JPS628508Y2 - - Google Patents

Info

Publication number
JPS628508Y2
JPS628508Y2 JP8726477U JP8726477U JPS628508Y2 JP S628508 Y2 JPS628508 Y2 JP S628508Y2 JP 8726477 U JP8726477 U JP 8726477U JP 8726477 U JP8726477 U JP 8726477U JP S628508 Y2 JPS628508 Y2 JP S628508Y2
Authority
JP
Japan
Prior art keywords
opening
light pipe
infrared
light
infrared radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8726477U
Other languages
Japanese (ja)
Other versions
JPS5414263U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8726477U priority Critical patent/JPS628508Y2/ja
Publication of JPS5414263U publication Critical patent/JPS5414263U/ja
Application granted granted Critical
Publication of JPS628508Y2 publication Critical patent/JPS628508Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【考案の詳細な説明】 本考案は物体表面から放射される赤外線の放射
量測定装置に関するものである。
[Detailed Description of the Invention] The present invention relates to an apparatus for measuring the amount of infrared radiation emitted from the surface of an object.

従来、この種の装置は、ミラー、レンズ等を用
いて被測定赤外線を収束するように導入していた
ので、焦点位置または検知位置への検知器の位置
決め等に入念な調整を必要とし、また該赤外線量
等を出力信号に変換する為にも特殊な信号処理回
路を必要とし、測定操作が煩雑であり測定精度も
悪く装置も大袈裟なものになつていた。
Conventionally, this type of device has been introduced to converge the infrared rays to be measured using mirrors, lenses, etc., which requires careful adjustment such as positioning the detector to the focal position or detection position. A special signal processing circuit is required to convert the amount of infrared rays into an output signal, and the measurement operation is complicated, the measurement accuracy is poor, and the device is complicated.

本考案は上記点に鑑み、測定操作が簡便にして
しかも高精度の測定が可能で装置構成も単純にし
て安価である赤外線放射量測定装置を提供するこ
とを目的とし、その要旨は、円錐状もしくは角錐
状部の両端に開口部が設けられ、大なる開口部に
若干の平行パイプ部が設けられたライトパイプの
内面が反射面となされ、前記円錐状もしくは角錐
状部の内面の反射面が中心軸に対して2乃至10度
の傾斜面となされ、前記ライトパイプの両端開口
部のうち大なる開口部が赤外線導入口となされ、
他端の小なる開口部に、真空熱電対が該真空熱電
対の受光窓を当接して接続されたことを特徴とす
る赤外線放射量測定装置に存する。
In view of the above points, the purpose of the present invention is to provide an infrared radiation measurement device that is simple in measurement operation, capable of highly accurate measurement, and has a simple configuration and is inexpensive. Alternatively, the inner surface of a light pipe in which openings are provided at both ends of the pyramid-shaped part and some parallel pipe parts are provided in the large opening is used as a reflective surface, and the reflective surface of the inner surface of the conical or pyramid-shaped part is The light pipe has an inclined surface of 2 to 10 degrees with respect to the central axis, and the larger opening of the openings at both ends of the light pipe serves as an infrared introduction port,
The infrared radiation amount measuring device is characterized in that a vacuum thermocouple is connected to a small opening at the other end with a light receiving window of the vacuum thermocouple in contact with the small opening.

次に本考案赤外線放射量測定装置を図面の実施
例を参照して詳しく説明する。
Next, the infrared radiation measurement device of the present invention will be explained in detail with reference to embodiments of the drawings.

1は金属製のライトパイプであり、両端が開口
部2,3となされ、その大なる開口部2から小な
る開口部3に向け内径が漸次縮径されて円錐状或
は角錐状部となされ、その内面は反射面4となさ
れている。
Reference numeral 1 designates a metal light pipe, which has openings 2 and 3 at both ends, and whose inner diameter is gradually reduced from the larger opening 2 to the smaller opening 3 to form a conical or pyramidal part. , its inner surface is a reflective surface 4.

反射面4は、鏡面に仕上げられた下地の上に
金、銀、白金、アルミニウム等が被覆されて形成
され、赤外線反射率が高く且つ酸化物等を形成し
て反射率の低下することのない化学的に安定なも
のとなされている。
The reflective surface 4 is formed by coating gold, silver, platinum, aluminum, etc. on a mirror-finished base, and has a high infrared reflectance and does not reduce the reflectance due to the formation of oxides, etc. It is considered to be chemically stable.

このライトパイプ1の大なる開口部2が赤外線
導入口となされ、該大なる開口部2から導入され
た赤外線が小なる開口部3に収束されながら導か
れるようになされている。
The large opening 2 of the light pipe 1 serves as an infrared introduction port, and the infrared rays introduced from the large opening 2 are guided to the small opening 3 while being converged.

ライトパイプ1の円錐状もしくは角錐状部の内
面反射面の角度としては、大なる開口部2から導
入される赤外線が反射面4によつて導入側の開口
部2から外に反射されて出てしまうようなことが
なく全ての導入赤外線が小なる開口部3側に収束
され、且つ大なる開口部2と小なる開口部3との
口径比の大きいものが好ましく、本考案において
は2゜乃至10゜の傾斜面とされている。
The angle of the inner reflective surface of the conical or pyramidal portion of the light pipe 1 is such that the infrared rays introduced from the large opening 2 are reflected by the reflective surface 4 and exit from the opening 2 on the introduction side. It is preferable that all the introduced infrared rays are converged on the side of the small opening 3 without being stored, and that the aperture ratio of the large opening 2 to the small opening 3 is large. It is said to be a 10° inclined surface.

このライトパイプ1の赤外線導入口である大な
る開口部2のところに第1図のように若干平行パ
イプ部分が設けられ、導入された赤外線が赤外線
導入口側から外に反射されて出てしまうことが防
止される。
As shown in Figure 1, a slightly parallel pipe section is provided at the large opening 2 which is the infrared introduction port of the light pipe 1, and the introduced infrared rays are reflected and exit from the infrared introduction port side. This will be prevented.

これを、第2図及び第3図を参照して更に詳細
に説明する。
This will be explained in more detail with reference to FIGS. 2 and 3.

第2図は本考案の一実施例に使用するライトパ
イプ1を示すものであつて、円錐状部(BC、
EF)の両端に開口部が設けられ、大なる開口部
に若干の平行パイプ部(AB、DE)が設けられて
いる。第3図は従来のライトパイプの一例を示す
ものであつて、第2図のライトパイプ1の円錐状
部(BC、EF)と長さ及び内面の傾斜角度を同じ
くする円錐体(ab、de)の両端に開口部が設け
られ、かつ第2図のライトパイプ1の平行パイプ
部(AB、DE)が設けられていないものである。
FIG. 2 shows a light pipe 1 used in an embodiment of the present invention, in which a conical portion (BC,
Openings are provided at both ends of EF), and some parallel pipe sections (AB, DE) are provided in the large opening. FIG. 3 shows an example of a conventional light pipe, in which conical parts (ab, de ) is provided with openings at both ends, and the parallel pipe portions (AB, DE) of the light pipe 1 shown in FIG. 2 are not provided.

第3図の従来のライトパイプの場合、光の性質
から、光は反射面に垂直な法線面との間の入射角
と同じ反射角で反射されるから、反射面ab、de
に入射した赤外光は、d点からab面への法線と
ab面との交点をc、a点からde面への法線とde
面との交点をfとすると、反射面ac、dfに入射し
た光の反射光は開口部より外に散逸される。
In the case of the conventional light pipe shown in Figure 3, due to the nature of light, the light is reflected at the same angle of reflection as the angle of incidence with the normal plane perpendicular to the reflecting surface, so the reflecting surfaces ab and de
The infrared light incident on is the normal line from point d to the ab plane and
The intersection with plane ab is c, and the normal line from point a to plane de is de
If the intersection with the surface is f, the reflected light of the light incident on the reflecting surfaces ac and df is dissipated to the outside through the aperture.

これに対して、第2図の如く、大なる開口部に
若干の平行パイプ部が設けられた場合は、反射面
に垂直な法線面は、この平行パイプ部で必ず他端
の反射面と交差し、平面パイプ部に入射した光が
ライトパイプ部外に散逸することはない。
On the other hand, when some parallel pipe parts are provided in a large opening as shown in Figure 2, the normal plane perpendicular to the reflecting surface is always the same as the reflecting surface at the other end of the parallel pipe part. The light that crosses and enters the flat pipe section will not be scattered outside the light pipe section.

5は真空熱電対であり、熱電対が受光窓6を有
する容器で真空シールされて対流伝熱等の影響を
受けないようになされている。
5 is a vacuum thermocouple, and the thermocouple is vacuum-sealed in a container having a light-receiving window 6 so as not to be affected by convection heat transfer or the like.

受光窓6は岩塩、カリ岩塩、臭化カリウム等、
赤外線透過率の高い材料により形成される。真空
熱電対5は感度のよいものが用いられる。この真
空熱電対5に、熱電対が直列に多数接続された熱
電堆を使用すれば感度が更によくなり好ましい。
The light receiving window 6 is made of rock salt, potassium rock salt, potassium bromide, etc.
Made of a material with high infrared transmittance. A vacuum thermocouple 5 with good sensitivity is used. It is preferable to use a thermopile in which a large number of thermocouples are connected in series as the vacuum thermocouple 5 because the sensitivity will be further improved.

そしてライトパイプ1の小なる開口部3に、赤
外線が漏れないように真空熱電対5の受光窓6が
当接されて、ライトパイプ1と真空熱電対5とが
接続されている。
The light receiving window 6 of the vacuum thermocouple 5 is brought into contact with the small opening 3 of the light pipe 1 to prevent infrared rays from leaking, and the light pipe 1 and the vacuum thermocouple 5 are connected.

この本発明赤外線放射量測定装置を用いて、試
料物体8から放出される赤外線量を測定するに
は、第1図に示すように試料物体8の表面にライ
トパイプ1の大なる開口部2を向けて近接させれ
ばよい。
In order to measure the amount of infrared rays emitted from a sample object 8 using the infrared radiation measurement device of the present invention, a large opening 2 of a light pipe 1 is placed on the surface of the sample object 8 as shown in FIG. All you have to do is point it close to it.

そうすると試料物体8の表面から放出された赤
外線9は、ライトパイプ1の大なる開口部2から
パイプ内に導入され、反射面4によつて複数回反
射され、または直接、ライトパイプ1の他端の小
なる開口部3に収束される。
Then, the infrared rays 9 emitted from the surface of the sample object 8 are introduced into the pipe through the large opening 2 of the light pipe 1, reflected multiple times by the reflective surface 4, or directly transmitted to the other end of the light pipe 1. is converged into a small opening 3.

収束された赤外線は、真空熱電対5の受光窓6
を通り熱電対の温接点部を加熱し熱起電力を出力
端7に出力する。この出力を電位設計(図示せ
ず)で読み取れば試料物体8から放射された赤外
線量に対応した電気出力が得られるのである。
The focused infrared rays are transmitted to the light receiving window 6 of the vacuum thermocouple 5.
The thermoelectromotive force is outputted to the output end 7 by heating the hot junction of the thermocouple. If this output is read using a potential design (not shown), an electrical output corresponding to the amount of infrared rays emitted from the sample object 8 can be obtained.

そして、このようにして赤外線放射量を測定す
ることにより、次のようにして試料物体8の赤外
線放射率又は試料物体8の表面温度を知ることが
できる。
By measuring the amount of infrared radiation in this manner, the infrared emissivity of the sample object 8 or the surface temperature of the sample object 8 can be determined as follows.

赤外線の放射率の算出は、先ず標準黒体炉もし
くは放射率1の標準物質から放射される赤外線量
を、本考案赤外線放射量測定装置によつて真空熱
電対5の冷接点温度以上各温度において電気出力
として求めておき、次に試料物体8を真空熱電対
5の冷接点温度以上の適当な温度に加熱し、本発
明赤外線放射量測定装置によつて、放出される赤
外線量に対応した電気出力を求め、このときの試
料物体と同温度の前記黒体放射の電気出力との比
を求めればよい。
To calculate the infrared emissivity, first, the amount of infrared rays emitted from a standard blackbody furnace or a standard material with an emissivity of 1 is measured at each temperature above the cold junction temperature of the vacuum thermocouple 5 using the infrared radiation amount measuring device of the present invention. After determining the electrical output, the sample object 8 is heated to an appropriate temperature higher than the cold junction temperature of the vacuum thermocouple 5, and the infrared radiation measurement device of the present invention generates electricity corresponding to the amount of infrared radiation emitted. What is necessary is to find the output and find the ratio of the electrical output of the black body radiation at the same temperature as that of the sample object at this time.

又、試料物体8の表面温度を知るには、試料物
体8と同じ物体についてその表面温度と赤外線放
射量との関係を予め実験的に表面温度計等によつ
て求めておき、測定した赤外線放射量をこの関係
にあてはめればよいのである。
In addition, in order to know the surface temperature of the sample object 8, the relationship between the surface temperature and the amount of infrared radiation of the same object as the sample object 8 is determined experimentally in advance using a surface thermometer, etc. All you have to do is apply the quantity to this relationship.

本考案赤外線放射量測定装置は物体の温度に応
じて熱放射(輻射)する赤外線量を測定するため
の装置であり、構造上平面からの輻射量計測に適
するものであり、具体的な用途としては、例えば
選択吸収機能を付与した平坂状太陽熱集熱板の輻
射率測定等が挙げられる。
The infrared radiation measurement device of this invention is a device for measuring the amount of infrared rays emitted as heat according to the temperature of an object, and its structure is suitable for measuring radiation from a flat surface. For example, emissivity measurement of a flat solar heat collecting plate provided with a selective absorption function can be mentioned.

上述のとおり、本考案赤外線放射量測定装置
は、円錐状もしくは角錐状部の両端に開口部が設
けられ、大なる開口部に若干の平行パイプ部が設
けられたライトパイプの内面が反射面となされ、
前記円錐状もしくは角錐状部の内面の反射面が中
心軸に対して2乃至10度の傾斜面となされ、前記
ライトパイプの両端開口部のうち大なる開口部が
赤外線導入口となされ、他端の小なる開口部に、
真空熱電対が該真空熱電対の受光窓を当接して接
続されているから、物体から放射される赤外線が
ライトパイプの大なる開口部によつて多量に導入
され、これがライトパイプの反射面によつて外に
反射されて出てしまうようなことがなく全て収束
されて小なる開口部に導かれ、小なる開口部の真
空熱電対により電気出力として検出されるので赤
外線放射量の測定が精度の高いものとなる。
As mentioned above, the infrared radiation measurement device of the present invention has an opening at both ends of a conical or pyramidal part, and the inner surface of the light pipe, which has a large opening with some parallel pipe parts, serves as a reflective surface. done,
The reflective surface of the inner surface of the conical or pyramidal part is inclined at an angle of 2 to 10 degrees with respect to the central axis, the larger opening of the openings at both ends of the light pipe serves as an infrared introduction port, and the other end In the small opening of
Since the vacuum thermocouple is connected by touching the light receiving window of the vacuum thermocouple, a large amount of infrared rays emitted from the object are introduced through the large opening of the light pipe, and this is reflected on the reflective surface of the light pipe. Therefore, all of the infrared radiation is not reflected outside and is guided to a small opening, and is detected as an electrical output by a vacuum thermocouple in the small opening, making it possible to measure the amount of infrared radiation with high accuracy. The value will be high.

また、本考案赤外線放射量測定装置は、装置構
成がライトパイプと真空熱電対との組合せという
極めて単純なものとなり、安価であり、出力信号
に変かんする為の特殊な信号処理回路も必要とせ
ず、ライトパイプの大なる開口部の寸法形状を適
当に設計することにより十分な出力レベルが確保
でき、且つ該ライトパイプの大なる開口部を測定
物体に近接させるのみの簡単な操作で感度よく赤
外線放射量の測定が可能なものとなつている。
In addition, the infrared radiation measurement device of the present invention has an extremely simple device configuration consisting of a combination of a light pipe and a vacuum thermocouple, is inexpensive, and does not require any special signal processing circuit to change the output signal. By appropriately designing the size and shape of the large opening of the light pipe, a sufficient output level can be secured, and by simply bringing the large opening of the light pipe close to the object to be measured, it is possible to generate infrared rays with high sensitivity. It is now possible to measure the amount of radiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案赤外線放射量測定装置の一例を
示す一部切欠正面図、第2図は本考案の一実施例
に使用するライトパイプの断面図、第3図は従来
のライトパイプの一例を示す断面図である。 1はライトパイプ、2は大なる開口部、3は小
なる開口部、4は反射面、5は真空熱電対、6は
受光窓。
Figure 1 is a partially cutaway front view showing an example of the infrared radiation measurement device of the present invention, Figure 2 is a sectional view of a light pipe used in an embodiment of the present invention, and Figure 3 is an example of a conventional light pipe. FIG. 1 is a light pipe, 2 is a large opening, 3 is a small opening, 4 is a reflective surface, 5 is a vacuum thermocouple, and 6 is a light receiving window.

Claims (1)

【実用新案登録請求の範囲】 1 円錐状もしくは角錐状部の両端に開口部が設
けられ、大なる開口部に若干の平行パイプ部が
設けられたライトパイプの内面が反射面となさ
れ、前記円錐状もしくは角錐状部の内面の反射
面が中心軸に対して2乃至10度の傾斜面となさ
れ、前記ライトパイプの両端開口部のうち大な
る開口部が赤外線導入口となされ、他端の小な
る開口部に、真空熱電対が該真空熱電対の受光
窓を当接して接続されたことを特徴とする赤外
線放射量測定装置。 2 真空熱電対が、多数の熱電対を直列に接続し
た熱電堆である実用新案登録請求の範囲第1項
記載の赤外線放射量測定装置。
[Claims for Utility Model Registration] 1. A light pipe in which openings are provided at both ends of a conical or pyramidal part, and some parallel pipe parts are provided in the large opening, and the inner surface of the light pipe is used as a reflective surface, The reflective surface of the inner surface of the pyramid-shaped or pyramid-shaped part is inclined at an angle of 2 to 10 degrees with respect to the central axis, and the larger opening of the openings at both ends of the light pipe serves as the infrared introduction port, and the smaller opening at the other end serves as an infrared introduction port. 1. An infrared radiation measurement device characterized in that a vacuum thermocouple is connected to an opening with a light receiving window of the vacuum thermocouple in contact with the opening. 2. The infrared radiation amount measuring device according to claim 1, wherein the vacuum thermocouple is a thermopile in which a large number of thermocouples are connected in series.
JP8726477U 1977-06-30 1977-06-30 Expired JPS628508Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8726477U JPS628508Y2 (en) 1977-06-30 1977-06-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8726477U JPS628508Y2 (en) 1977-06-30 1977-06-30

Publications (2)

Publication Number Publication Date
JPS5414263U JPS5414263U (en) 1979-01-30
JPS628508Y2 true JPS628508Y2 (en) 1987-02-27

Family

ID=29012628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8726477U Expired JPS628508Y2 (en) 1977-06-30 1977-06-30

Country Status (1)

Country Link
JP (1) JPS628508Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204082A1 (en) * 2017-03-13 2018-09-13 Hamilton Bonaduz Ag Device for the temperature-compensated optical detection of an oxygen content of a fluid

Also Published As

Publication number Publication date
JPS5414263U (en) 1979-01-30

Similar Documents

Publication Publication Date Title
DeWitt et al. Theory and practice of radiation thermometry
US5326173A (en) Apparatus and method for remote temperature measurement
US4576486A (en) Optical fiber thermometer
EP0425229A1 (en) High temperature sensor
Quinn et al. Cryogenic radiometry, prospects for further improvements in accuracy
JP2006098295A (en) Emissivity measurement apparatus
JPS628508Y2 (en)
US4884896A (en) Production line emissivity measurement system
JP3287729B2 (en) Radiation detector
Ballestrín et al. Heat flux and temperature measurement technologies for concentrating solar power (CSP)
US3355589A (en) Constant sensitivity differential radiometer
CN106525249A (en) Infrared temperature measurement device and temperature measurement method for mirror surfaces
JPH0249124A (en) Thermopile
JP3672773B2 (en) Method for distinguishing glass coating surface
US3971940A (en) Detector absorptivity measuring method and apparatus
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
FR2511150A1 (en) DEVICE FOR MEASURING CONTACTLESS TEMPERATURE
Barron Application design features for non-contact temperature measurement
JP3103338B2 (en) Radiation thermometer
JP2722203B2 (en) Infrared detector
JPH0476060B2 (en)
JPS606755Y2 (en) Reflected light energy measuring device
JPH06147995A (en) Infrared detecting device
JPS5922501Y2 (en) radiation thermometer
Cheng et al. Method and apparatus for determination of the total directional emissivity of opaque materials in the temperature range 300 to 600 K