JPH06221264A - Reciprocation type compressor - Google Patents

Reciprocation type compressor

Info

Publication number
JPH06221264A
JPH06221264A JP1016593A JP1016593A JPH06221264A JP H06221264 A JPH06221264 A JP H06221264A JP 1016593 A JP1016593 A JP 1016593A JP 1016593 A JP1016593 A JP 1016593A JP H06221264 A JPH06221264 A JP H06221264A
Authority
JP
Japan
Prior art keywords
bore
pressure side
passage
suction
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1016593A
Other languages
Japanese (ja)
Inventor
Kazuya Kimura
一哉 木村
Hideki Mizutani
秀樹 水谷
Shigeyuki Hidaka
茂之 日高
Toru Takeichi
亨 竹市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP1016593A priority Critical patent/JPH06221264A/en
Priority to DE19944401836 priority patent/DE4401836C2/en
Priority to KR1019940001194A priority patent/KR970004383B1/en
Priority to US08/185,710 priority patent/US5380168A/en
Publication of JPH06221264A publication Critical patent/JPH06221264A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/906Phosphor-bronze alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86501Sequential distributor or collector type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To surely maintain the sufficient volumetric efficiency even in the case where a rotary valve is rotated at a high speed. CONSTITUTION:Continuity passages 2A-2F are formed between each bore 1A-1F and a center axis hole 1a. A rotary valve 22 connected to a driving shaft is equipped with a suction passage 25 and a residual gas bypass groove 28. The residual gas bypass groove 28 consists of a high pressure side groove 28a communicated with the continuity passage 2C of the bore 1C at the time of finishing discharge, and a low pressure side groove 28b communicated with the continuity passage 2A of the bore 1B during the compression stroke synchronously with the groove 28a, and a communicating groove 28c for connecting these high pressure side groove 28a and the low pressure side groove 28b. In the low pressure side groove 28b, a branch passage 28d to be connected to the continuity passage 2A of the bore 1A immediately after finishing the suction stroke by the rotation of the rotary valve 22 is extended. Even in the case where the speed of rotation of the rotary valve 22 is increased, the gas inside of the residual gas bypass groove 28 is discharge in two stages to the bore 1B during the compression stroke and the bore 1A immediately after finishing the suction stroke.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両空調用に供して好
適な往復動型圧縮機の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a reciprocating compressor suitable for air conditioning of vehicles.

【0002】[0002]

【従来技術】従来、例えば特開昭59−145378号
公報記載の斜板式圧縮機のように、シリンダブロックに
駆動軸と平行に形成された複数のボア内で各ピストンが
往復動することにより、冷媒ガスの圧縮を行う圧縮機が
知られている。この種の圧縮機では、シリンダブロック
の中心軸孔内に駆動軸が嵌挿支承され、各ピストンはこ
の駆動軸と共動するクランク室内の斜板に連係されて各
ボア内を直動する。シリンダブロックの端面には弁板を
介してハウジングが接合され、このハウジングにはボア
内に冷媒ガスを供給する吸入室と、ボア内でピストンに
よって圧縮された冷媒ガスが吐出される吐出室とが形成
されている。そして、吸入室からボア内への冷媒ガスの
吸入は、ピストンの下死点位置への移動により、弁板に
形成された吸入ポートと、この吸入ポートのボア側に設
けられてボア内の圧力に応じて吸入ポートを開放する吸
入弁とを介して行われる。また、ボア内から吐出室への
冷媒ガスの吐出は、ピストンの上死点位置への移動によ
り、弁板に形成された吐出ポートと、この吐出ポートの
吐出室側に設けられてボア内の圧力に応じて吐出ポート
を開放する吐出弁とを介して行われる。
2. Description of the Related Art Conventionally, each piston reciprocates in a plurality of bores formed in a cylinder block in parallel with a drive shaft, such as a swash plate compressor disclosed in Japanese Patent Laid-Open No. 59-145378. A compressor that compresses a refrigerant gas is known. In this type of compressor, a drive shaft is inserted into and supported by a central shaft hole of a cylinder block, and each piston is linearly moved in each bore by being linked to a swash plate in a crank chamber that cooperates with the drive shaft. A housing is joined to the end surface of the cylinder block via a valve plate, and a suction chamber for supplying the refrigerant gas into the bore and a discharge chamber for discharging the refrigerant gas compressed by the piston in the bore are provided in the housing. Has been formed. The suction of the refrigerant gas from the suction chamber into the bore is performed by moving the piston to the bottom dead center position, and the suction port formed in the valve plate and the pressure inside the bore provided on the bore side of the suction port. And an intake valve that opens the intake port accordingly. Further, the discharge of the refrigerant gas from the inside of the bore to the discharge chamber is performed by moving the piston to the top dead center position, and the discharge port formed on the valve plate and the discharge chamber side of this discharge port are provided inside the bore. And a discharge valve that opens the discharge port in response to pressure.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の圧縮機
では、吸入弁が閉弁状態を維持する方向に働くそれ自身
の弾性力に打ち勝って開弁するように構成されているた
め、圧力損失が大きい。また、従来の圧縮機では、吐出
終了直後のボア内、つまり上死点位置に達したピストン
と弁板との僅かな間隙や弁板の吐出ポート内に高圧の冷
媒ガスが残留する。この残留ガスはピストンの下死点位
置への移動に伴って再膨張するため、ボア内への吸入量
の減少を招来する。これら圧力損失、ボア内への吸入量
の減少は、体積効率の悪化に繋がってしまう。
However, in the conventional compressor, since the suction valve is constructed so as to overcome the elastic force of its own acting in the direction of maintaining the closed state to open the valve, the pressure loss is reduced. Is big. Further, in the conventional compressor, high-pressure refrigerant gas remains in the bore immediately after the end of discharge, that is, in the slight gap between the piston and the valve plate that has reached the top dead center position or in the discharge port of the valve plate. This residual gas re-expands with the movement of the piston to the bottom dead center position, resulting in a decrease in the amount of suction into the bore. These pressure loss and reduction of the suction amount into the bore lead to deterioration of volume efficiency.

【0004】そこで、本出願人は、特願平3−2291
66号において、体積効率の優れた往復動型圧縮機を提
案した。この圧縮機は、各ボアと中心軸孔とを放射状に
連通する導通路が形成され、駆動軸には回転弁が同期回
転可能に結合されている。回転弁には、吸入行程にある
各ボアの導通路と吸入室とを順次連通する吸入通路が形
成されているとともに、吐出終了時のボアから低圧側の
ボアへと残留ガスをバイパスする残留ガスバイパス通路
が形成されている。残留ガスバイパス通路としては、残
留ガスバイパス穴と残留ガスバイパス溝とが開示されて
いる。残留ガスバイパス穴及び残留ガスバイパス溝は、
吐出終了時のボアの導通路と連通する高圧側開口と、低
圧側のボアの導通路と連通する低圧側開口と、これら高
圧側開口及び低圧側開口を接続する連通路とからなる。
Therefore, the present applicant has filed Japanese Patent Application No. 3-2291.
No. 66 proposed a reciprocating compressor with excellent volume efficiency. In this compressor, a conduction path that radially communicates each bore and the central shaft hole is formed, and a rotary valve is coupled to the drive shaft so as to be synchronously rotatable. The rotary valve is formed with an intake passage that sequentially connects the passage of each bore in the intake stroke and the intake chamber, and residual gas that bypasses residual gas from the bore at the end of discharge to the low pressure side bore. A bypass passage is formed. As the residual gas bypass passage, a residual gas bypass hole and a residual gas bypass groove are disclosed. The residual gas bypass hole and the residual gas bypass groove are
It is composed of a high-pressure side opening communicating with the conduction path of the bore at the end of discharge, a low-pressure side opening communicating with the conduction path of the low-pressure side bore, and a communication path connecting these high-pressure side opening and low-pressure side opening.

【0005】この提案の圧縮機では、駆動軸と同期して
回転弁が回転することにより、吸入室の冷媒ガスが順次
各ボア内に吸入され、各ボアでは冷媒ガスの吸入作用が
円滑かつ安定して継続されるので、圧力損失がきわめて
小さくされる。また、駆動軸と同期して回転弁が回転す
ることにより、吐出終了時のボアから低圧側のボアへと
残留ガスがバイパスされ、ボアの吸入行程中に残留ガス
の再膨張が少なく、ボア内へ吸入室内の冷媒ガスが確実
に吸入される。こうして、この圧縮機では高い体積効率
を維持できる。
In the proposed compressor, the rotary valve rotates in synchronization with the drive shaft, so that the refrigerant gas in the suction chamber is sequentially sucked into each bore, and the suction operation of the refrigerant gas is smooth and stable in each bore. As a result, the pressure loss is extremely reduced. In addition, by rotating the rotary valve in synchronization with the drive shaft, residual gas is bypassed from the bore at the end of discharge to the low pressure side bore, and re-expansion of residual gas during the suction stroke of the bore is small, The refrigerant gas in the suction chamber is surely sucked. Thus, high volumetric efficiency can be maintained with this compressor.

【0006】しかしながら、この圧縮機では、低圧側開
口が単一のボアの導通路と連通すべく角度設定されてい
たため、駆動軸及び回転弁の回転数が上昇することによ
り、低圧側開口の連通時間が短いものとなれば、せっか
く高圧側開口で回収した残留ガスを低圧側開口で十分に
放出しにくい。このため、この場合には、残留ガスバイ
パス通路内にガスが残ってバイパス不足を生じ、吸入効
率の悪さから体積効率の低下を生じてしまう。
However, in this compressor, since the low-pressure side opening is angled so as to communicate with the passage of the single bore, the rotation speed of the drive shaft and the rotary valve increases, so that the low-pressure side opening communicates. If the time becomes short, the residual gas recovered at the high pressure side opening will not be sufficiently discharged at the low pressure side opening. Therefore, in this case, gas remains in the residual gas bypass passage to cause bypass shortage, and poor volumetric efficiency due to poor suction efficiency.

【0007】本発明は、回転弁が高速で回転する場合に
も、十分な体積効率を確実に維持することを解決すべき
課題とする。
An object of the present invention is to reliably maintain a sufficient volume efficiency even when the rotary valve rotates at a high speed.

【0008】[0008]

【課題を解決するための手段】本発明の往復動型圧縮機
は、上記課題を解決するため、軸心周りに複数のボアを
有するシリンダブロックと、該シリンダブロックの軸孔
内に嵌挿支承された駆動軸と、該駆動軸と共動するクラ
ンク室内の斜板に連係されて該ボア内を直動するピスト
ンと、該軸孔と連通する吸入室及び該吸入室の外方域に
形成された吐出室を有して該シリンダブロックの端面を
閉塞するハウジングとを備えた往復動型圧縮機におい
て、前記各ボアと前記軸孔との間には両者を結ぶ導通路
が形成され、前記駆動軸には吸入行程にある各ボアの導
通路と前記吸入室とを順次連通する吸入通路をもつ回転
弁が同期回転可能に結合され、該回転弁には、吐出終了
時のボアの導通路と連通する高圧側開口と、これに同期
して低圧側のボアの導通路と連通する低圧側開口と、該
高圧側開口及び該低圧側開口を接続する連通路とからな
る残留ガスバイパス通路が形成され、該低圧側開口には
該高圧側開口の前記連通継続中に隣在導通路に再連通さ
せる枝路が延設されているという新規な構成を採用して
いる。
In order to solve the above-mentioned problems, a reciprocating compressor of the present invention has a cylinder block having a plurality of bores around its axis, and a bearing inserted in a shaft hole of the cylinder block. Formed in the suction chamber communicating with the shaft hole and the outer region of the suction chamber, the piston driven by the swash plate in the crank chamber cooperating with the driving shaft, and directly moving in the bore. In a reciprocating compressor having a housing that has a discharge chamber that closes the end surface of the cylinder block, a communication path that connects the bore and the shaft hole is formed between the bore and the shaft hole. A rotary valve having a suction passage for sequentially connecting the passage of each bore in the suction stroke and the suction chamber is connected to the drive shaft so as to be rotatable synchronously, and the passage of the bore at the end of discharge is connected to the rotary valve. The high-pressure side opening that communicates with the A residual gas bypass passage including a low-pressure side opening communicating with the passage and a communication passage connecting the high-pressure side opening and the low-pressure side opening is formed, and the low-pressure side opening is provided while the communication of the high-pressure side opening is continued. A new structure is adopted in which a branch path for re-communication with an adjacent conduction path is extended.

【0009】[0009]

【作用】本発明の往復動型圧縮機では、駆動軸と同期し
て回転弁が回転することにより、吸入室の冷媒ガスが回
転弁の吸入通路、吸入行程にある各ボアの導通路を介し
て順次各ボア内に吸入され、各ボアでは冷媒ガスの吸入
作用が円滑かつ安定して継続されるので、圧力損失がき
わめて小さくされる。
In the reciprocating compressor of the present invention, the rotary valve rotates in synchronization with the drive shaft, so that the refrigerant gas in the suction chamber passes through the suction passage of the rotary valve and the passage of each bore in the suction stroke. Are sequentially sucked into the respective bores, and the suction action of the refrigerant gas is smoothly and stably continued in the respective bores, so that the pressure loss is extremely reduced.

【0010】また、この圧縮機では、駆動軸と同期して
回転弁が回転することにより、吐出終了時のボア内の残
留ガスは高圧側開口によって回収され、連通路を介して
低圧側開口へ移送され、導通路により低圧側のボアへバ
イパスされる。こうして、ボアの吸入行程中に残留ガス
の再膨張が少なく、ボア内へ吸入室内の冷媒ガスが確実
に吸入される。
Further, in this compressor, the rotary valve rotates in synchronism with the drive shaft, so that the residual gas in the bore at the end of discharge is recovered by the high pressure side opening, and is transferred to the low pressure side opening via the communication passage. Transferred and bypassed to low pressure side bore by conduit. Thus, the residual gas is less re-expanded during the suction stroke of the bore, and the refrigerant gas in the suction chamber is surely sucked into the bore.

【0011】ここで、この圧縮機では、回転弁の回転に
よって高圧側開口が吐出終了時のボアの導通路と連通を
継続している間、低圧側開口は延設されている枝路によ
り、現に連通されている導通路から、隣在導通路へと連
通が移行される。つまり、この間、低圧側開口は、まず
低圧側のボアと連通を果たしたのち一旦遮断され、前記
枝路を介して隣在する一層低圧側のボアの導通路と再度
連通される。このため、回転弁の回転数が上昇しても、
残留ガスバイパス通路内のガスは低圧側で2段に放出さ
れ、高圧側開口で回収した残留ガスは低圧側開口で十分
に放出される。
Here, in this compressor, while the high-pressure side opening continues to communicate with the conduction path of the bore at the end of discharge by the rotation of the rotary valve, the low-pressure side opening is formed by the extended branch path. The communication is transferred from the current communication path to the adjacent current path. That is, during this period, the low-pressure side opening first communicates with the low-pressure side bore, is then interrupted, and is re-connected with the conduction path of the adjacent lower-pressure side bore via the branch passage. Therefore, even if the rotation speed of the rotary valve increases,
The gas in the residual gas bypass passage is discharged in two stages on the low pressure side, and the residual gas recovered at the high pressure side opening is sufficiently discharged at the low pressure side opening.

【0012】[0012]

【実施例】以下、本発明を具体化した実施例を図面に基
づき説明する。図1及び図2において、1は軸方向に貫
通する中心軸孔1a及び6個のボア1A〜1Fを有する
シリンダブロックであって、このシリンダブロック1の
一端面にはフロントハウジング2が接合され、他端面に
はリング状の弁板3を介してリアハウジング4が接合さ
れている。フロントハウジング2内のクランク室5に
は、駆動軸6がフロントハウジング2及びシリンダブロ
ック1の中心軸孔1aに嵌挿され回転可能に支承されて
いる。この駆動軸6上にはロータ7が固着され、このロ
ータ7の後面側に延出した支持アーム8の先端部には長
孔8aが貫設されている。この長孔8aにはピン8bが
スライド可能に嵌入されており、同ピン8bには斜板9
が傾動可能に連結されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, reference numeral 1 denotes a cylinder block having a central shaft hole 1a penetrating in the axial direction and six bores 1A to 1F. A front housing 2 is joined to one end surface of the cylinder block 1. A rear housing 4 is joined to the other end surface via a ring-shaped valve plate 3. A drive shaft 6 is rotatably supported in a crank chamber 5 in the front housing 2 by being fitted into the front housing 2 and a central shaft hole 1 a of the cylinder block 1. A rotor 7 is fixed on the drive shaft 6, and a long hole 8a is formed at the tip of a support arm 8 extending to the rear surface side of the rotor 7. A pin 8b is slidably fitted in the long hole 8a, and a swash plate 9 is inserted in the pin 8b.
Is tiltably connected.

【0013】ロータ7の後端に隣接して駆動軸6上には
スリーブ10が遊嵌され、コイルばね11により常にロ
ータ7側へ付勢されるとともに、スリーブ10の左右両
側に突設された枢軸10a(一方のみ図示)が斜板9の
図示しない係合孔に嵌入されて、斜板9は枢軸10aの
周りを揺動しうるように支持されている。斜板9の後面
側には揺動板12がスラスト軸受等を介して支持され、
揺動板12は図示しない切欠けにより自転が拘束されて
いる。また、揺動板12の外縁には等間隔で6本のコン
ロッド14が係留され、各コンロッド14はボア1A〜
1F内のピストン15と係留されている。したがって、
駆動軸4の回転運動がロータ7及び斜板9の介入により
揺動板12の前後揺動に変換され、各ピストン15がボ
ア1A〜1F内を往復動するとともに、クランク室5内
の圧力と吸入圧力との差圧に応じてピストン15のスト
ローク及び揺動板12の傾角が変化するように構成され
ている。なお、クランク室5内の圧力はリアハウジング
4に内装された図示しない制御弁により冷房負荷に基づ
いて制御される。
A sleeve 10 is loosely fitted on the drive shaft 6 adjacent to the rear end of the rotor 7, is constantly biased toward the rotor 7 by a coil spring 11, and is provided on both left and right sides of the sleeve 10. A pivot 10a (only one of which is shown) is fitted into an engagement hole (not shown) of the swash plate 9, and the swash plate 9 is supported so as to be able to swing around the pivot 10a. A swing plate 12 is supported on the rear surface side of the swash plate 9 via a thrust bearing or the like,
Rotation of the oscillating plate 12 is restricted by notches (not shown). Further, six connecting rods 14 are moored to the outer edge of the oscillating plate 12 at equal intervals, and each connecting rod 14 has a bore 1A to.
It is moored with the piston 15 in 1F. Therefore,
The rotary motion of the drive shaft 4 is converted into the back-and-forth swing of the rocking plate 12 by the intervention of the rotor 7 and the swash plate 9, each piston 15 reciprocates in the bores 1A to 1F, and the pressure in the crank chamber 5 changes. The stroke of the piston 15 and the tilt angle of the oscillating plate 12 change according to the pressure difference from the suction pressure. The pressure in the crank chamber 5 is controlled based on the cooling load by a control valve (not shown) mounted in the rear housing 4.

【0014】リアハウジング4には、中央においてリア
側端面に開口するとともにシリンダブロック1の中心軸
孔1aと連通する吸入室17が設けられており、吸入室
17の外方域には吐出室18が形成されている。弁板3
には各ボア1A〜1Fのヘッドと連通する吐出ポート3
aが貫設され、各吐出ポート3aの吐出室18側には吐
出弁20を介してリテーナ21が挟持されている。
The rear housing 4 is provided with a suction chamber 17 which is open at the rear end face at the center and communicates with the central shaft hole 1a of the cylinder block 1, and a discharge chamber 18 is provided outside the suction chamber 17. Are formed. Valve plate 3
Is a discharge port 3 that communicates with the head of each bore 1A-1F.
a is penetratingly provided, and a retainer 21 is sandwiched via a discharge valve 20 on the discharge chamber 18 side of each discharge port 3a.

【0015】また、シリンダブロック1には、図2にも
示すように、各ボア1A〜1Fと中心軸孔1aとの間に
放射状に導通路2A〜2Fが形成されている。図1に示
すように、中心軸孔1a内に延出した駆動軸6の先端に
は、中心軸孔1aと滑合する円柱状の回転弁22が装着
されており、回転弁22のリア側はスラスト軸受を介し
て吸入室17の内壁に支持されている。回転弁22に
は、吸入室17側の軸心中央から軸方向に伸び、外周面
において所定の角度開口する吸入通路25が形成されて
いる。
Also, as shown in FIG. 2, the cylinder block 1 has radial passages 2A to 2F formed between the bores 1A to 1F and the central shaft hole 1a. As shown in FIG. 1, a cylindrical rotary valve 22 that slides with the central shaft hole 1a is mounted on the tip of the drive shaft 6 extending into the central shaft hole 1a. Are supported on the inner wall of the suction chamber 17 via thrust bearings. The rotary valve 22 is formed with an intake passage 25 that extends in the axial direction from the center of the axial center on the intake chamber 17 side and opens at a predetermined angle on the outer peripheral surface.

【0016】回転弁22の外周面における圧縮・吐出行
程にある各ボア1A〜1Fの導通路2A〜2Fと対向す
るシール領域には、残留ガスバイパス通路としての残留
ガスバイパス溝28が形成されている。この残留ガスバ
イパス溝28は、図3及び図4(図3及び図4では、回
転弁22及び中心軸孔1aの展開図を示し、かつ回転弁
22の回転に伴い中心軸孔1aに開口する導通路2A〜
2Fが矢視する方向に移動する状態を示す。)に示すよ
うに、吐出終了時のボア1A〜1Fの導通路2A〜2F
と連通し軸方向に延びる高圧側溝28aと、低圧側のボ
ア1A〜1Fの連通路2A〜2Fと連通する低圧側溝2
8bと、これら高圧側溝28a及び低圧側溝28bを接
続する連通溝28cとからなる。低圧側溝28bは、軸
方向に2分割されており、各端には周方向に所定長さで
枝路28dが延在されている。また、2分割された低圧
側溝28bはそれぞれ軸方向に短くされており、連通溝
28cは低圧側溝28b側に接近すべく途中で屈曲され
ており、高圧側溝28aは連通溝28cと円弧で連通さ
れている。
A residual gas bypass groove 28 as a residual gas bypass passage is formed in the seal region of the outer peripheral surface of the rotary valve 22 facing the conduction passages 2A to 2F of the bores 1A to 1F in the compression / discharge stroke. There is. The residual gas bypass groove 28 is shown in FIGS. 3 and 4 (in FIGS. 3 and 4, an exploded view of the rotary valve 22 and the central shaft hole 1 a is shown, and is opened in the central shaft hole 1 a as the rotary valve 22 rotates. Conduction path 2A ~
2F shows a state of moving in the direction of the arrow. ), The conducting paths 2A to 2F of the bores 1A to 1F at the end of discharge are shown in FIG.
And a high pressure side groove 28a communicating with the axial direction and a low pressure side groove 2 communicating with the communication passages 2A to 2F of the low pressure side bores 1A to 1F.
8b and a communication groove 28c connecting the high pressure side groove 28a and the low pressure side groove 28b. The low-pressure side groove 28b is divided into two in the axial direction, and a branch path 28d is extended at a predetermined length in the circumferential direction at each end. Further, the low-pressure side groove 28b divided into two parts is shortened in the axial direction, the communication groove 28c is bent midway so as to approach the low-pressure side groove 28b side, and the high-pressure side groove 28a communicates with the communication groove 28c in an arc. ing.

【0017】以上のように構成された圧縮機は、車両空
調用冷凍装置としてその回路中に配設され、使用に供さ
れる。この圧縮機が運転されて図1に示す駆動軸6が回
転すると、斜板9は駆動軸6とともに回転しつつ揺動
し、揺動板12は斜板9に対して回転を規制された状態
で揺動運動のみを行い、これによりピストン15がボア
1A〜1F内を往復動する。そして、ボア1A〜1F内
でピストン15が上死点から下死点に向かって移動を開
始すれば、ボア1A〜1Fは吸入行程に入る。また、ボ
ア1A〜1F内でピストン15が下死点から上死点に向
かって移動を開始すれば、ボア1A〜1Fは圧縮・吐出
行程に入る。
The compressor configured as described above is arranged in the circuit as a vehicle air conditioning refrigeration system and is put to use. When this compressor is operated and the drive shaft 6 shown in FIG. 1 rotates, the swash plate 9 swings while rotating together with the drive shaft 6, and the swing plate 12 is restricted from rotating with respect to the swash plate 9. The oscillating motion is performed only by the above, and thereby the piston 15 reciprocates in the bores 1A to 1F. Then, when the piston 15 starts moving from the top dead center to the bottom dead center in the bores 1A to 1F, the bores 1A to 1F enter the suction stroke. Further, when the piston 15 starts moving from the bottom dead center to the top dead center within the bores 1A to 1F, the bores 1A to 1F enter the compression / discharge stroke.

【0018】ここで、駆動軸6と同期して回転弁22が
図2に矢視する方向に回転することにより、例えば図3
に示す段階となれば、吸入行程にあるボア1D〜1F
は、それらの導通路2D〜2Fが吸入通路25と連通
し、吸入室17の冷媒ガスが吸入通路25、導通路2D
〜2Fを介して順次各ボア1D〜1F内に吸入される。
一方、圧縮行程中のボア1A、1Bは、それらの導通路
2A、2Bが吸入通路25とは連通せず、回転弁22の
シール領域によって閉塞されている。このとき、ボア1
A、1B内は未だ吐出室18内の圧力より低く、吐出弁
20は閉弁されている。また、吐出行程にあるボア1C
も、その導通路2Cが吸入通路25とは連通せず、回転
弁22のシール領域によって閉塞されている。しかし、
このとき、ボア1C内は吐出室18内の圧力より高くな
り、吐出弁20が開弁される。
By rotating the rotary valve 22 in the direction of the arrow in FIG. 2 in synchronism with the drive shaft 6, for example, as shown in FIG.
At the stage shown in, bores 1D to 1F in the suction stroke
The communication passages 2D to 2F communicate with the suction passage 25, and the refrigerant gas in the suction chamber 17 receives the suction passage 25 and the conduction passage 2D.
Through 2F are sequentially inhaled into each bore 1D-1F.
On the other hand, in the bores 1A and 1B during the compression stroke, the passages 2A and 2B of the bores 1A and 1B do not communicate with the suction passage 25, and are closed by the seal region of the rotary valve 22. At this time, bore 1
The pressure inside A and 1B is still lower than the pressure inside the discharge chamber 18, and the discharge valve 20 is closed. In addition, the bore 1C in the discharge stroke
However, the conduction passage 2C does not communicate with the suction passage 25, and is closed by the seal region of the rotary valve 22. But,
At this time, the pressure in the bore 1C becomes higher than the pressure in the discharge chamber 18, and the discharge valve 20 is opened.

【0019】こうして、ピストン15の往復動と同期回
転する回転弁22を介して、各ボア1A〜1Fは、順次
吸入・圧縮・吐出行程を繰り返す。このとき、吸入行程
にあるボア1A〜1Fは、導通路2A〜2F、吸入通路
25を介して吸入室17と連通され、冷媒ガスの吸入作
用が円滑かつ安定して継続されるので、圧力損失がきわ
めて小さくされる。
In this manner, the bores 1A to 1F sequentially repeat the suction, compression, and discharge strokes via the rotary valve 22 that rotates in synchronization with the reciprocating movement of the piston 15. At this time, the bores 1A to 1F in the suction stroke are communicated with the suction chamber 17 via the communication passages 2A to 2F and the suction passage 25, and the suction action of the refrigerant gas is continued smoothly and stably. Is made extremely small.

【0020】この圧縮機において、例えば図3に示す段
階では、吐出終了時のボア1Dの導通路2Dと高圧側溝
28aとが連通されているとともに、低圧側溝28bと
圧縮行程中のボア1Bとが連通されている。このため、
ボア1D内の残留ガスは高圧側溝28aによって回収さ
れ、連通溝28cを介して低圧側溝28bへ移送され、
導通路2Bを介して圧縮行程中のボア1Bへバイパスさ
れる。こうして、この圧縮機では、ボア1Bの吸入行程
中に残留ガスの再膨張が少なく、ボア内へ吸入室内の冷
媒ガスが確実に吸入される。また、このとき、残留ガス
を吸入圧力程度まで減圧せずに圧縮行程中のボア1Bへ
バイパスするため、比較的十分な動力効率が確保され
る。
In this compressor, for example, at the stage shown in FIG. 3, the communication path 2D of the bore 1D at the end of discharge is communicated with the high pressure side groove 28a, and the low pressure side groove 28b and the bore 1B in the compression stroke are connected. It is in communication. For this reason,
The residual gas in the bore 1D is recovered by the high pressure side groove 28a and transferred to the low pressure side groove 28b via the communication groove 28c,
It is bypassed to the bore 1B during the compression stroke via the conduction path 2B. Thus, in this compressor, re-expansion of the residual gas is small during the suction stroke of the bore 1B, and the refrigerant gas in the suction chamber is reliably sucked into the bore. Further, at this time, since the residual gas is bypassed to the bore 1B during the compression stroke without being depressurized to the suction pressure, a relatively sufficient power efficiency is secured.

【0021】この後、回転弁22の回転によって図4に
示す段階となれば、高圧側溝28aと吐出終了時のボア
1Dとが連通されたまま、低圧側溝28bは延設されて
いる枝路28dにより、現に連通されている圧縮行程中
のボア1Bの導通路2Bから、隣在する吸入行程終了直
後のボア1Aの導通路2Aへと連通が移行される。つま
り、この間、低圧側溝28bは、まず圧縮行程中のボア
1Bと連通を果たしたのち一旦遮断され、枝路28dを
介して隣在する吸入行程終了直後のボア1Bの導通路2
Bと再度連通される。このため、回転弁の回転数が上昇
しても、残留ガスバイパス溝28内のガスは低圧側で2
段に放出され、高圧側溝28aで回収した残留ガスは低
圧側溝28bで十分に放出される。こうして、残留ガス
は残留ガスバイパス溝28内に残りにくく、確実にバイ
パスされるため、吸入効率が高い水準に維持され、体積
効率が維持される。
After this, when the stage shown in FIG. 4 is reached by the rotation of the rotary valve 22, the high pressure side groove 28a and the bore 1D at the end of the discharge are connected, and the low pressure side groove 28b is extended. As a result, the communication is transferred from the communication path 2B of the bore 1B that is currently in communication with the compression stroke to the communication path 2A of the bore 1A immediately after the end of the adjacent suction stroke. That is, during this period, the low-pressure side groove 28b first communicates with the bore 1B during the compression stroke, and then is temporarily blocked, and the conduction path 2 of the bore 1B immediately after the end of the adjacent suction stroke via the branch passage 28d.
B is connected again. Therefore, even if the number of rotations of the rotary valve increases, the gas in the residual gas bypass groove 28 is 2
The residual gas discharged to the stage and collected in the high pressure side groove 28a is sufficiently discharged in the low pressure side groove 28b. In this way, the residual gas is unlikely to remain in the residual gas bypass groove 28 and is reliably bypassed, so that the suction efficiency is maintained at a high level and the volume efficiency is maintained.

【0022】したがって、この圧縮機では、回転弁22
が高速で回転する場合にも、十分な体積効率を確実に維
持することができる。また、この圧縮機では、各低圧側
溝28bが軸方向に短く、連通溝28cが屈曲され、か
つ高圧側溝28aが連通溝28cと円弧で連通されてい
るため、残留ガスバイパス溝28内の残留ガスの移動距
離が短く、また滑らかに残留ガスが移動できるため、よ
り一層バイパスを効果的に行なうことができる。
Therefore, in this compressor, the rotary valve 22
Even when rotating at a high speed, it is possible to reliably maintain sufficient volume efficiency. Further, in this compressor, each low-pressure side groove 28b is short in the axial direction, the communication groove 28c is bent, and the high-pressure side groove 28a communicates with the communication groove 28c in an arc. Since the moving distance is short and the residual gas can move smoothly, the bypass can be more effectively performed.

【0023】ここで、図5にこの圧縮機の特性曲線を示
す。図5では、ある特定のボア、例えば図3、4に示す
ボア1Dを基準とし、回転弁22の回転角度と圧力比と
の関係をK曲線で示し、ボア容積をL曲線で示し、吸入
通路25と導通路2Cとの連通角度をM区間で示す。ま
た、残留ガスバイパス溝28の高圧側溝28aと導通路
2Dとの連通角度をO1 区間で示し、低圧側溝28b又
は枝路28dと導通路2Dとの連通角度をO2 区間で示
す。さらに、残留ガスバイパス溝28の高圧側溝28a
とボア1Fの導通路2Fとの連通角度をQ1 区間で示
し、高圧側溝28aとボア1Eの導通路2Eとの連通角
度をQ2 区間で示す。
FIG. 5 shows the characteristic curve of this compressor. In FIG. 5, based on a specific bore, for example, the bore 1D shown in FIGS. 3 and 4, the relationship between the rotation angle of the rotary valve 22 and the pressure ratio is shown by a K curve, the bore volume is shown by an L curve, and the suction passage is shown. The communication angle between 25 and the conduction path 2C is indicated by M section. Further, the communication angle between the high-pressure side groove 28a of the residual gas bypass groove 28 and the conduction path 2D is shown as O 1 section, and the communication angle between the low-pressure side groove 28b or the branch path 28d and the conduction path 2D is shown as O 2 section. Further, the high pressure side groove 28a of the residual gas bypass groove 28
And the communication angle 2F of the bore 1F with the communication path 2F is shown by Q 1 section, and the communication angle between the high pressure side groove 28a and the communication path 2E of the bore 1E is shown with Q 2 section.

【0024】図5に示されるように、ボア1Dのピスト
ン15が上死点位置を過ぎれば、O 1 区間で残留ガスバ
イパス溝28の高圧側溝28aと導通路2Dとの連通が
始まる。O1 区間の前半(斜線域)ではボア1Dから残
留ガスが回収されてボア1Bに放出され、O1 区間の後
半(斜線域)では残留ガスバイパス溝28内のガスがボ
ア1Aに放出され、上死点位置を過ぎた時点での圧力比
が好適に低下している。この後、O2 区間で低圧側溝2
8b又は枝路28dと導通路2Dとが連通し、Q1 区間
で高圧側溝28aと導通路2Fとが連通する。このた
め、Q1 区間とO 2 区間との重複区間(斜線域)でボア
1Fから残留ガスが回収されてボア1Dに放出される。
また、Q2 区間で高圧側溝28aと導通路2Eとが連通
する。このため、Q2 区間とO2 区間との重複区間(斜
線域)でボア1Eから残留ガスが回収されてボア1Dに
放出される。こうして、Q1 区間とO2 区間との重複区
間(斜線域)の開始と、Q2 区間とO2 区間との重複区
間(斜線域)の開始とを境にして圧力比が好適に上昇す
る。
As shown in FIG. 5, the bore 1D fixie
If the point 15 passes the top dead center position, O 1Residual gas
Communication between the high-pressure side groove 28a of the bypass groove 28 and the conduction path 2D is achieved.
Begins. O1Left over from bore 1D in the first half of the section (hatched area)
Distilled gas is collected and released into the bore 1B,1After the section
In the half (hatched area), the gas in the residual gas bypass groove 28 is
A. Pressure ratio when released to 1A and past the top dead center position
Is declining favorably. After this, O2Low-pressure gutter 2 in the section
8b or the branch path 28d communicates with the conduction path 2D, and Q1section
The high pressure side groove 28a communicates with the conduction path 2F. others
So Q1Section and O 2Bore in the overlapping section (diagonal area)
Residual gas is recovered from 1F and discharged into the bore 1D.
Also, Q2The high-pressure side groove 28a communicates with the conduction path 2E in the section
To do. Therefore, Q2Section and O2Overlapping section (diagonal)
Residual gas is recovered from the bore 1E in the line area) and becomes the bore 1D.
Is released. Thus, Q1Section and O2Overlapping ward with section
Start of space (diagonal area), Q2Section and O2Overlapping ward with section
The pressure ratio rises favorably at the start of the interval (hatched area)
It

【0025】また、図6にこの圧縮機と比較例の圧縮機
とにおけるボア容積とボア内圧力との関係を示す。比較
例の圧縮機では、残留ガスバイパス溝28の低圧側溝2
8bが吸入行程終了直後のボア1A〜1Fと導通路2A
〜2Fを介して連通すべく角度設定されている。他の構
成は実施例のものと同一である。図6の斜線域に示すよ
うに、実施例の圧縮機では、比較例の圧縮機と比較し
て、圧縮初期のボア内圧力が低く、動力損失が向上して
いることがわかる。
FIG. 6 shows the relationship between the bore volume and the bore pressure in this compressor and the compressor of the comparative example. In the compressor of the comparative example, the low pressure side groove 2 of the residual gas bypass groove 28 is used.
8b indicates the bores 1A to 1F and the connecting path 2A immediately after the suction stroke
The angle is set to communicate with each other through ~ 2F. The other structure is the same as that of the embodiment. As shown by the shaded area in FIG. 6, it is understood that the compressor of the example has a lower internal bore pressure at the initial stage of compression and an improved power loss, as compared with the compressor of the comparative example.

【0026】したがって、この圧縮機では、充分な体積
効率を維持するとともに、充分な動力効率を確保し、吐
出温度の上昇を抑制することができる。
Therefore, in this compressor, sufficient volume efficiency can be maintained, sufficient power efficiency can be ensured, and rise in discharge temperature can be suppressed.

【0027】[0027]

【発明の効果】以上詳述したように、本発明の往復動型
圧縮機では、特許請求の範囲記載の構成を採用している
ため、回転弁が高速で回転する場合にも、十分な体積効
率を確実に維持することができる。
As described above in detail, since the reciprocating compressor of the present invention has the structure described in the claims, it has a sufficient volume even when the rotary valve rotates at a high speed. The efficiency can be reliably maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の圧縮機の縦断面図である。FIG. 1 is a vertical cross-sectional view of a compressor according to an embodiment.

【図2】実施例の圧縮機の横断面図である。FIG. 2 is a cross-sectional view of the compressor of the embodiment.

【図3】実施例の圧縮機に係り、回転弁と導通路との展
開図である。
FIG. 3 is a development view of a rotary valve and a conduction path according to the compressor of the embodiment.

【図4】実施例の圧縮機に係り、回転弁と導通路との展
開図である。
FIG. 4 is a development view of a rotary valve and a conduction path according to the compressor of the embodiment.

【図5】実施例の圧縮機に係り、回転角度と圧力比等の
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a rotation angle and a pressure ratio, etc., relating to the compressor of the embodiment.

【図6】実施例の圧縮機に係り、ボア容積とボア内圧力
との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a bore volume and a bore pressure in the compressor according to the embodiment.

【符号の説明】[Explanation of symbols]

1…シリンダブロック 1a…中心軸孔 1A
〜1F…ボア 3…弁板 4…リヤハウジング 6…
駆動軸 5…クランク室 9…斜板 15
…ピストン 17…吸入室 18…吐出室 2A
〜2F…導通路 22…回転弁 25…吸入通路 28…残留ガスバイパス溝(残留ガスバイパス通路) 28a…高圧側溝(高圧側開口) 28b…低圧側溝(低圧側開口) 28d…枝路 28c…連通溝(連通路)
1 ... Cylinder block 1a ... Central shaft hole 1A
~ 1F ... Bore 3 ... Valve plate 4 ... Rear housing 6 ...
Drive shaft 5 ... Crank chamber 9 ... Swash plate 15
... Piston 17 ... Suction chamber 18 ... Discharge chamber 2A
2F ... Conduction path 22 ... Rotating valve 25 ... Suction path 28 ... Residual gas bypass groove (residual gas bypass path) 28a ... High pressure side groove (high pressure side opening) 28b ... Low pressure side groove (low pressure side opening) 28d ... Branch path 28c ... Communication Groove (passage)

フロントページの続き (72)発明者 竹市 亨 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内Continuation of the front page (72) Inventor, Toru Takeichi, Toyomachi, Kariya city, Aichi prefecture, 1-1-2 Toyota Industries Corp.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】軸心周りに複数のボアを有するシリンダブ
ロックと、該シリンダブロックの軸孔内に嵌挿支承され
た駆動軸と、該駆動軸と共動するクランク室内の斜板に
連係されて該ボア内を直動するピストンと、該軸孔と連
通する吸入室及び該吸入室の外方域に形成された吐出室
を有して該シリンダブロックの端面を閉塞するハウジン
グとを備えた往復動型圧縮機において、 前記各ボアと前記軸孔との間には両者を結ぶ導通路が形
成され、前記駆動軸には吸入行程にある各ボアの導通路
と前記吸入室とを順次連通する吸入通路をもつ回転弁が
同期回転可能に結合され、該回転弁には、吐出終了時の
ボアの導通路と連通する高圧側開口と、これに同期して
低圧側のボアの導通路と連通する低圧側開口と、該高圧
側開口及び該低圧側開口を接続する連通路とからなる残
留ガスバイパス通路が形成され、該低圧側開口には該高
圧側開口の前記連通継続中に隣在導通路に再連通させる
枝路が延設されていることを特徴とする往復動型圧縮
機。
1. A cylinder block having a plurality of bores around an axis, a drive shaft fitted and supported in a shaft hole of the cylinder block, and a swash plate in a crank chamber cooperating with the drive shaft. And a housing that has a suction chamber that communicates with the shaft hole and a discharge chamber that is formed in an outer region of the suction chamber and that closes the end surface of the cylinder block. In the reciprocating compressor, a conduction path is formed between the bore and the shaft hole to connect them, and the drive shaft sequentially communicates the conduction path of each bore in the suction stroke with the suction chamber. A rotary valve having a suction passage is synchronously rotatably coupled to the rotary valve, and a high-pressure side opening communicating with the bore passage at the end of discharge and a low-pressure side bore passage synchronized with the opening. Connect the low pressure side opening communicating with the high pressure side opening and the low pressure side opening. A residual gas bypass passage is formed, and a branch passage is provided in the low-pressure side opening for re-connecting with the adjacent conduction passage while the high-pressure side opening continues to communicate. Reciprocating compressor.
JP1016593A 1993-01-25 1993-01-25 Reciprocation type compressor Pending JPH06221264A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1016593A JPH06221264A (en) 1993-01-25 1993-01-25 Reciprocation type compressor
DE19944401836 DE4401836C2 (en) 1993-01-25 1994-01-22 Axial piston compressor with several pistons
KR1019940001194A KR970004383B1 (en) 1993-01-25 1994-01-24 Reciprocatory piston type compressor
US08/185,710 US5380168A (en) 1993-01-25 1994-01-24 Axial multi-piston compressor having rotary valve for allowing residual part of compressed fluid to escape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016593A JPH06221264A (en) 1993-01-25 1993-01-25 Reciprocation type compressor

Publications (1)

Publication Number Publication Date
JPH06221264A true JPH06221264A (en) 1994-08-09

Family

ID=11742674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016593A Pending JPH06221264A (en) 1993-01-25 1993-01-25 Reciprocation type compressor

Country Status (4)

Country Link
US (1) US5380168A (en)
JP (1) JPH06221264A (en)
KR (1) KR970004383B1 (en)
DE (1) DE4401836C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013406A1 (en) * 2005-07-25 2007-02-01 Kabushiki Kaisha Toyota Jidoshokki Piston type compressor
WO2008013190A1 (en) * 2006-07-26 2008-01-31 Calsonic Kansei Corporation Compressor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486098A (en) * 1992-12-28 1996-01-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type variable displacement compressor
US5529461A (en) * 1993-12-27 1996-06-25 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
US5722239A (en) * 1994-09-29 1998-03-03 Stirling Thermal Motors, Inc. Stirling engine
AU760360B2 (en) * 1995-09-29 2003-05-15 Stm Power, Inc. Stirling engine
US5611201A (en) * 1995-09-29 1997-03-18 Stirling Thermal Motors, Inc. Stirling engine
US5771694A (en) * 1996-01-26 1998-06-30 Stirling Thermal Motors, Inc. Crosshead system for stirling engine
US5706659A (en) * 1996-01-26 1998-01-13 Stirling Thermal Motors, Inc. Modular construction stirling engine
DE19639555C1 (en) * 1996-09-26 1997-11-20 Knf Neuberger Gmbh Reciprocating machine such as membrane pump or piston compressor
AU2003289491A1 (en) * 2002-12-25 2004-07-22 Honda Motor Co., Ltd. Rotary fluid machine
JP2004239210A (en) * 2003-02-07 2004-08-26 Toyota Industries Corp Piston compressor
JP2005163714A (en) * 2003-12-04 2005-06-23 Toyota Industries Corp Piston type compressor
US9267504B2 (en) 2010-08-30 2016-02-23 Hicor Technologies, Inc. Compressor with liquid injection cooling
CA2809945C (en) 2010-08-30 2018-10-16 Oscomp Systems Inc. Compressor with liquid injection cooling
JP6201575B2 (en) * 2013-09-27 2017-09-27 株式会社豊田自動織機 Variable capacity swash plate compressor
JP2016133094A (en) * 2015-01-21 2016-07-25 株式会社豊田自動織機 Double-headed piston swash plate compressor
WO2017160985A1 (en) * 2016-03-17 2017-09-21 Eco Thermics Corporation Axial piston high pressure gas compressor
US20180156209A1 (en) * 2016-12-02 2018-06-07 Harris Corporation Rotary Valve for a Reversible Compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145378A (en) * 1983-02-07 1984-08-20 Toyoda Autom Loom Works Ltd Coupling construction for two-head type piston of compressor with swash plate
JP2682290B2 (en) * 1991-09-09 1997-11-26 株式会社豊田自動織機製作所 Piston type compressor
JPH06117367A (en) * 1992-10-02 1994-04-26 Toyota Autom Loom Works Ltd Reciprocating compressor
JP3080279B2 (en) * 1992-10-05 2000-08-21 株式会社豊田自動織機製作所 Reciprocating compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013406A1 (en) * 2005-07-25 2007-02-01 Kabushiki Kaisha Toyota Jidoshokki Piston type compressor
WO2008013190A1 (en) * 2006-07-26 2008-01-31 Calsonic Kansei Corporation Compressor
JP2008031866A (en) * 2006-07-26 2008-02-14 Calsonic Kansei Corp Compressor

Also Published As

Publication number Publication date
US5380168A (en) 1995-01-10
KR940018561A (en) 1994-08-18
DE4401836A1 (en) 1994-07-28
KR970004383B1 (en) 1997-03-27
DE4401836C2 (en) 1996-10-17

Similar Documents

Publication Publication Date Title
JP3080278B2 (en) Reciprocating compressor
JP3080279B2 (en) Reciprocating compressor
JPH06221264A (en) Reciprocation type compressor
JP2616295B2 (en) Swash plate compressor for refrigeration equipment
KR970001136B1 (en) Reciprocating compressor
JPH06117367A (en) Reciprocating compressor
JP2003148334A (en) Swash plate type compressor
US5267839A (en) Reciprocatory piston type compressor with a rotary valve
JPH06288349A (en) Reciprocating type compressor
AU631757B2 (en) Slant plate type compressor
JP2707896B2 (en) Refrigerant gas suction guide mechanism in piston type compressor
US20030059316A1 (en) Multistage type piston compressor
JPH04143483A (en) Compressor with rolling piston
JP2819917B2 (en) Reciprocating compressor
JPH06123280A (en) Reciprocating compressor
JP3111693B2 (en) Reciprocating compressor
EP0531951A1 (en) Reciprocatory piston type compressor with a rotary valve
JP3083002B2 (en) Reciprocating compressor
JP2684892B2 (en) Reciprocating compressor
JP3080265B2 (en) Swash plate compressor
JPH0674149A (en) Swash plate type compressor
JPH05172050A (en) Refrigerant gas suction guide mechanism in piston type compressor
JP2002031058A (en) Reciprocating refrigerant compressor
JP3111698B2 (en) Reciprocating compressor
JP2568696Y2 (en) Refrigerant gas suction guide mechanism in piston type compressor