数秒から分のオーダーであるため、高速な光
パルス等では平均パワーしか測定できない。
: In the calorimeter method of FIG. 4, the absolute power can be measured and the heat resistance of the light absorber 6 is improved to be several W.
Although it has the advantage that it can sufficiently support the measurement of large output light power of several KW or more, it has a low photothermal conversion response of the light absorber and is on the order of a few seconds to a minute, so it is an average for high-speed light pulses, etc. Only power can be measured.

本考案は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、大出
力の高速光パルスのパワー波形を測定できる光パワーメ
ータを提供するものである。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide an optical power meter capable of measuring the power waveform of a high-speed high-speed optical pulse. is there.

<課題を解決するための手段> 上記目的を達成するために、本考案の光パワーメータ
は、断熱ジャケット内部に、入射する測定光を吸収して
その時の光パワーを熱に変換する耐熱性の良い光吸収体
が設置され、前記光吸収体で前記測定光を熱に変換した
時の熱エネルギーを基準温度体との差の温度として温度
差検出素子で測定すると共に、前記光吸収体でごく一部
の反射した光が通過する位置に高速応答受光素子を配置
して前記測定光の光パルスパワー波形を測定することを
特徴とするものである。
<Means for Solving the Problems> In order to achieve the above object, the optical power meter of the present invention has a heat-resistant structure that absorbs incident measuring light and converts the optical power at that time into heat. A good light absorber is installed, and the heat energy when the measuring light is converted into heat by the light absorber is measured by the temperature difference detection element as the temperature difference between the reference temperature body and the light absorber. A high-speed response light receiving element is arranged at a position where a part of the reflected light passes, and the optical pulse power waveform of the measurement light is measured.

<実施例> 実施例について図面を参照して説明する。<Example> An example will be described with reference to the drawings.

尚、以下の図面において、第4図と重複する部分は同一
番号を付してその説明は省略する。
In the following drawings, the same parts as those in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted.

第1図は本考案の具体的実施例を示す光パワーメータの
概要構成図である。
FIG. 1 is a schematic configuration diagram of an optical power meter showing a specific embodiment of the present invention.

第1図において、9は断熱ジャケット内部に設置される
入射する測定光を吸収してその時の光パワーを熱に変換
する耐熱性の良い光吸収体6でごく一部の反射した光β
が通過する位置、言替えれば、測定光αinが光吸収体6
の受光面に照射された時に生ずる乱反射光βを検出でき
る位置に設けられた、例えばPINフォトダイオード等
のような光パワーを検出するための高速応答受光素子
(以下「光パワー検出素子」という)である。ところ
で、この光パワー検出素子9に前記PINフォトダイオ
ードを用いた場合、このPINフォトダイオードの測定
限界は数十mWであり、一方、光吸収体6は数Wから数KW
以上の大出力光パワーの測定に充分に対応できる。従っ
て単に並列に配置したのでは駄目であるが、第1図のよ
うな構成とすることで、光吸収体6での反射光βは測定
光の数%以下であり、更にその一部を受光することとな
るので、たとえ測定光αinの光パワーが大出力であって
も、光パワー検出素子9の受光パワーは測定可能なレベ
ル迄減少しているので充分な効果を発揮することができ
ることとなる。この結果として、測定光の光パワー大出
力の高速光パルスのパワー波形を測定・出力可能とな
る。
In FIG. 1, reference numeral 9 denotes a light absorber 6 having a high heat resistance that absorbs incident measurement light and converts the optical power at that time into heat, which is a small part of the reflected light β.
Where light passes, in other words, the measurement light α in is absorbed by the light absorber 6
High-speed response light-receiving element for detecting optical power, such as a PIN photodiode, provided at a position where the irregular reflection light β generated when the light-receiving surface is detected (hereinafter referred to as “optical power detection element”) Is. By the way, when the PIN photodiode is used for the optical power detection element 9, the measurement limit of the PIN photodiode is several tens mW, while the light absorber 6 is several W to several KW.
It is possible to sufficiently deal with the measurement of the above large output light power. Therefore, it is useless to simply arrange them in parallel, but with the configuration shown in FIG. 1, the reflected light β at the light absorber 6 is less than a few% of the measurement light, and a part of it is received. Therefore, even if the optical power of the measuring light α in is large, the light receiving power of the optical power detecting element 9 is reduced to a measurable level, so that a sufficient effect can be exhibited. Becomes As a result, it becomes possible to measure and output the power waveform of the high-speed optical pulse having a large optical power of the measurement light.

第2図は第1図の説明に供する光パワータイムチャート
である。
FIG. 2 is an optical power time chart used for the explanation of FIG.

以下、第2図を用いて更に説明する。Further description will be given below with reference to FIG.

第1図及び第2図において、第2図(i)(大出力高速パ
ルス測定光データ例で、この時、l=1〜100W,τ
=msec〜nsec,D=数十の場合のパルス波形)のよう
な大出力で高速の光パルス測定光が光吸収体6に入射す
ると、光吸収体6の熱時定数は数秒から数十秒と大きい
ため、1つ1つの光パルスパワーには追従せず、第2図
(ii)(光吸収体の温度上昇例であり、Tは平均パワーに
相当する)に示すような平均パワーに相当する温度上昇
を示す。従って、この温度上昇を温度差検出素子8によ
り測定すれば、光パルスの平均パワーがわかる。一方、
光パワー検出素子9に入射する光は、光吸収体6での反
射光βの一部であり、この光パワーは光パワー検出素子
9で測定できるレベルに減少しており、尚且つ測定光α
inとほとんど同じプロファイルの光パルスパワー波形を
有している。光パワー検出素子9は高速応答するため、
その光電流波形を測定すれば、この(測定光の光パワー
大出力の高速光パルスの)パワー波形を第2図(iii)
(フォトダイオードの電流波形例で、この時、η=1mW
〜1μWの場合のパルス波形)に示すように測定するこ
とができる。このようにして、大出力で高速のパルス光
の平均パワー(前記したように光吸収体で測定光を熱に
変換した時の熱エネルギーを基準温度体との差の温度と
して温度差検出素子で測定)とパワー波形を同時に測定
することができるから、この2つの測定結果からパルス
のピークパワーの絶対値も求めることができることとな
る。
1 and 2, in FIG. 2 (i) (example of high-output high-speed pulse measurement light data, at this time, l = 1 to 100 W, τ
= Msec to nsec, pulse waveform in the case of D = several tens) When high-speed, high-speed optical pulse measurement light enters the light absorber 6, the thermal time constant of the light absorber 6 is from several seconds to several tens of seconds. Since it is large, it does not follow each optical pulse power.
(ii) A temperature rise corresponding to the average power as shown in (Example of temperature rise of light absorber, where T corresponds to average power). Therefore, if this temperature rise is measured by the temperature difference detecting element 8, the average power of the light pulse can be known. on the other hand,
The light incident on the optical power detection element 9 is a part of the reflected light β from the light absorber 6, and this optical power is reduced to a level measurable by the optical power detection element 9, and the measurement light α
It has an optical pulse power waveform with almost the same profile as in. Since the optical power detection element 9 responds at high speed,
If the photocurrent waveform is measured, this power waveform (of the high-speed optical pulse with a large optical power of the measurement light) is shown in FIG. 2 (iii).
(Example of photodiode current waveform, where η = 1 mW
Pulse waveform in the case of ˜1 μW). In this way, the average power of the high-speed and high-speed pulsed light (as described above, the thermal energy when the measurement light is converted into heat by the light absorber is used as the temperature difference between the reference temperature body and the temperature difference detection element) Since the measurement) and the power waveform can be measured simultaneously, the absolute value of the peak power of the pulse can also be obtained from these two measurement results.

<考案の効果> 本考案は、以上説明したように構成されているので、次
に記載するような効果を奏する。
<Effects of the Invention> Since the present invention is configured as described above, it has the following effects.

:カロリーメータとフォトダイオードのような高速受
光素子で同時に光パワーを測定するため、大出力パルス
光の平均パワーとパワー波形を同時に測定することがで
きる。
: Since the optical power is measured simultaneously by the calorimeter and the high speed light receiving element such as the photodiode, the average power and the power waveform of the large output pulsed light can be measured at the same time.

:光パワー検出素子での検出光はカロリーメータ部の
光吸収体の反射光の一部を用いるため、大出力光の測定
でも光パワー検出素子で測定できるレベル迄大きく減少
させることができる。
: Since the light detected by the optical power detecting element uses a part of the reflected light of the light absorber of the calorimeter part, it can be greatly reduced to a level that can be measured by the optical power detecting element even when measuring a large output light.

:センサ部で光パワーをフォトダイオードのような高
速受光素子で測定できるようにするには光パワー減衰器
を使って受光パワーを低くするのが一般的であるが、こ
の場合、光パワー減衰器は大半の光パワーを反射させる
ため、作業上非常に危険であるが、本考案のような構成
とすることでその様な事はない。
: In order to measure the optical power at the sensor with a high-speed photodetector such as a photodiode, it is common to use an optical power attenuator to reduce the received light power. In this case, the optical power attenuator is used. Since most of the optical power is reflected, it is extremely dangerous in terms of work, but with the configuration of the present invention, such a situation does not occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の具体的実施例を示す光パワーメータの
概要構成図、第2図は第1図の説明に供する光パワータ
イムチャート、第3図及び第4図は従来の技術の説明に
供する図である。 5……断熱ジャケット、6……光吸収体、7……基準温
度体、8……温度差検出素子、9……光パワー検出素
子。
FIG. 1 is a schematic configuration diagram of an optical power meter showing a concrete embodiment of the present invention, FIG. 2 is an optical power time chart used for the explanation of FIG. 1, and FIGS. 3 and 4 are explanations of conventional techniques. FIG. 5 ... Adiabatic jacket, 6 ... Light absorber, 7 ... Reference temperature body, 8 ... Temperature difference detecting element, 9 ... Optical power detecting element.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】断熱ジャケット内部に、入射する測定光を
吸収してその時の光パワーを熱に交換する耐熱性の良い
光吸収体が設置され、前記光吸収体で前記測定光を熱に
変換した時の熱エネルギーを基準温度体との差の温度と
して温度差検出素子で測定すると共に、前記光吸収体で
ごく一部の反射した光が通過する位置に高速応答受光素
子を配置して前記測定光の光パルスパワー波形を測定す
ることを特徴とする光パワーメータ。
1. A heat-absorbing light absorber that absorbs incident measuring light and exchanges the optical power at that time into heat is installed inside the heat insulating jacket, and the measuring light is converted into heat by the light absorbing body. While measuring the thermal energy as a temperature difference between the reference temperature body and the temperature difference detection element, the high-speed response light receiving element is arranged at a position where a small part of the reflected light in the light absorber passes. An optical power meter characterized by measuring an optical pulse power waveform of measuring light.
JP857789U 1989-01-27 1989-01-27 Optical power meter Expired - Lifetime JPH0622188Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP857789U JPH0622188Y2 (en) 1989-01-27 1989-01-27 Optical power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP857789U JPH0622188Y2 (en) 1989-01-27 1989-01-27 Optical power meter

Publications (2)

Publication Number Publication Date
JPH0299344U JPH0299344U (en) 1990-08-08
JPH0622188Y2 true JPH0622188Y2 (en) 1994-06-08

Family

ID=31214581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP857789U Expired - Lifetime JPH0622188Y2 (en) 1989-01-27 1989-01-27 Optical power meter

Country Status (1)

Country Link
JP (1) JPH0622188Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215167A (en) * 2018-06-11 2019-12-19 日亜化学工業株式会社 Measurement device of light emitting device and measurement method of light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215167A (en) * 2018-06-11 2019-12-19 日亜化学工業株式会社 Measurement device of light emitting device and measurement method of light emitting device

Also Published As

Publication number Publication date
JPH0299344U (en) 1990-08-08

Similar Documents

Publication Publication Date Title
US4262198A (en) Broadband optical radiation detector
JP5149997B2 (en) Nanowire bolometer photodetector
EP0798545B1 (en) Noncontacting thermometer
JPH0622188Y2 (en) Optical power meter
CN109781256A (en) A kind of measurement of laser energy method and device
JP3101190B2 (en) Infrared detector
CN2432569Y (en) Optical detector
JPS59178739A (en) Device for measuring carrier mobility
Xu et al. A silicon-diode-based infrared thermal detector array
Riette et al. Characterization of photovoltaic cells using the photothermal deflection spectroscopy
JPS6151248B2 (en)
Geist et al. Low‐level periodic pulsed energy measurements with an electrically calibrated pyroelectric detector
JPH0450519Y2 (en)
CN212482716U (en) Infrared temperature detecting element
Karadzhov et al. Comparative Analysis of Methods for Measuring Laser Power
JPS628508Y2 (en)
JP2677845B2 (en) Laser output measuring device
Koren et al. Thin‐film calorimeter for low‐energy laser pulse measurements
Liu et al. In-Depth Study of the Output Current Induced by a Millisecond Laser Pulse in a Silicon-Based Biased Quadrant Photodetector
JPS6046431A (en) Power meter for laser
JP3163093B2 (en) Outdoor infrared radiation measurement method and its radiometer
KR100191209B1 (en) Radiation-type light temperature sensor system using substance changing wavelength
JPS60196676A (en) Laser speckle speedometer
Uchida et al. Plasma calorimeter for absorption measurement of laser produced plasma
CN114295231A (en) Temperature sensor