WO2007013406A1 - Piston type compressor - Google Patents

Piston type compressor Download PDF

Info

Publication number
WO2007013406A1
WO2007013406A1 PCT/JP2006/314587 JP2006314587W WO2007013406A1 WO 2007013406 A1 WO2007013406 A1 WO 2007013406A1 JP 2006314587 W JP2006314587 W JP 2006314587W WO 2007013406 A1 WO2007013406 A1 WO 2007013406A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
suction
compression chamber
rotary valve
opening
Prior art date
Application number
PCT/JP2006/314587
Other languages
French (fr)
Japanese (ja)
Inventor
Akinobu Kanai
Masaki Ota
Akihito Yamanouchi
Osamu Nakayama
Yoshio Taneda
Masaya Sakamoto
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005214836A external-priority patent/JP2007016762A/en
Application filed by Kabushiki Kaisha Toyota Jidoshokki filed Critical Kabushiki Kaisha Toyota Jidoshokki
Publication of WO2007013406A1 publication Critical patent/WO2007013406A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • F04B27/1018Cylindrical distribution members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86501Sequential distributor or collector type

Definitions

  • the present invention relates to a piston compressor using a rotary valve. More specifically, the present invention relates to a piston-type compressor having a configuration in which the gas remaining in the high-pressure side compression chamber after completion of discharge is bypassed to the low-pressure side compression chamber.
  • the piston is reciprocated by each cylinder bore as the rotating shaft rotates.
  • the gas is sucked into the compression chamber from the suction pressure region through the rotary valve, the gas is compressed in the compression chamber, and the gas is discharged from the compression chamber.
  • the suction communication path of the rotary valve that rotates synchronously with the rotary shaft sequentially connects the conduction path extending from each compression chamber to the suction pressure region in the suction stroke.
  • the suction communication passage extends in an elongated shape along the axial direction of the rotary valve and has a constant width.
  • the outer peripheral surface of the rotary valve has a residual gas bypass groove that communicates the conduction path corresponding to the high-pressure side compression chamber after completion of the discharge with the conduction path corresponding to the low-pressure side compression chamber.
  • the gas that remains without being discharged in the compression chamber after completion of discharge, that is, residual gas is bypassed or recovered to the compression chamber on the low-pressure side through the high-pressure side conduction path, the residual gas bypass groove, and the low-pressure side conduction path. Therefore, gas re-expansion during the suction stroke of the compression chamber is reduced. As a result, the gas in the suction pressure region can be reliably sucked into the compression chamber, and the volumetric efficiency of the piston compressor can be improved.
  • the outer peripheral surface of the rotary valve facing the conduction path of the cylinder block has a seal region. The seal region closes the conduction path of the cylinder block between the high-pressure opening of the residual gas bypass groove and the suction communication passage of the single valve.
  • FIG. 11 and 12 are exploded views in which the outer peripheral surface 100a of the rotary valve 100 is developed in a planar shape.
  • the cylinder block conduction path 101 is connected to the outer peripheral surface 100a of the rotary valve 100. It corresponds.
  • a seal region S is provided on the outer peripheral surface 100a of the rotary valve 100.
  • the seal region S requires an area between the high-pressure opening 103a of the residual gas bypass groove 103 and the opening 102a of the rotary valve suction communication path 102 so that the opening 101a of the cylinder block conduction path 101 can be closed.
  • the seal width W between the high-pressure opening 103a and the suction communication path 102 along the rotation direction of the rotary valve 100 increases.
  • the high-pressure opening 103 a moves away from the opening 102 a of the suction communication path 102.
  • the time from the timing when the opening 101a of the cylinder block conduction path 101 starts to communicate with the high-pressure opening 103a to the timing when the opening 101a of the conduction path 101 starts to communicate with the opening 102a of the suction communication path 102 of the rotary valve. Increase.
  • This increase in time difference means that the time from when the gas in the compression chamber on the high pressure side is recovered until the gas is sucked into the compression chamber is increased.
  • the gas suction start timing into the compression chamber is delayed.
  • the amount of gas sucked into the compression chamber decreases and the compression efficiency decreases.
  • the seal region S needs to close the opening 101a of the cylinder block conduction path 101. Therefore, simply reducing the seal area S will reduce the opening 101a force S of the conduction path 101. If the opening 101a is small, the loss of gas suction into the compression chamber increases, which is not preferable because the compression efficiency decreases.
  • Patent Document 1 JP 2004-239210 A
  • An object of the present invention is to provide a piston type compressor capable of improving the compression efficiency by suppressing the suction loss of the gas into the compression chamber while advancing the gas suction start timing into the compression chamber. is there.
  • a rotating shaft and a plurality of the rotating shafts arranged around the rotating shaft there is provided a piston type compressor including a cylinder block having a number of cylinder bores, a piston accommodated in each cylinder bore, and a rotary valve that rotates in synchronization with the rotary shaft.
  • the piston defines a compression chamber within the cylinder bore.
  • the cylinder block has a plurality of suction ports that communicate the suction pressure regions with the compression chambers.
  • the piston is reciprocated between a bottom dead center that maximizes the volume of the compression chamber and a top dead center that minimizes the volume of the compression chamber, whereby the suction pressure via the rotary valve is increased.
  • the rotary valve has a suction communication passage and a residual gas bypass passage. As the rotary valve rotates, the suction communication passage sequentially connects each suction port to the suction pressure region.
  • the residual gas bypass passage connects the suction port corresponding to the high-pressure side compression chamber after completion of the discharge to the suction port corresponding to the low-pressure side compression chamber.
  • the portion of the outer peripheral surface of the rotary valve that faces the opening of the suction port constitutes a seal region that prevents the residual gas bypass passage from communicating with the suction communication passage through the opening of the suction port.
  • Each of the suction ports has a narrow passage on the top dead center side and a wide passage on the bottom dead center side.
  • the width of the opening of the narrow passage facing the outer peripheral surface of the rotary valve is smaller than the width of the opening of the wide passage.
  • the opening of the narrow passage has a first leading edge through which the suction communication passage of the rotating rotary valve passes first, and a first trailing edge through which it passes thereafter.
  • the opening of the wide passage has a second leading edge through which the suction communication passage of the rotating rotary valve passes first, and a second trailing edge through which it passes thereafter.
  • the suction communication path passes through the first trailing edge before the second trailing edge.
  • the residual gas bypass passage has a high pressure opening.
  • the high pressure opening faces only the narrow passage of the suction port when communicating with the suction port corresponding to the compression chamber on the high pressure side.
  • the narrow passage is arranged so as to communicate with a compression chamber defined by a piston located at the top dead center.
  • the width between the first trailing edge and the second leading edge is determined by the dimension of the portion of the seal region between the high-pressure opening and the opening of the suction communication passage. Is also small.
  • the opening of the suction communication passage communicates with the wide passage. It is.
  • Each suction port may have a wide passage on the top dead center side and a narrow passage on the bottom dead center side.
  • the wide passage may be connected to the narrow passage.
  • FIG. 1 is a longitudinal sectional view showing a piston compressor according to a first embodiment that embodies the present invention.
  • FIG. 2 is a sectional view taken along line 11 in FIG.
  • FIG. 3 is a diagram showing the outer peripheral surface of the rotary valve in FIG.
  • FIG. 4 is a development view showing a state in which the narrow passage in FIG. 3 is blocked by a seal region.
  • FIG. 5 is a development view showing a state where the suction port communicates with the suction communication passage.
  • FIG. 6 is a diagram showing an outer peripheral surface of a rotary valve according to a second embodiment of the present invention developed in a planar shape.
  • FIG. 7 is a diagram showing an outer peripheral surface of a rotary valve according to a third embodiment of the present invention developed in a planar shape.
  • FIG. 8 is a development view showing another example of the intake port.
  • FIG. 9 is a development view showing another example of the intake port.
  • FIG. 10 is a development view showing another example of the intake port.
  • FIG. 11 is a developed view of a rotary valve showing the background art.
  • FIG. 12 is a developed view of a rotary valve showing the background art with a reduced seal area.
  • a piston compressor 10 includes a cylinder block 11, a front housing 12 joined to the front end of the cylinder block 11, and a rear housing joined to the rear end of the cylinder block 11. 13 and.
  • a valve assembly 14 is disposed between the cylinder block 11 and the rear housing 13.
  • the cylinder block 11, the front housing 12, the rear housing 13 and the valve assembly 14 are fastened and fixed to each other by a plurality of through bolts B.
  • Figure 1 shows only one bolt B.
  • Cylinder block 11 The front housing 12 and the rear housing 13 constitute a housing for the piston compressor 10.
  • a crank chamber 17 is defined in a region surrounded by the front housing 12 and the cylinder block 11 in the housing.
  • a rotating shaft 19 is rotatably supported by the cylinder block 11 and the front housing 12.
  • a rotating shaft 19 is disposed in the crank chamber 17.
  • the rotary shaft 19 is operatively connected to an external drive source, for example, an engine E via a power transmission mechanism PT, and is rotated by receiving power supply from the external drive source E.
  • the rotary shaft 19 is passed through shaft holes 20 and 21 penetrating the cylinder block 11 and the front housing 12.
  • the front end of the rotary shaft 19 is supported by the front housing 12 via a radial bearing 22 provided in the shaft hole 20 of the front housing 12.
  • a lip seal type shaft seal device 23 is disposed between the front housing 12 and the rotary shaft 19.
  • the shaft sealing device 23 prevents leakage of refrigerant gas from the crank chamber 17 along the rotary shaft 19.
  • a lug plate 16 is fixed on the rotary shaft 19 so as to be rotatable.
  • a thrust bearing 18 is disposed between the lug plate 16 and the front housing 12.
  • a swash plate 24 is accommodated in the crank chamber 17.
  • the swash plate 24 is supported so as to be slidable on the rotary shaft 19 and to change the inclination angle with respect to the central axis L1 of the rotary shaft 19.
  • a hinge mechanism 25 is disposed between the lug plate 16 and the swash plate 24.
  • the swash plate 24 can be rotated synchronously with the lug plate 16 and the rotary shaft 19 by the hinge connection with the lug plate 16 via the hinge mechanism 25 and the support of the rotary shaft 19. Further, the swash plate 24 can tilt with respect to the rotary shaft 19 while being slid in the axial direction of the rotary shaft 19, that is, in the direction of the central axis L 1.
  • the cylinder block 11 has a plurality of cylinder bores 11 a in this embodiment arranged around the rotary shaft 19.
  • Each cylinder bore 11a accommodates a single-headed piston 31 so as to be able to reciprocate.
  • the piston 31 is slidably anchored to the peripheral portion of the swash plate 24 via a pair of front and rear shoes 30.
  • the rotation of the swash plate 24 accompanying the rotation of the rotary shaft 19 is changed to the reciprocating motion of the piston 31 via the shoe 30. Replaced.
  • the front and rear openings of the cylinder bore 11a are closed by a valve assembly 14 and a piston 31, respectively.
  • a compression chamber 26 whose volume changes according to the reciprocating motion of the piston 31 is defined.
  • a suction passage 28 and a discharge chamber 29 are defined as suction pressure regions.
  • the suction passage 28 is formed in the central portion of the rear housing 13.
  • the discharge chamber 29 is formed so as to surround the outer periphery of the suction passage 28.
  • the valve assembly 14 includes a discharge port 32 that communicates the compression chamber 26 with the discharge chamber 29 and a discharge valve 33 that opens and closes the discharge port 32.
  • the cylinder block 11 is formed with a valve housing chamber 42 at the center surrounded by the cylinder bore 11a.
  • a rotary valve 41 is rotatably accommodated in the valve accommodating chamber 42.
  • a plurality of suction ports 43 formed in the cylinder block 11 communicate the valve housing chambers 42 with the respective compression chambers 26. Only one inlet port 43 is shown in FIG.
  • the rotary valve 41 is made of an aluminum-based metal material and has a cylindrical shape.
  • the rear end of the rotary shaft 19 is disposed in the valve storage chamber 42.
  • the front end of the rotary valve 41 is press-fitted into the press-fit recess 19 a at the rear end of the rotary shaft 19.
  • the outer peripheral surface 41a of the rotary valve 41 and the peripheral surface 42a of the valve storage chamber 42 constitute a sliding bearing surface for rotatably supporting the rotary valve 41 in the valve storage chamber 42.
  • a rear end of the rotary shaft 19 is rotatably supported by the cylinder block 11 via a rotary valve 41.
  • the central axis L2 of the rotary valve 41 is located on the same axis as the central axis L1 of the rotary shaft 19. That is, the rotary valve 41 and the rotary shaft 19 are integrated to form a single axis.
  • the rotary valve 41 is rotated in synchronization with the rotation of the rotary shaft 19, that is, the reciprocating motion of the piston 31.
  • the rotary valve 41 has an in-cylinder space 44.
  • the in-cylinder space 44 communicates with the suction passage 28 through a through hole 14 a formed in the valve assembly 14.
  • the outer peripheral surface 41a of the rotary valve 41 extends from the in-cylinder space 44 to the peripheral wall of the rotary valve 41.
  • a suction communication passage 45 extending up to is provided. That is, the inlet 45 a of the suction communication passage 45 opens into the in-cylinder space 44, and the outlet 45 b of the suction communication passage 45 opens on the outer peripheral surface 41 a of the rotary valve 41.
  • the outlet 45 b of the suction communication passage 45 communicates intermittently with the opening of the suction port 43 of the cylinder block 11, that is, the inlet 43 a.
  • the suction communication passage 45 allows the in-cylinder space 44 serving as a suction pressure region to sequentially communicate with the inlet 43a of the suction port 43 extending from each compression chamber 26 in synchronization with the rotation of the rotary valve 41.
  • the outlet 45b of the suction communication passage 45 of the rotary valve 41 communicates with the inlet 43a of the suction port 43 of the cylinder block 11 when the piston 31 shifts to the suction stroke. Then, the refrigerant gas in the suction passage 28 is compressed through the through hole 14a of the valve assembly 14, the cylinder space 44 of the rotary valve 41, the suction communication passage 45, and the suction port 43 of the cylinder block 11 in the same order. Inhaled into chamber 26.
  • the position of the piston 31 that maximizes the volume of the compression chamber 26 is defined as the bottom dead center of the piston 31.
  • the outlet 45b of the suction communication passage 45 of the rotary valve 41 extends from the inlet 43a of the suction port 43 of the cylinder block 11 in the circumferential direction. It is completely off. That is, the suction of the refrigerant gas into the compression chamber 26 is also stopped in the in-cylinder space 44 force. Thereafter, when the piston 31 is shifted to the compression process and the discharge stroke, the outer peripheral surface 41a of the rotary valve 41 holds the space between the in-cylinder space 44 and the compression chamber 26 in a closed state.
  • the compression of the refrigerant gas and the discharge of the compressed gas into the discharge chamber 29 are not hindered.
  • the position of the piston 31 that minimizes the volume of the compression chamber 26 is defined as the top dead center of the piston 31.
  • the top dead center When the piston 31 is at the top dead center, there is a so-called top clearance between the piston 31 and the valve assembly 14 in the cylinder bore 1 la. In the top clearance, there is residual gas remaining in the compression chamber 26 that cannot be completely discharged.
  • FIG. 3 is a diagram in which the outer peripheral surface 41a of the rotary valve 41 is developed in a planar shape.
  • the suction port 43 of the cylinder block 11 is opposed to the outer peripheral surface 41a of the rotary valve 41.
  • the direction of arrow Y3 shown in FIG. 3 is the rotational direction of the rotary valve 41, that is, the circumferential direction.
  • the rotary valve 41 proceeds to the left in FIG. Arrow Y4
  • the direction indicates the axial direction of the rotary valve 41, that is, the direction of the central axis L2.
  • a residual gas bypass groove 46 constituting a residual gas bypass passage is formed on the outer peripheral surface 41a of the rotary valve 41.
  • the residual gas bypass groove 46 has a high pressure groove 47, a low pressure groove 48, and a communication groove 49.
  • the high pressure groove 47 extends in the direction of the central axis L2 of the rotary valve 41, that is, in the direction of the arrow Y4, and functions as a high pressure opening.
  • the low-pressure groove 48 also extends in the direction of the central axis L2.
  • the communication groove 49 extends in the circumferential direction of the rotary valve 41, that is, in the direction of the arrow Y 3, and communicates the top dead center side end of the high pressure groove 47 with that of the low pressure groove 48. That is, the communication groove 49 communicates the rear end of the high-pressure groove 47 in the piston compressor 10 with the low-pressure groove 48.
  • the high pressure groove 47 communicates with the suction port 43 (43A) corresponding to the compression chamber 26 on the high pressure side immediately after the end of discharge so as to communicate with the outer peripheral surface 41a of the rotary valve 41 in advance of the low pressure groove 48. Is arranged. For this reason, the high-pressure groove 47 communicates with the top clearance of the cylinder bore 11 a through the suction port 43 of the cylinder block 11. Further, the low pressure groove 48 is arranged on the outer peripheral surface 41a of the rotary valve 41 so as to face the suction port 43 (43B) corresponding to the compression chamber 26 immediately after completion of the suction, which is the compression chamber 26 on the low pressure side! .
  • the outer peripheral surface 41 a of the rotary valve 41 has a seal region S between the high pressure groove 47 and the suction communication path 45 of the rotary valve 41.
  • the seal region S prevents a gas path from the high pressure groove 47 of the residual gas bypass groove 46 to the outlet 45b of the suction communication passage 45 of the rotary valve 41 through the inlet 43a of the suction port 43 of the cylinder block 11.
  • the seal region S faces the inlet 43a of the suction port 43 on the outer peripheral surface 41a of the inlet valve 41, and makes the high-pressure groove 47 non-communication with respect to the outlet 45b of the suction communication passage 45.
  • Residual refrigerant gas remaining in the compression chamber 26 immediately after the discharge is completed cannot be discharged into the suction port 43 (43A) of the cylinder block 11, the high pressure groove 47, the communication groove 49, the low pressure groove 48, and the cylinder port of the rotary valve 41. Via the suction port 43 (43B) of the rack 11 in the same order, it is bypassed, that is, recovered into the compression chamber 26 immediately after the end of the suction.
  • each suction port 43 formed in the cylinder block 11 has an opening facing the outer peripheral surface 41a of the rotary valve 41, that is, an inlet 43a. It has a shape with different opening widths Ta and Tb.
  • Suction port 43 is connected to narrow passage 50 A wide passage 51 is provided.
  • the narrow passage 50 is provided on the top dead center side in the direction of the central axis L2 of the rotary valve 41, and the wide passage 51 is provided on the bottom dead center side. That is, the suction port 43 has a top dead center side passage on the top dead center side and a bottom dead center side passage on the bottom dead center side.
  • the top dead center side passage is the narrow passage 50 and the bottom dead center side passage is the wide passage 51.
  • the narrow passage 50 has a constant first opening width Ta in the circumferential direction of the rotary valve 41, and extends in the direction of the central axis L2.
  • the wide passage 51 has a constant second opening width Tb in the circumferential direction and extends in the direction of the central axis L2.
  • the first opening width Ta of the narrow passage 50 is set smaller than the second opening width Tb of the wide passage 51 (Ta ⁇ Tb).
  • the first opening width Ta of the narrow passage 50 is set to be smaller than the interval between the high-pressure groove 47 and the suction communication passage 45 in the circumferential direction, that is, the seal width W in a part of the seal region S. (W> Ta).
  • the second opening width Tb of the wide passage 51 is set to be larger than the seal width W (W ⁇ Tb).
  • the boundary between the narrow passage 50 and the wide passage 51 is formed in a step shape.
  • the narrow passage 50 has a first leading edge 50a and a first trailing edge 50b opposite to the first leading edge 50a with respect to the rotational direction of the rotary valve 41.
  • the suction communication path 45 first passes through the first leading edge 50a and then passes through the first trailing edge 50b.
  • the wide passage 51 has a second leading edge 51a and a second trailing edge 5 lb on the opposite side with respect to the rotational direction of the rotary valve 41.
  • the suction communication passage 45 first passes through the second leading edge 5 la and then passes through the second trailing edge 5 lb.
  • the first leading edge 50a side with respect to the first trailing edge 50b is called the leading side, and the opposite is called the trailing side.
  • the second leading edge 51a side with respect to the second trailing edge 51b is called the leading side, and the opposite side is called the trailing side.
  • the width The third opening width Tc to the second leading end edge 51a of the wide passage 51 is set to be slightly smaller than the seal width W of the seal region S. Therefore, immediately after the high-pressure groove 47 passes through the narrow passage 50, the outlet 45 b of the suction communication passage 45 communicates with the wide passage 51.
  • FIG. 3 shows a time point when the compression chamber 26 corresponding to the suction port 43A is immediately after the end of the discharge, and the piston 31 in the compression chamber 26 on the high pressure side is at the top dead center.
  • the high-pressure groove 47 passes through the top dead center side with respect to the wide passage 51. That is, the high pressure groove 47 communicates only with the narrow passage 50 at the inlet 43 a of the suction port 43, and does not communicate with the wide passage 51.
  • the wide passage 51 at the inlet 43 a of the suction port 43 is blocked by the seal region S.
  • the residual refrigerant gas remaining in the top clearance without being discharged in the compression chamber 26 is the suction port 43A of the cylinder block 11, the high pressure groove 47 of the rotary valve 41, the communication groove 49, the low pressure groove 48, and the suction port of the cylinder block 11.
  • Via 43B in the same order it is bypassed, that is, recovered to the compression chamber 26 immediately after the end of the suction. For this reason, the re-expansion of the residual gas is reduced when the compression chamber 26 corresponding to the suction port 43A performs the suction stroke. Therefore, the refrigerant gas in the in-cylinder space 44 can be reliably sucked into the compression chamber 26, and the volumetric efficiency of the piston compressor 10 can be improved.
  • FIG. 5 shows a state in which the rotary valve 41 further rotates and both the narrow passage 50 and the wide passage 51 communicate with the suction communication passage 45 of the rotary valve 41.
  • the rotary valve 41 When rotated, the entire inlet 43a of the suction port 43A, that is, the entire narrow passage 50 and the wide passage 51 communicates with the outlet 45b of the suction communication passage 45.
  • the refrigerant gas in the suction passage 28 passes through the through hole 14a of the valve assembly 14, the in-cylinder space 44 of the rotary valve 41, the suction communication passage 45, and the suction port 43A of the cylinder block 11 in the same order, and the compression chamber 26 Inhaled.
  • the first embodiment has the following advantages.
  • the inlet 43a of the suction port 43 has a narrow passage 50 on the top dead center side and a wide passage 51 on the bottom dead center side. That is, the width Ta on the top dead center side of the inlet 43a of the suction port 43 along the rotational direction, that is, the circumferential direction of the rotary valve 41 is set smaller than the width Tb on the bottom dead center side.
  • the high pressure groove 47 is configured to communicate with only the narrow passage 50 when the rotary valve 41 rotates. Since the width Ta of the opening of the narrow passage 50 is smaller than the width Tb of the opening of the wide passage 51, the seal width W of the seal region S for gas path prevention can be reduced.
  • the dimension between the high pressure groove 47 and the outlet 45b of the suction communication passage 45 of the rotary valve 41 can be reduced.
  • the suction communication passage 45 of the rotary valve 41 becomes wider with the suction port 43A of the cylinder block 11.
  • the time difference until the start of communication at 51 can be reduced. That is, the time from the recovery of the gas remaining in the high-pressure side compression chamber 26 corresponding to the suction port 43A until the refrigerant gas is sucked into the compression chamber 26, that is, the suction start timing of the compression chamber 26 is reduced. can do.
  • the seal region S In order to prevent a gas path from the high-pressure groove 47 to the suction communication passage 45, the seal region S only needs to close the narrow passage 50. Therefore, the suction port 43 can have a wide passage 51 in addition to the narrow passage 50. For this reason, even if the seal width W of the seal region S is set small in order to advance the start timing of the refrigerant gas suction into the compression chamber 26, an increase in the refrigerant gas suction loss is suppressed. As a result, it is possible to improve the compression efficiency by suppressing the amount of gas suction loss while speeding up the start of the suction of the refrigerant gas into the compression chamber 26.
  • the narrow passage 50 is connected to the wide passage 51 at the inlet 43 a of the suction port 43.
  • the amount of refrigerant gas sucked into the compression chamber 26 from the inlet 43a of the suction port 43 can be increased.
  • (3) As shown in FIG. 3, when the piston 31 is located at the top dead center, the narrow passage 50 at the inlet 43a of the suction port 43 is directly communicated with the compression chamber 26. Therefore, when the high-pressure groove 47 communicates with the narrow passage 50, the residual gas in the compression chamber 26 is quickly collected in the high-pressure groove 47. Therefore, the residual gas can be reliably recovered. As a result, the remaining gas re-expansion during the suction stroke is reduced, and the refrigerant gas is reliably sucked into the compression chamber 26. Therefore, the volumetric efficiency of the piston compressor 10 can be improved.
  • the narrow passage 50 is formed to be biased toward the leading side in the rotational direction of the rotary valve 41 with respect to the wide passage 51. It is. In other words, the narrow passage 50 is arranged to be biased toward the second leading edge 51a with respect to the wide passage 51.
  • the first leading edge 50a of the narrow passage 50 is located on the same straight line as the second leading edge 51a of the wide passage 51.
  • the first opening width Ta of the narrow passage 50 and the second opening width Tb of the wide passage 51 of the second embodiment are set to be the same as those of the first embodiment.
  • the seal width W of the seal region S between the high-pressure groove 47 and the suction communication passage 45 is set to be slightly larger than the third opening width Tc.
  • the seal width W of the seal region S in the second embodiment is set to be smaller than that in the first embodiment.
  • the second embodiment further has the following advantages.
  • the narrow passage 50 of the second embodiment is arranged closer to the first leading edge 50a of the wide passage 51 than the first embodiment.
  • the seal width W of the second embodiment is set smaller than that of the first embodiment. Therefore, the dimension between the high pressure groove 47 and the outlet 45b of the suction communication passage 45 can be further reduced. That As a result, from the timing when the high pressure groove 47 of the rotary valve 41 starts to communicate with the narrow passage 50 of the cylinder block 11 to the timing when the suction communication passage 45 of the rotary valve 41 starts to communicate with the suction port 43 of the cylinder block 11. Time can be further reduced. As a result, the amount of gas suction loss into the compression chamber 26 can be reduced.
  • the high pressure groove 47 and the low pressure groove 48 of the residual gas bypass groove 46 are connected to the suction port 43 with respect to the central axis L2 direction of the rotary valve 41. It is provided on the bottom dead center side. That is, the high-pressure groove 47 as a high-pressure opening is disposed on the front side of the piston compressor 10 with respect to the suction port 43.
  • the communication groove 49 of the residual gas bypass groove 46 communicates the end of the high pressure groove 47 and the low pressure groove 48 on the bottom dead center side. That is, the communication groove 49 communicates the front end portions of the high-pressure groove 47 and the low-pressure groove 48 in the piston-type compressor 10.
  • the inlet 43a of each suction port 43 formed in the cylinder block 11 has two kinds of opening widths Ta and Tb in the circumferential direction. That is, the opening of the suction port 43 facing the outer peripheral surface 41a of the rotary valve 41 has two types of opening widths Ta and Tb.
  • the inlet 43a of the suction port 43 has the narrow passage 50 on the bottom dead center side and the wide passage 51 on the top dead center side in the direction of the central axis L2 of the rotary valve 41.
  • the narrow passage 50 has a first opening width Ta having a constant dimension in the circumferential direction of the rotary valve 41, and extends in the direction of the central axis L2.
  • the wide passage 51 extends in the direction of the central axis L2 with a second opening width Tb having a constant dimension in the circumferential direction.
  • the first opening width Ta of the narrow passage 50 is set smaller than the seal width W of the seal region S (W> Ta).
  • the second opening width Tb of the wide passage 51 is set to be larger than the seal width W of the seal region S (W ⁇ Tb).
  • the narrow passage 50 is connected to the wide passage 51 at the inlet 43 a of the suction port 43.
  • the boundary between narrow passage 50 and wide passage 51 is It is formed in a step shape.
  • the third opening width Tc along the circumferential direction from the first trailing edge 50b of the narrow passage 50 to the second leading edge 51a of the wide passage 51 is the seal width W of the seal region S. It is set slightly smaller than. Therefore, immediately after the high pressure groove 47 passes through the narrow passage 50, the outlet 45 b of the suction communication passage 45 communicates with the wide passage 51. In the compression chamber 26 immediately after the end of the discharge with the piston 31 at the top dead center, a wide passage 51 arranged directly below the bottom dead center in FIG.
  • the third embodiment further has the following advantages.
  • the wide passage 51 is formed on the top dead center side with respect to the narrow passage 50 in the direction of the central axis L2 of the rotary valve 41. Therefore, compared with the case of the first embodiment, in the third embodiment, the suction port 43 of the cylinder block 11 communicated with the suction communication passage 45 of the rotary valve 41 at the start of the suction of the refrigerant gas into the compression chamber 26. The area can be increased. Therefore, the amount of gas sucked into the compression chamber 26 can be increased.
  • the narrow passage 50 is formed on the top dead center side of the wide passage 51, and the first leading edge 50a of the narrow passage 50 is more than the second leading edge 51a of the wide passage 51. Was also formed on the trailing side.
  • the narrow passage 50 may be composed of a plurality of small passage caps separated from each other.
  • the third opening width Tc may be set to be smaller than the seal width W between the high pressure groove 47 and the suction communication passage 45.
  • the narrow passage 50 may be formed in a pair of long holes. That is, the shape of the narrow passage 50 is not limited to the shape of the first to third embodiments, and may be, for example, an elliptical hole shape or a round hole shape. As shown in FIG. 9, the narrow passage 50 may be separated from the wide passage 51.
  • the narrow passage 50 includes two long hole-like small passages extending in the circumferential direction of the rotary valve 41.
  • the first leading edge 50a is the most leading edge of the plurality of small passages
  • the first trailing edge 50b is the most trailing edge of the plurality of small passages.
  • the third opening width Tc of the narrow passage 50 is a dimension between the second leading edge 51a of the wide passage 51 and the first trailing edge 50b of the narrow passage 50.
  • the third opening width Tc only needs to be smaller than the seal width W between the high pressure groove 47 and the suction communication path 45.
  • the opening width that is, the circumferential dimension of the wide passage 51 may be reduced as the narrow passage 50 is approached.
  • the second leading edge 5 la and the second trailing edge 51b of the wide passage 51 are formed of a portion where the opening width of the wide passage 51 is maximum, that is, an end on the bottom dead center side.
  • the narrow passage 50 may be formed so as to be biased toward the leading side in the rotational direction of the rotary valve 41 with respect to the wide passage 51, that is, closer to the second leading edge 5 la.
  • the first leading edge 50a of the narrow passage 50 may be positioned on the same straight line as the second leading edge 51a of the wide passage 51.
  • the shape of the outlet of the suction port 43 and the shape of the passage inside the suction port 43 are arbitrary if the suction port 43 includes the narrow passage 50 and the wide passage 51 in the inlet 43a. You may change to
  • the narrow passage 50 is not limited as long as the first trailing edge 50b of the narrow passage 50 is positioned ahead of the second trailing edge 51b of the wide passage 51. It may be biased toward the trailing side with respect to the wide passage 51.
  • the present invention may be applied to a double-headed piston compressor.

Abstract

A piston type compressor wherein each of the intake ports (43) of a cylinder block (11) comprises a narrow passage (50) on the top dead center side and a wide passage (51) on the bottom dead center side. The intake communication passage (45) of a rotary valve (41) is passed through the first trailing edge (50b) of the narrow passage (50) before passed through the second trailing edge (51b) of the wide passage (51). The high-pressure groove (47) of a residual gas bypass groove (46) faces only the narrow passage (50) of the intake port (43A) when it communicates with the intake port (43A) corresponding to a high-pressure side compression chamber (26). The width (Tc) of the rotary valve (41) between the first trailing edge (50b) and the second leading edge (51a) of the wide passage (51) in the rotating direction is smaller than the seal width (W) of a seal area (S) portion between the high-pressure groove (47) and the outlet (45b) of the intake communication passage (45). As a result, a compression efficiency can be increased by suppressing the intake loss amount of gases into the compression chamber while advancing the intake start timing of the gases into the compression chamber.

Description

明 細 書  Specification
ピストン式圧縮機  Piston compressor
技術分野  Technical field
[0001] 本発明は、ロータリバルブを用いたピストン式圧縮機に関する。詳しくは、吐出終了 後の高圧側の圧縮室に残留されたガスを、低圧側の圧縮室へとバイパスする構成を 備えたピストン式圧縮機に関する。  [0001] The present invention relates to a piston compressor using a rotary valve. More specifically, the present invention relates to a piston-type compressor having a configuration in which the gas remaining in the high-pressure side compression chamber after completion of discharge is bypassed to the low-pressure side compression chamber.
背景技術  Background art
[0002] 特許文献 1が開示するピストン式圧縮機では、回転シャフトが回転することによって 、各シリンダボアでピストンが往復動される。これによつて、吸入圧領域からロータリバ ルブを通じて圧縮室へのガスの吸入、圧縮室内でのガスの圧縮、並びに圧縮室から のガスの吐出が行われる。回転シャフトと同期回転するロータリバルブの吸入連通路 は、各圧縮室から延びる導通路を、吸入圧領域に吸入行程にて順次連通する。この 吸入連通路は、ロータリバルブの軸線方向に沿って細長に延び、幅が一定である。  In the piston compressor disclosed in Patent Document 1, the piston is reciprocated by each cylinder bore as the rotating shaft rotates. As a result, the gas is sucked into the compression chamber from the suction pressure region through the rotary valve, the gas is compressed in the compression chamber, and the gas is discharged from the compression chamber. The suction communication path of the rotary valve that rotates synchronously with the rotary shaft sequentially connects the conduction path extending from each compression chamber to the suction pressure region in the suction stroke. The suction communication passage extends in an elongated shape along the axial direction of the rotary valve and has a constant width.
[0003] また、ロータリバルブの外周面は、吐出終了後の高圧側の圧縮室に対応する導通 路を、低圧側の圧縮室に対応する導通路に連通する残留ガスバイパス溝を有する。 吐出終了後の圧縮室において吐出しきれずに残ったガス即ち残留ガスは、高圧側 の導通路、残留ガスバイパス溝並びに低圧側の導通路を通じて、低圧側の圧縮室へ とバイパスつまり回収される。よって、圧縮室の吸入行程中におけるガスの再膨張が 少なくなる。これによつて、該圧縮室に吸入圧領域のガスを確実に吸入でき、ピストン 式圧縮機の体積効率を向上させることができる。  [0003] Further, the outer peripheral surface of the rotary valve has a residual gas bypass groove that communicates the conduction path corresponding to the high-pressure side compression chamber after completion of the discharge with the conduction path corresponding to the low-pressure side compression chamber. The gas that remains without being discharged in the compression chamber after completion of discharge, that is, residual gas, is bypassed or recovered to the compression chamber on the low-pressure side through the high-pressure side conduction path, the residual gas bypass groove, and the low-pressure side conduction path. Therefore, gas re-expansion during the suction stroke of the compression chamber is reduced. As a result, the gas in the suction pressure region can be reliably sucked into the compression chamber, and the volumetric efficiency of the piston compressor can be improved.
[0004] 前記ピストン式圧縮機においては、残留ガスバイパス溝の高圧開口から、ロータリ バルブの吸入連通路への、シリンダブロックの導通路を通じたガスパスを防止する必 要がある。このため、シリンダブロックの導通路に対向するロータリバルブの外周面は 、シール領域を有している。該シール領域は、残留ガスバイパス溝の高圧開口と、口 一タリバルブの吸入連通路との間において、シリンダブロックの導通路を閉塞する。  [0004] In the piston type compressor, it is necessary to prevent a gas path from the high-pressure opening of the residual gas bypass groove to the suction communication passage of the rotary valve through the conduction path of the cylinder block. For this reason, the outer peripheral surface of the rotary valve facing the conduction path of the cylinder block has a seal region. The seal region closes the conduction path of the cylinder block between the high-pressure opening of the residual gas bypass groove and the suction communication passage of the single valve.
[0005] 図 11及び図 12は、前記ロータリバルブ 100の外周面 100aを平面状に展開した展 開図を示す。シリンダブロックの導通路 101は、ロータリバルブ 100の外周面 100aに 対応させている。図 11に示すように、ロータリバルブ 100の外周面 100aにはシール 領域 Sが設けられている。シール領域 Sは、残留ガスバイパス溝 103の高圧開口 103 aとロータリバルブの吸入連通路 102の開口 102aとの間で、シリンダブロックの導通 路 101の開口 101aを閉塞可能な面積を必要とする。 11 and 12 are exploded views in which the outer peripheral surface 100a of the rotary valve 100 is developed in a planar shape. The cylinder block conduction path 101 is connected to the outer peripheral surface 100a of the rotary valve 100. It corresponds. As shown in FIG. 11, a seal region S is provided on the outer peripheral surface 100a of the rotary valve 100. The seal region S requires an area between the high-pressure opening 103a of the residual gas bypass groove 103 and the opening 102a of the rotary valve suction communication path 102 so that the opening 101a of the cylinder block conduction path 101 can be closed.
[0006] ところが、前記シール領域 Sの面積が大きくなるほど、ロータリバルブ 100の回転方 向に沿った、高圧開口 103aと吸入連通路 102との間のシール幅 Wが大きくなる。す なわち、高圧開口 103aは、吸入連通路 102の開口 102aから遠ざかる。すると、シリ ンダブロックの導通路 101の開口 101aが高圧開口 103aに連通開始したタイミング から、導通路 101の開口 101aがロータリバルブの吸入連通路 102の開口 102aに連 通開始するタイミングまでの時間が増大する。この時間差の増大は、高圧側の圧縮 室内のガスを回収してから、この圧縮室にガスが吸入されるまでの時間が増大するこ とを意味する。その結果、圧縮室へのガスの吸入開始タイミングが遅くなる。これによ つて、圧縮室へのガス吸入量が低下し、圧縮効率が低下してしまう。  However, as the area of the seal region S increases, the seal width W between the high-pressure opening 103a and the suction communication path 102 along the rotation direction of the rotary valve 100 increases. In other words, the high-pressure opening 103 a moves away from the opening 102 a of the suction communication path 102. Then, the time from the timing when the opening 101a of the cylinder block conduction path 101 starts to communicate with the high-pressure opening 103a to the timing when the opening 101a of the conduction path 101 starts to communicate with the opening 102a of the suction communication path 102 of the rotary valve. Increase. This increase in time difference means that the time from when the gas in the compression chamber on the high pressure side is recovered until the gas is sucked into the compression chamber is increased. As a result, the gas suction start timing into the compression chamber is delayed. As a result, the amount of gas sucked into the compression chamber decreases and the compression efficiency decreases.
[0007] そこで、図 12に示すように、前記シール領域 Sの面積を小さくすること、すなわち、 前記シール幅 Wを小さくすることが考えられる。これによつて、シリンダブロックの導通 路 101の開口 101aが高圧開口 103aに連通開始したタイミングから、導通路 101の 開口 101aがロータリバルブの吸入連通路 102の開口 102aに連通開始するタイミン グまでの時間差を小さくすることが考えられる。  Accordingly, as shown in FIG. 12, it is conceivable to reduce the area of the seal region S, that is, to reduce the seal width W. Accordingly, from the timing when the opening 101a of the conduction path 101 of the cylinder block starts to communicate with the high-pressure opening 103a to the timing when the opening 101a of the conduction path 101 starts to communicate with the opening 102a of the suction communication path 102 of the rotary valve. It is conceivable to reduce the time difference.
し力し、シール領域 Sは、シリンダブロックの導通路 101の開口 101aを閉塞する必 要がある。よって、単にシール領域 Sを小さくするのみでは、導通路 101の開口 101a 力 S小さくなつてしまう。該開口 101aが小さくなると、圧縮室へのガスの吸入損失が大 きくなり、圧縮効率が低下して好ましくない。  Therefore, the seal region S needs to close the opening 101a of the cylinder block conduction path 101. Therefore, simply reducing the seal area S will reduce the opening 101a force S of the conduction path 101. If the opening 101a is small, the loss of gas suction into the compression chamber increases, which is not preferable because the compression efficiency decreases.
特許文献 1:特開 2004— 239210号公報  Patent Document 1: JP 2004-239210 A
発明の開示  Disclosure of the invention
[0008] 本発明の目的は、圧縮室へのガスの吸入開始タイミングを早めつつ、圧縮室への ガスの吸入損失を抑えて圧縮効率を向上させることができるピストン式圧縮機を提供 することにある。  [0008] An object of the present invention is to provide a piston type compressor capable of improving the compression efficiency by suppressing the suction loss of the gas into the compression chamber while advancing the gas suction start timing into the compression chamber. is there.
[0009] 本発明の一側面によれば、回転シャフトと、該回転シャフトの周囲に配列された複 数のシリンダボアを有するシリンダブロックと、各シリンダボアに収容されるピストンと、 前記回転シャフトと同期回転するロータリバルブとを備えるピストン式圧縮機が提供さ れる。前記ピストンは前記シリンダボア内に圧縮室を区画する。前記シリンダブロック は吸入圧領域をそれぞれ圧縮室に連通させる複数の吸入ポートを有する。前記ビス トンが、前記圧縮室の容積を最大にする下死点と、圧縮室の容積を最小にする上死 点との間を往復動させられることで、ロータリバルブを介しての前記吸入圧領域から 前記圧縮室へのガスの吸入、前記圧縮室内でのガスの圧縮、並びに前記圧縮室か らのガスの吐出が行われる。前記ロータリバルブは吸入連通路および残留ガスバイ パス通路を有する。前記ロータリバルブが回転することで、前記吸入連通路は各吸入 ポートを前記吸入圧領域に順次連通させる。前記残留ガスバイパス通路は、吐出終 了後の高圧側の圧縮室に対応する吸入ポートを、低圧側の圧縮室に対応する吸入 ポートに連通させる。前記吸入ポートの開口に対向する前記ロータリバルブの外周面 の部分は、前記残留ガスバイパス通路が前記吸入ポートの開口を通じて前記吸入連 通路に連通することを防止するシール領域を構成する。 [0009] According to one aspect of the present invention, a rotating shaft and a plurality of the rotating shafts arranged around the rotating shaft. There is provided a piston type compressor including a cylinder block having a number of cylinder bores, a piston accommodated in each cylinder bore, and a rotary valve that rotates in synchronization with the rotary shaft. The piston defines a compression chamber within the cylinder bore. The cylinder block has a plurality of suction ports that communicate the suction pressure regions with the compression chambers. The piston is reciprocated between a bottom dead center that maximizes the volume of the compression chamber and a top dead center that minimizes the volume of the compression chamber, whereby the suction pressure via the rotary valve is increased. Gas is sucked into the compression chamber from a region, gas is compressed in the compression chamber, and gas is discharged from the compression chamber. The rotary valve has a suction communication passage and a residual gas bypass passage. As the rotary valve rotates, the suction communication passage sequentially connects each suction port to the suction pressure region. The residual gas bypass passage connects the suction port corresponding to the high-pressure side compression chamber after completion of the discharge to the suction port corresponding to the low-pressure side compression chamber. The portion of the outer peripheral surface of the rotary valve that faces the opening of the suction port constitutes a seal region that prevents the residual gas bypass passage from communicating with the suction communication passage through the opening of the suction port.
前記各吸入ポートは、上死点側の幅狭通路および下死点側の幅広通路を有する。 前記ロータリバルブの回転方向に関して、前記ロータリバルブの外周面に対向する 前記幅狭通路の開口の幅は、前記幅広通路の開口の幅よりも小さい。前記幅狭通 路の開口は、回転する前記ロータリバルブの吸入連通路が先に通過する第 1先行端 縁と、その後に通過する第 1後行端縁とを有する。前記幅広通路の開口は、回転す るロータリバルブの吸入連通路が先に通過する第 2先行端縁と、その後に通過する 第 2後行端縁とを有する。前記吸入連通路は、第 2後行端縁よりも先に第 1後行端縁 を通過する。前記残留ガスバイパス通路は高圧開口を有する。高圧開口は、前記高 圧側の圧縮室に対応する吸入ポートに連通する際に同吸入ポートの前記幅狭通路 のみに対向する。前記幅狭通路は、前記上死点に位置するピストンによって区画さ れた圧縮室に連通可能なように配置される。前記ロータリバルブの回転方向に関して 、前記第 1後行端縁と第 2先行端縁との間の幅は、前記高圧開口と吸入連通路の開 口との間の前記シール領域の部分の寸法よりも小さい。前記幅狭通路が前記シール 領域によって閉塞された直後に、前記吸入連通路の開口が前記幅広通路に連通さ れる。 Each of the suction ports has a narrow passage on the top dead center side and a wide passage on the bottom dead center side. With respect to the rotation direction of the rotary valve, the width of the opening of the narrow passage facing the outer peripheral surface of the rotary valve is smaller than the width of the opening of the wide passage. The opening of the narrow passage has a first leading edge through which the suction communication passage of the rotating rotary valve passes first, and a first trailing edge through which it passes thereafter. The opening of the wide passage has a second leading edge through which the suction communication passage of the rotating rotary valve passes first, and a second trailing edge through which it passes thereafter. The suction communication path passes through the first trailing edge before the second trailing edge. The residual gas bypass passage has a high pressure opening. The high pressure opening faces only the narrow passage of the suction port when communicating with the suction port corresponding to the compression chamber on the high pressure side. The narrow passage is arranged so as to communicate with a compression chamber defined by a piston located at the top dead center. Regarding the rotational direction of the rotary valve, the width between the first trailing edge and the second leading edge is determined by the dimension of the portion of the seal region between the high-pressure opening and the opening of the suction communication passage. Is also small. Immediately after the narrow passage is blocked by the seal region, the opening of the suction communication passage communicates with the wide passage. It is.
[0011] 前記各吸入ポートは、上死点側の幅広通路および下死点側の幅狭通路を有し得る [0011] Each suction port may have a wide passage on the top dead center side and a narrow passage on the bottom dead center side.
。幅広通路は幅狭通路に連設され得る。 . The wide passage may be connected to the narrow passage.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明を具体化した第 1の実施形態のピストン式圧縮機を示す縦断面図。  FIG. 1 is a longitudinal sectional view showing a piston compressor according to a first embodiment that embodies the present invention.
[図 2]図 1の 1 1線断面図。  FIG. 2 is a sectional view taken along line 11 in FIG.
[図 3]図 1のロータリバルブの外周面を、平面状に展開して示す図。  FIG. 3 is a diagram showing the outer peripheral surface of the rotary valve in FIG.
[図 4]図 3の幅狭通路が、シール領域で閉塞された状態を示す展開図。  FIG. 4 is a development view showing a state in which the narrow passage in FIG. 3 is blocked by a seal region.
[図 5]吸入ポートが、吸入連通路に連通した状態を示す展開図。  FIG. 5 is a development view showing a state where the suction port communicates with the suction communication passage.
[図 6]本発明の第 2の実施形態のロータリバルブの外周面を平面状に展開して示す 図。  FIG. 6 is a diagram showing an outer peripheral surface of a rotary valve according to a second embodiment of the present invention developed in a planar shape.
[図 7]本発明の第 3の実施形態のロータリバルブの外周面を平面状に展開して示す 図。  FIG. 7 is a diagram showing an outer peripheral surface of a rotary valve according to a third embodiment of the present invention developed in a planar shape.
[図 8]別例の吸入ポートを示す展開図。  FIG. 8 is a development view showing another example of the intake port.
[図 9]別例の吸入ポートを示す展開図。  FIG. 9 is a development view showing another example of the intake port.
[図 10]別例の吸入ポートを示す展開図。  FIG. 10 is a development view showing another example of the intake port.
[図 11]背景技術を示すロータリバルブの展開図。  FIG. 11 is a developed view of a rotary valve showing the background art.
[図 12]シール領域を小さくした背景技術を示すロータリバルブの展開図。  FIG. 12 is a developed view of a rotary valve showing the background art with a reduced seal area.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明を具体ィ匕した第 1実施形態を図 1〜図 5にしたがって説明する。なお、 以下の説明においてピストン式圧縮機 10の「上」「下」「前」「後」は、図 1に示す矢印 Y1の方向を上下方向とし、矢印 Y2の方向を前後方向とする。  Hereinafter, a first embodiment embodying the present invention will be described with reference to FIGS. In the following description, in the “up”, “down”, “front”, and “rear” of the piston compressor 10, the direction of the arrow Y1 shown in FIG. 1 is the vertical direction, and the direction of the arrow Y2 is the front-back direction.
[0014] 図 1に示すように、ピストン式圧縮機 10は、シリンダブロック 11と、該シリンダブロック 11の前端に接合されたフロントハウジング 12と、シリンダブロック 11の後端に接合さ れたリャハウジング 13とを備えている。前記シリンダブロック 11とリャハウジング 13の 間には、バルブアセンブリ 14が配置されている。シリンダブロック 11、フロントハウジ ング 12、リャハウジング 13及びバルブアセンブリ 14は、複数の通しボルト Bにより相 互に締結固定されている。図 1では 1本のボルト Bのみ示す。前記シリンダブロック 11 、フロントハウジング 12及びリャハウジング 13は、ピストン式圧縮機 10のハウジングを 構成している。 As shown in FIG. 1, a piston compressor 10 includes a cylinder block 11, a front housing 12 joined to the front end of the cylinder block 11, and a rear housing joined to the rear end of the cylinder block 11. 13 and. A valve assembly 14 is disposed between the cylinder block 11 and the rear housing 13. The cylinder block 11, the front housing 12, the rear housing 13 and the valve assembly 14 are fastened and fixed to each other by a plurality of through bolts B. Figure 1 shows only one bolt B. Cylinder block 11 The front housing 12 and the rear housing 13 constitute a housing for the piston compressor 10.
[0015] 前記ハウジング内にて、前記フロントハウジング 12とシリンダブロック 11に囲まれた 領域には、クランク室 17が区画されている。また、シリンダブロック 11とフロントハウジ ング 12とには、回転シャフト 19が回転可能に支持されている。前記クランク室 17には 回転シャフト 19が配設されている。回転シャフト 19は、外部駆動源、例えばエンジン Eに、動力伝達機構 PTを介して作動連結されており、外部駆動源 Eから動力の供給 を受けて回転される。回転シャフト 19は、シリンダブロック 11とフロントハウジング 12 に貫設された軸孔 20, 21に揷通されている。  A crank chamber 17 is defined in a region surrounded by the front housing 12 and the cylinder block 11 in the housing. A rotating shaft 19 is rotatably supported by the cylinder block 11 and the front housing 12. A rotating shaft 19 is disposed in the crank chamber 17. The rotary shaft 19 is operatively connected to an external drive source, for example, an engine E via a power transmission mechanism PT, and is rotated by receiving power supply from the external drive source E. The rotary shaft 19 is passed through shaft holes 20 and 21 penetrating the cylinder block 11 and the front housing 12.
[0016] 回転シャフト 19の前端は、フロントハウジング 12の軸孔 20に設けられたラジアルべ ァリング 22を介して、フロントハウジング 12に支持されている。フロントハウジング 12と 回転シャフト 19の間には、リップシール型の軸封装置 23が配置されている。軸封装 置 23は、回転シャフト 19に沿ったクランク室 17からの冷媒ガスの漏れを防止する。前 記クランク室 17にお 、て回転シャフト 19上には、ラグプレート 16がー体回転可能に 固定されている。ラグプレート 16とフロントハウジング 12との間には、スラストべアリン グ 18が配置されている。  The front end of the rotary shaft 19 is supported by the front housing 12 via a radial bearing 22 provided in the shaft hole 20 of the front housing 12. A lip seal type shaft seal device 23 is disposed between the front housing 12 and the rotary shaft 19. The shaft sealing device 23 prevents leakage of refrigerant gas from the crank chamber 17 along the rotary shaft 19. In the crank chamber 17, a lug plate 16 is fixed on the rotary shaft 19 so as to be rotatable. A thrust bearing 18 is disposed between the lug plate 16 and the front housing 12.
[0017] 前記クランク室 17内には、斜板 24が収容されている。斜板 24は、回転シャフト 19 にスライド移動可能、かつ回転シャフト 19の中心軸線 L1に対する傾斜角度を変更可 能に支持されている。ラグプレート 16と斜板 24との間には、ヒンジ機構 25が配置され ている。斜板 24は、前記ヒンジ機構 25を介したラグプレート 16との間でのヒンジ連結 、及び回転シャフト 19の支持により、ラグプレート 16及び回転シャフト 19と同期回転 可能である。更に斜板 24は、回転シャフト 19の軸線方向すなわち中心軸線 L1方向 へのスライド移動を伴いながら、回転シャフト 19に対し傾動可能となっている。  A swash plate 24 is accommodated in the crank chamber 17. The swash plate 24 is supported so as to be slidable on the rotary shaft 19 and to change the inclination angle with respect to the central axis L1 of the rotary shaft 19. A hinge mechanism 25 is disposed between the lug plate 16 and the swash plate 24. The swash plate 24 can be rotated synchronously with the lug plate 16 and the rotary shaft 19 by the hinge connection with the lug plate 16 via the hinge mechanism 25 and the support of the rotary shaft 19. Further, the swash plate 24 can tilt with respect to the rotary shaft 19 while being slid in the axial direction of the rotary shaft 19, that is, in the direction of the central axis L 1.
[0018] 図 2に示すように、前記シリンダブロック 11には、複数の、本実施形態では 5つのシ リンダボア 11aが、回転シャフト 19の周囲に配列されている。各シリンダボア 11aには 、片頭型のピストン 31が往復動可能に収容されている。前記ピストン 31は、斜板 24 の周縁部に、前後一対のシユー 30を介して摺動自在に係留されている。回転シャフ ト 19の回転にともなう斜板 24の回転は、シユー 30を介して、ピストン 31の往復動に変 換される。 As shown in FIG. 2, the cylinder block 11 has a plurality of cylinder bores 11 a in this embodiment arranged around the rotary shaft 19. Each cylinder bore 11a accommodates a single-headed piston 31 so as to be able to reciprocate. The piston 31 is slidably anchored to the peripheral portion of the swash plate 24 via a pair of front and rear shoes 30. The rotation of the swash plate 24 accompanying the rotation of the rotary shaft 19 is changed to the reciprocating motion of the piston 31 via the shoe 30. Replaced.
[0019] シリンダボア 11aの前後の開口は、それぞれバルブアセンブリ 14及びピストン 31に よって閉塞されている。シリンダボア 11a内には、ピストン 31の往復動に応じて容積 変化する圧縮室 26が区画されている。前記リャハウジング 13内には、吸入圧領域と しての吸入通路 28及び吐出室 29がそれぞれ区画されている。吸入通路 28は、リャ ハウジング 13の中央部に形成されている。吐出室 29は、吸入通路 28の外周を取り 囲むようにして形成されている。バルブアセンブリ 14には、圧縮室 26を吐出室 29に 連通する吐出ポート 32、及び、吐出ポート 32を開閉する吐出弁 33が形成されている  [0019] The front and rear openings of the cylinder bore 11a are closed by a valve assembly 14 and a piston 31, respectively. In the cylinder bore 11a, a compression chamber 26 whose volume changes according to the reciprocating motion of the piston 31 is defined. In the rear housing 13, a suction passage 28 and a discharge chamber 29 are defined as suction pressure regions. The suction passage 28 is formed in the central portion of the rear housing 13. The discharge chamber 29 is formed so as to surround the outer periphery of the suction passage 28. The valve assembly 14 includes a discharge port 32 that communicates the compression chamber 26 with the discharge chamber 29 and a discharge valve 33 that opens and closes the discharge port 32.
[0020] 次に、ロータリバルブ 41及び残留ガスバイノ ス通路について説明する。 Next, the rotary valve 41 and the residual gas bin passage will be described.
[0021] 前記シリンダブロック 11には、シリンダボア 11aに囲まれた中心部に、バルブ収容 室 42が形成されている。該バルブ収容室 42内には、ロータリバルブ 41が回転可能 に収容されている。シリンダブロック 11に穿設された複数の吸入ポート 43は、バルブ 収容室 42を、各圧縮室 26にそれぞれ連通する。図 1には、 1つの吸入ポート 43のみ 示す。前記ロータリバルブ 41は、アルミニウム系の金属材料により構成されており、円 筒状をなしている。前記回転シャフト 19の後端は、バルブ収容室 42内に配置されて いる。回転シャフト 19の後端の圧入凹部 19aには、ロータリバルブ 41の前端が圧入 されている。 [0021] The cylinder block 11 is formed with a valve housing chamber 42 at the center surrounded by the cylinder bore 11a. A rotary valve 41 is rotatably accommodated in the valve accommodating chamber 42. A plurality of suction ports 43 formed in the cylinder block 11 communicate the valve housing chambers 42 with the respective compression chambers 26. Only one inlet port 43 is shown in FIG. The rotary valve 41 is made of an aluminum-based metal material and has a cylindrical shape. The rear end of the rotary shaft 19 is disposed in the valve storage chamber 42. The front end of the rotary valve 41 is press-fitted into the press-fit recess 19 a at the rear end of the rotary shaft 19.
[0022] ロータリバルブ 41の外周面 41aと、バルブ収容室 42の周面 42aとは、バルブ収容 室 42においてロータリバルブ 41を回転可能に支持するためのすべり軸受面を構成 している。回転シャフト 19の後端は、ロータリバルブ 41を介してシリンダブロック 11に 回転可能に支持されている。ロータリバルブ 41の中心軸線 L2は、回転シャフト 19の 中心軸線 L1と同一軸線上に位置している。つまり、ロータリバルブ 41と回転シャフト 1 9とは、一体化されて一軸様をなしている。ロータリバルブ 41は、回転シャフト 19の回 転、つまりはピストン 31の往復動に同期して回転される。  [0022] The outer peripheral surface 41a of the rotary valve 41 and the peripheral surface 42a of the valve storage chamber 42 constitute a sliding bearing surface for rotatably supporting the rotary valve 41 in the valve storage chamber 42. A rear end of the rotary shaft 19 is rotatably supported by the cylinder block 11 via a rotary valve 41. The central axis L2 of the rotary valve 41 is located on the same axis as the central axis L1 of the rotary shaft 19. That is, the rotary valve 41 and the rotary shaft 19 are integrated to form a single axis. The rotary valve 41 is rotated in synchronization with the rotation of the rotary shaft 19, that is, the reciprocating motion of the piston 31.
[0023] 前記ロータリバルブ 41は、筒内空間 44を有している。筒内空間 44は、バルブァセ ンブリ 14に形成された透孔 14aを通じて、吸入通路 28に連通する。図 2に示すように 、ロータリバルブ 41の周壁には、筒内空間 44から、ロータリバルブ 41の外周面 41a まで延びる吸入連通路 45が設けられている。つまり、吸入連通路 45の入口 45aは筒 内空間 44に開口し、吸入連通路 45の出口 45bはロータリバルブ 41の外周面 41a上 に開口している。回転シャフト 19の回転に伴うロータリバルブ 41の回転によって、吸 入連通路 45の出口 45bは、シリンダブロック 11の吸入ポート 43の開口すなわち入口 43aに、間欠的に連通する。すなわち、吸入連通路 45は、吸入圧領域としての筒内 空間 44を、各圧縮室 26から延びる吸入ポート 43の入口 43aに、ロータリバルブ 41の 回転に同期して順次連通させる。 The rotary valve 41 has an in-cylinder space 44. The in-cylinder space 44 communicates with the suction passage 28 through a through hole 14 a formed in the valve assembly 14. As shown in FIG. 2, the outer peripheral surface 41a of the rotary valve 41 extends from the in-cylinder space 44 to the peripheral wall of the rotary valve 41. A suction communication passage 45 extending up to is provided. That is, the inlet 45 a of the suction communication passage 45 opens into the in-cylinder space 44, and the outlet 45 b of the suction communication passage 45 opens on the outer peripheral surface 41 a of the rotary valve 41. Due to the rotation of the rotary valve 41 accompanying the rotation of the rotary shaft 19, the outlet 45 b of the suction communication passage 45 communicates intermittently with the opening of the suction port 43 of the cylinder block 11, that is, the inlet 43 a. In other words, the suction communication passage 45 allows the in-cylinder space 44 serving as a suction pressure region to sequentially communicate with the inlet 43a of the suction port 43 extending from each compression chamber 26 in synchronization with the rotation of the rotary valve 41.
[0024] ロータリバルブ 41の吸入連通路 45の出口 45bは、ピストン 31が吸入行程に移行し た場合に、シリンダブロック 11の吸入ポート 43の入口 43aに連通する。すると、吸入 通路 28の冷媒ガスは、バルブアセンブリ 14の透孔 14a、ロータリバルブ 41の筒内空 間 44、吸入連通路 45、及び、シリンダブロック 11の吸入ポート 43を同順に経由して 、圧縮室 26に吸入される。  [0024] The outlet 45b of the suction communication passage 45 of the rotary valve 41 communicates with the inlet 43a of the suction port 43 of the cylinder block 11 when the piston 31 shifts to the suction stroke. Then, the refrigerant gas in the suction passage 28 is compressed through the through hole 14a of the valve assembly 14, the cylinder space 44 of the rotary valve 41, the suction communication passage 45, and the suction port 43 of the cylinder block 11 in the same order. Inhaled into chamber 26.
[0025] 吸入行程において、圧縮室 26の容積を最大にするピストン 31の位置を、ピストン 3 1の下死点とする。ピストン 31の吸入行程の終了時、すなわちピストン 31が前記下死 点に位置するときには、ロータリバルブ 41の吸入連通路 45の出口 45bは、シリンダブ ロック 11の吸入ポート 43の入口 43aから、周方向に完全にずれている。つまり、筒内 空間 44力も圧縮室 26への冷媒ガスの吸入が停止される。その後、ピストン 31が圧縮 工程および吐出行程に移行されると、ロータリバルブ 41の外周面 41aは、筒内空間 4 4と圧縮室 26の間を閉塞状態に保持する。このため、冷媒ガスの圧縮及び圧縮済み ガスの吐出室 29への吐出は、妨げられない。圧縮工程および吐出行程において、 圧縮室 26の容積を最小にするピストン 31の位置を、ピストン 31の上死点とする。ビス トン 31が上死点にあるとき、シリンダボア 1 laにお!/、てピストン 31とバルブアセンブリ 1 4との間には、所謂トップクリアランスが存在する。該トップクリアランスには、圧縮室 2 6において吐出しきれずに残った残留ガスが存在する。  In the suction stroke, the position of the piston 31 that maximizes the volume of the compression chamber 26 is defined as the bottom dead center of the piston 31. At the end of the suction stroke of the piston 31, that is, when the piston 31 is located at the bottom dead center, the outlet 45b of the suction communication passage 45 of the rotary valve 41 extends from the inlet 43a of the suction port 43 of the cylinder block 11 in the circumferential direction. It is completely off. That is, the suction of the refrigerant gas into the compression chamber 26 is also stopped in the in-cylinder space 44 force. Thereafter, when the piston 31 is shifted to the compression process and the discharge stroke, the outer peripheral surface 41a of the rotary valve 41 holds the space between the in-cylinder space 44 and the compression chamber 26 in a closed state. For this reason, the compression of the refrigerant gas and the discharge of the compressed gas into the discharge chamber 29 are not hindered. In the compression process and the discharge stroke, the position of the piston 31 that minimizes the volume of the compression chamber 26 is defined as the top dead center of the piston 31. When the piston 31 is at the top dead center, there is a so-called top clearance between the piston 31 and the valve assembly 14 in the cylinder bore 1 la. In the top clearance, there is residual gas remaining in the compression chamber 26 that cannot be completely discharged.
[0026] 図 3は、前記ロータリバルブ 41の外周面 41aを平面状に展開した図を示す。シリン ダブロック 11の吸入ポート 43は、ロータリバルブ 41の外周面 41aに対向されている。 図 3〜図 5において、図 3に示す矢印 Y3方向を、ロータリバルブ 41の回転方向すな わち周方向とする。ロータリバルブ 41は、図 3における左方向に進行する。矢印 Y4 方向は、ロータリバルブ 41の軸線方向つまり中心軸線 L2方向を示す。 FIG. 3 is a diagram in which the outer peripheral surface 41a of the rotary valve 41 is developed in a planar shape. The suction port 43 of the cylinder block 11 is opposed to the outer peripheral surface 41a of the rotary valve 41. 3 to 5, the direction of arrow Y3 shown in FIG. 3 is the rotational direction of the rotary valve 41, that is, the circumferential direction. The rotary valve 41 proceeds to the left in FIG. Arrow Y4 The direction indicates the axial direction of the rotary valve 41, that is, the direction of the central axis L2.
[0027] 図 3に示すように、ロータリバルブ 41の外周面 41aには、残留ガスバイパス通路を 構成する残留ガスバイパス溝 46が形成されている。残留ガスバイパス溝 46は、高圧 溝 47、低圧溝 48、連通溝 49を有する。高圧溝 47は、ロータリバルブ 41の中心軸線 L2方向すなわち矢印 Y4方向に延び、高圧開口として機能する。低圧溝 48も、中心 軸線 L2方向に延びる。連通溝 49は、ロータリバルブ 41の周方向すなわち矢印 Y3 方向に延び、高圧溝 47の上死点側端部を、低圧溝 48のそれに連通する。つまり、連 通溝 49は、高圧溝 47のピストン式圧縮機 10における後方側端部を、低圧溝 48のそ れに連通する。 As shown in FIG. 3, a residual gas bypass groove 46 constituting a residual gas bypass passage is formed on the outer peripheral surface 41a of the rotary valve 41. The residual gas bypass groove 46 has a high pressure groove 47, a low pressure groove 48, and a communication groove 49. The high pressure groove 47 extends in the direction of the central axis L2 of the rotary valve 41, that is, in the direction of the arrow Y4, and functions as a high pressure opening. The low-pressure groove 48 also extends in the direction of the central axis L2. The communication groove 49 extends in the circumferential direction of the rotary valve 41, that is, in the direction of the arrow Y 3, and communicates the top dead center side end of the high pressure groove 47 with that of the low pressure groove 48. That is, the communication groove 49 communicates the rear end of the high-pressure groove 47 in the piston compressor 10 with the low-pressure groove 48.
[0028] 前記高圧溝 47は、吐出終了直後の高圧側の圧縮室 26に対応する吸入ポート 43 ( 43A)に、低圧溝 48よりも先行して連通するように、ロータリバルブ 41の外周面 41a に配置されている。このため、高圧溝 47は、シリンダブロック 11の吸入ポート 43を通 じて、シリンダボア 11aの前記トップクリアランスに連通される。また、低圧溝 48は、低 圧側の圧縮室 26たる吸入終了直後の圧縮室 26に対応する吸入ポート 43 (43B)に 対向するように、ロータリバルブ 41の外周面 41aに配置されて!、る。  [0028] The high pressure groove 47 communicates with the suction port 43 (43A) corresponding to the compression chamber 26 on the high pressure side immediately after the end of discharge so as to communicate with the outer peripheral surface 41a of the rotary valve 41 in advance of the low pressure groove 48. Is arranged. For this reason, the high-pressure groove 47 communicates with the top clearance of the cylinder bore 11 a through the suction port 43 of the cylinder block 11. Further, the low pressure groove 48 is arranged on the outer peripheral surface 41a of the rotary valve 41 so as to face the suction port 43 (43B) corresponding to the compression chamber 26 immediately after completion of the suction, which is the compression chamber 26 on the low pressure side! .
[0029] ロータリバルブ 41の外周面 41aは、前記高圧溝 47とロータリバルブ 41の吸入連通 路 45の間に、シール領域 Sを有している。シール領域 Sは、残留ガスバイパス溝 46 の高圧溝 47から、ロータリバルブ 41の吸入連通路 45の出口 45bへの、シリンダブ口 ック 11の吸入ポート 43の入口 43aを通じたガスパスを防止する。シール領域 Sは、口 一タリバルブ 41の外周面 41aにて吸入ポート 43の入口 43aに対向し、且つ、高圧溝 47を吸入連通路 45の出口 45bに対して非連通にする。吐出終了直後の圧縮室 26 において吐出しきれずに残った残留冷媒ガスは、シリンダブロック 11の吸入ポート 43 (43A)、ロータリバルブ 41の高圧溝 47、連通溝 49、低圧溝 48、及び、シリンダブ口 ック 11の吸入ポート 43 (43B)を同順に経由して、吸入終了直後の圧縮室 26にバイ パスすなわち回収される。  The outer peripheral surface 41 a of the rotary valve 41 has a seal region S between the high pressure groove 47 and the suction communication path 45 of the rotary valve 41. The seal region S prevents a gas path from the high pressure groove 47 of the residual gas bypass groove 46 to the outlet 45b of the suction communication passage 45 of the rotary valve 41 through the inlet 43a of the suction port 43 of the cylinder block 11. The seal region S faces the inlet 43a of the suction port 43 on the outer peripheral surface 41a of the inlet valve 41, and makes the high-pressure groove 47 non-communication with respect to the outlet 45b of the suction communication passage 45. Residual refrigerant gas remaining in the compression chamber 26 immediately after the discharge is completed cannot be discharged into the suction port 43 (43A) of the cylinder block 11, the high pressure groove 47, the communication groove 49, the low pressure groove 48, and the cylinder port of the rotary valve 41. Via the suction port 43 (43B) of the rack 11 in the same order, it is bypassed, that is, recovered into the compression chamber 26 immediately after the end of the suction.
[0030] 図 3に二点鎖線で示すように、前記シリンダブロック 11に穿設された各吸入ポート 4 3は、ロータリバルブ 41の外周面 41aに対向する開口、すなわち入口 43aが、 2種類 の異なる開口幅 Ta, Tbを有する形状をなしている。吸入ポート 43は、幅狭通路 50と 幅広通路 51を有する。幅狭通路 50は、ロータリバルブ 41の中心軸線 L2方向におい て前記上死点側に設けられ、幅広通路 51は前記下死点側に設けられる。すなわち、 吸入ポート 43は、上死点側の上死点側通路および下死点側の下死点側通路を有す る。第 1実施形態では、上死点側通路が幅狭通路 50であり、下死点側通路が幅広通 路 51である。 As shown by a two-dot chain line in FIG. 3, each suction port 43 formed in the cylinder block 11 has an opening facing the outer peripheral surface 41a of the rotary valve 41, that is, an inlet 43a. It has a shape with different opening widths Ta and Tb. Suction port 43 is connected to narrow passage 50 A wide passage 51 is provided. The narrow passage 50 is provided on the top dead center side in the direction of the central axis L2 of the rotary valve 41, and the wide passage 51 is provided on the bottom dead center side. That is, the suction port 43 has a top dead center side passage on the top dead center side and a bottom dead center side passage on the bottom dead center side. In the first embodiment, the top dead center side passage is the narrow passage 50 and the bottom dead center side passage is the wide passage 51.
[0031] 幅狭通路 50は、ロータリバルブ 41の周方向に関して一定の第 1開口幅 Taを有して 、中心軸線 L2方向へ延びている。幅広通路 51は、前記周方向に関して一定の第 2 開口幅 Tbを有して、中心軸線 L2方向へ延びている。吸入ポート 43の入口 43aにお いて、前記幅狭通路 50の第 1開口幅 Taは、幅広通路 51の第 2開口幅 Tbより小さく 設定されている (Ta<Tb)。  [0031] The narrow passage 50 has a constant first opening width Ta in the circumferential direction of the rotary valve 41, and extends in the direction of the central axis L2. The wide passage 51 has a constant second opening width Tb in the circumferential direction and extends in the direction of the central axis L2. At the inlet 43a of the suction port 43, the first opening width Ta of the narrow passage 50 is set smaller than the second opening width Tb of the wide passage 51 (Ta <Tb).
[0032] 前記幅狭通路 50の第 1開口幅 Taは、前記周方向に関して、高圧溝 47と吸入連通 路 45との間の間隔、すなわちシール領域 Sの一部におけるシール幅 Wより小さく設 定されている(W>Ta)。一方、幅広通路 51の第 2開口幅 Tbは、前記シール幅 Wより 大きく設定されている(Wく Tb)。吸入ポート 43の入口 43aにおいて、幅狭通路 50と 幅広通路 51との間の境界は、段差状に形成されている。ロータリバルブ 41の回転時 、前記高圧溝 47は、幅広通路 51よりも上死点側つまり図 3の下方を通過するように 構成されている。このため、ロータリバルブ 41の回転時に、高圧溝 47は、幅狭通路 5 0には連通可能である力 幅広通路 51には連通されな 、ように構成されて 、る。  [0032] The first opening width Ta of the narrow passage 50 is set to be smaller than the interval between the high-pressure groove 47 and the suction communication passage 45 in the circumferential direction, that is, the seal width W in a part of the seal region S. (W> Ta). On the other hand, the second opening width Tb of the wide passage 51 is set to be larger than the seal width W (W く Tb). At the inlet 43a of the suction port 43, the boundary between the narrow passage 50 and the wide passage 51 is formed in a step shape. When the rotary valve 41 rotates, the high-pressure groove 47 is configured to pass the top dead center side, that is, the lower side of FIG. For this reason, when the rotary valve 41 rotates, the high-pressure groove 47 is configured not to communicate with the wide-width passage 51 that can communicate with the narrow passage 50.
[0033] 幅狭通路 50は、ロータリバルブ 41の回転方向に関して、第 1先行端縁 50aおよび その反対側の第 1後行端縁 50bを有する。ロータリバルブ 41の回転時に、吸入連通 路 45は先に第 1先行端縁 50aを通過し、その後に第 1後行端縁 50bを通過する。同 様に、幅広通路 51は、ロータリバルブ 41の回転方向に関して、第 2先行端縁 51aお よびその反対側の第 2後行端縁 5 lbを有する。ロータリバルブ 41の回転時に、吸入 連通路 45は先に第 2先行端縁 5 laを通過し、その後に第 2後行端縁 5 lbを通過する 。第 1後行端縁 50bに対して第 1先行端縁 50a側を先行側と呼び、その反対を後行 側と呼ぶ。第 2後行端縁 51bに対して第 2先行端縁 51a側を先行側と呼び、その反対 側を後行側と呼ぶ。  [0033] The narrow passage 50 has a first leading edge 50a and a first trailing edge 50b opposite to the first leading edge 50a with respect to the rotational direction of the rotary valve 41. When the rotary valve 41 rotates, the suction communication path 45 first passes through the first leading edge 50a and then passes through the first trailing edge 50b. Similarly, the wide passage 51 has a second leading edge 51a and a second trailing edge 5 lb on the opposite side with respect to the rotational direction of the rotary valve 41. During the rotation of the rotary valve 41, the suction communication passage 45 first passes through the second leading edge 5 la and then passes through the second trailing edge 5 lb. The first leading edge 50a side with respect to the first trailing edge 50b is called the leading side, and the opposite is called the trailing side. The second leading edge 51a side with respect to the second trailing edge 51b is called the leading side, and the opposite side is called the trailing side.
[0034] ロータリバルブ 41の回転方向に沿って、幅狭通路 50の第 1後行端縁 50bから、幅 広通路 51の第 2先行端縁 51aまでの第 3開口幅 Tcは、前記シール領域 Sのシール 幅 Wよりも僅かに小さく設定されている。このため、高圧溝 47が幅狭通路 50を通過し た直後に、吸入連通路 45の出口 45bは、幅広通路 51に連通する。 [0034] Along the rotational direction of the rotary valve 41, from the first trailing edge 50b of the narrow passage 50, the width The third opening width Tc to the second leading end edge 51a of the wide passage 51 is set to be slightly smaller than the seal width W of the seal region S. Therefore, immediately after the high-pressure groove 47 passes through the narrow passage 50, the outlet 45 b of the suction communication passage 45 communicates with the wide passage 51.
[0035] 図 3は、吸入ポート 43Aに対応する圧縮室 26が吐出終了直後であり、この高圧側 の圧縮室 26内のピストン 31が、上死点にある時点を示す。この時、高圧溝 47は、幅 広通路 51よりも上死点側を通過する。つまり、高圧溝 47は、吸入ポート 43の入口 43 aにおいて、幅狭通路 50のみに連通され、幅広通路 51には連通されない。吸入ポー ト 43の入口 43aにおける幅広通路 51は、シール領域 Sによって閉塞されている。圧 縮室 26において吐出しきれずにトップクリアランスに残った残留冷媒ガスは、シリンダ ブロック 11の吸入ポート 43A、ロータリバルブ 41の高圧溝 47、連通溝 49、低圧溝 48 、及びシリンダブロック 11の吸入ポート 43Bを同順に経由して、吸入終了直後の圧縮 室 26にバイパスすなわち回収される。このため、吸入ポート 43Aに対応する圧縮室 2 6が吸入行程する際における、残留ガスの再膨張が少なくなる。よって、該圧縮室 26 に筒内空間 44の冷媒ガスを確実に吸入でき、ピストン式圧縮機 10の体積効率を向 上させることができる。 FIG. 3 shows a time point when the compression chamber 26 corresponding to the suction port 43A is immediately after the end of the discharge, and the piston 31 in the compression chamber 26 on the high pressure side is at the top dead center. At this time, the high-pressure groove 47 passes through the top dead center side with respect to the wide passage 51. That is, the high pressure groove 47 communicates only with the narrow passage 50 at the inlet 43 a of the suction port 43, and does not communicate with the wide passage 51. The wide passage 51 at the inlet 43 a of the suction port 43 is blocked by the seal region S. The residual refrigerant gas remaining in the top clearance without being discharged in the compression chamber 26 is the suction port 43A of the cylinder block 11, the high pressure groove 47 of the rotary valve 41, the communication groove 49, the low pressure groove 48, and the suction port of the cylinder block 11. Via 43B in the same order, it is bypassed, that is, recovered to the compression chamber 26 immediately after the end of the suction. For this reason, the re-expansion of the residual gas is reduced when the compression chamber 26 corresponding to the suction port 43A performs the suction stroke. Therefore, the refrigerant gas in the in-cylinder space 44 can be reliably sucked into the compression chamber 26, and the volumetric efficiency of the piston compressor 10 can be improved.
[0036] その後、図 4に示すように、ロータリバルブ 41が回転することで、高圧溝 47が幅狭 通路 50を通過すると、吸入ポート 43の入口 43aにおける幅狭通路 50は、シール領 域 Sによって閉塞される。このとき既に、吸入ポート 43の入口 43aにおける幅広通路 5 1は、シール領域 Sによって閉塞されている。このため、幅狭通路 50及び幅広通路 5 1、すなわち吸入ポート 43の入口 43a全体力 シール領域 Sによって閉塞される。こ のため、シール領域 Sは、高圧溝 47と吸入連通路 45の出口 45bとの間において吸 入ポート 43の入口 43aに通じたガスパスを、防止する。  Thereafter, as shown in FIG. 4, when the rotary valve 41 rotates and the high-pressure groove 47 passes through the narrow passage 50, the narrow passage 50 at the inlet 43a of the suction port 43 becomes the seal region S. It is blocked by. At this time, the wide passage 51 at the inlet 43a of the suction port 43 is already closed by the seal region S. For this reason, the narrow passage 50 and the wide passage 51, that is, the inlet 43 a whole force sealing region S of the suction port 43 is blocked. Therefore, the seal region S prevents a gas path that leads to the inlet 43a of the suction port 43 between the high-pressure groove 47 and the outlet 45b of the suction communication passage 45.
[0037] 図 4の状態から、僅かにロータリバルブ 41が回転すると、吸入連通路 45の出口 45b 力 幅広通路 51に連通する。つまり、高圧溝 47が幅狭通路 50を通過した直後には、 言い換えると、高圧溝 47が吸入ポート 43Aの入口 43aから非連通になった直後には 、吸入連通路 45の出口 45b力 吸入ポート 43Aの入口 43aに連通する。図 5は、更 にロータリバルブ 41が回転して、幅狭通路 50及び幅広通路 51の両方が、ロータリバ ルブ 41の吸入連通路 45に連通した状態を示す。その後、更にロータリバルブ 41が 回転すると、吸入ポート 43Aの入口 43a全体、つまり、幅狭通路 50及び幅広通路 51 の全体が、吸入連通路 45の出口 45bに連通する。吸入通路 28の冷媒ガスは、バル ブアセンブリ 14の透孔 14a、ロータリバルブ 41の筒内空間 44、吸入連通路 45、及び 、シリンダブロック 11の吸入ポート 43Aを同順に経由して、圧縮室 26に吸入される。 When the rotary valve 41 is slightly rotated from the state shown in FIG. 4, the outlet 45 b of the suction communication passage 45 is connected to the wide passage 51. That is, immediately after the high-pressure groove 47 passes through the narrow passage 50, in other words, immediately after the high-pressure groove 47 is disconnected from the inlet 43a of the suction port 43A, the outlet 45b force of the suction communication passage 45 is sucked into the suction port. It communicates with 43A entrance 43a. FIG. 5 shows a state in which the rotary valve 41 further rotates and both the narrow passage 50 and the wide passage 51 communicate with the suction communication passage 45 of the rotary valve 41. After that, the rotary valve 41 When rotated, the entire inlet 43a of the suction port 43A, that is, the entire narrow passage 50 and the wide passage 51 communicates with the outlet 45b of the suction communication passage 45. The refrigerant gas in the suction passage 28 passes through the through hole 14a of the valve assembly 14, the in-cylinder space 44 of the rotary valve 41, the suction communication passage 45, and the suction port 43A of the cylinder block 11 in the same order, and the compression chamber 26 Inhaled.
[0038] 上記第 1実施形態は、以下の利点を有する。 [0038] The first embodiment has the following advantages.
[0039] (1)吸入ポート 43の入口 43aは、上死点側の幅狭通路 50と下死点側の幅広通路 5 1を有する。すなわち、ロータリバルブ 41の回転方向つまり周方向に沿った、吸入ポ ート 43の入口 43aの上死点側の幅 Taは、下死点側の幅 Tbよりも小さく設定されてい る。高圧溝 47は、ロータリバルブ 41の回転時、幅狭通路 50のみに連通するように構 成されている。幅狭通路 50の開口の幅 Taは幅広通路 51の開口の幅 Tbよりも小さい ため、ガスパス防止のためのシール領域 Sのシール幅 Wを小さくすることができる。よ つて、高圧溝 47と、ロータリバルブ 41の吸入連通路 45の出口 45bとの間の寸法を、 小さくすることができる。その結果、ロータリバルブ 41の高圧溝 47がシリンダブロック 1 1の吸入ポート 43Aに幅狭通路 50で連通開始するタイミングから、ロータリバルブ 41 の吸入連通路 45がシリンダブロック 11の吸入ポート 43Aに幅広通路 51で連通開始 するタイミングまでの時間差を、小さくすることができる。すなわち、吸入ポート 43Aに 対応する高圧側の圧縮室 26に残留するガスを回収してから、この圧縮室 26に冷媒 ガスが吸入されるまで即ち圧縮室 26の吸入開始タイミングまでの時間を、小さくする ことができる。  (1) The inlet 43a of the suction port 43 has a narrow passage 50 on the top dead center side and a wide passage 51 on the bottom dead center side. That is, the width Ta on the top dead center side of the inlet 43a of the suction port 43 along the rotational direction, that is, the circumferential direction of the rotary valve 41 is set smaller than the width Tb on the bottom dead center side. The high pressure groove 47 is configured to communicate with only the narrow passage 50 when the rotary valve 41 rotates. Since the width Ta of the opening of the narrow passage 50 is smaller than the width Tb of the opening of the wide passage 51, the seal width W of the seal region S for gas path prevention can be reduced. Therefore, the dimension between the high pressure groove 47 and the outlet 45b of the suction communication passage 45 of the rotary valve 41 can be reduced. As a result, from the timing when the high pressure groove 47 of the rotary valve 41 starts to communicate with the suction port 43A of the cylinder block 11 through the narrow passage 50, the suction communication passage 45 of the rotary valve 41 becomes wider with the suction port 43A of the cylinder block 11. The time difference until the start of communication at 51 can be reduced. That is, the time from the recovery of the gas remaining in the high-pressure side compression chamber 26 corresponding to the suction port 43A until the refrigerant gas is sucked into the compression chamber 26, that is, the suction start timing of the compression chamber 26 is reduced. can do.
[0040] 高圧溝 47から吸入連通路 45へのガスパスを防止するためには、シール領域 Sは、 幅狭通路 50のみを閉塞すればよい。このため、吸入ポート 43は、幅狭通路 50以外 に、幅広通路 51を有することができる。このため、圧縮室 26への冷媒ガスの吸入開 始タイミングを早めるためにシール領域 Sのシール幅 Wを小さく設定しても、冷媒ガス の吸入損失の増大が抑制される。その結果、圧縮室 26への冷媒ガスの吸入開始タ イミングを早めつつ、ガス吸入損失量を抑えて、圧縮効率を向上させることができる。  [0040] In order to prevent a gas path from the high-pressure groove 47 to the suction communication passage 45, the seal region S only needs to close the narrow passage 50. Therefore, the suction port 43 can have a wide passage 51 in addition to the narrow passage 50. For this reason, even if the seal width W of the seal region S is set small in order to advance the start timing of the refrigerant gas suction into the compression chamber 26, an increase in the refrigerant gas suction loss is suppressed. As a result, it is possible to improve the compression efficiency by suppressing the amount of gas suction loss while speeding up the start of the suction of the refrigerant gas into the compression chamber 26.
[0041] (2)吸入ポート 43の入口 43aにて、幅狭通路 50は幅広通路 51に連設されている。  (2) The narrow passage 50 is connected to the wide passage 51 at the inlet 43 a of the suction port 43.
このため、例えば幅狭通路 50が幅広通路 51から区画されている場合に比して、吸入 ポート 43の入口 43aから圧縮室 26への冷媒ガスの吸入量を、多くすることができる。 [0042] (3)図 3に示すように、ピストン 31が上死点に位置するとき、吸入ポート 43の入口 4 3aにおける幅狭通路 50は、圧縮室 26に直接的に連通される。このため、幅狭通路 5 0に高圧溝 47が連通したとき、圧縮室 26の残留ガスが速やかに高圧溝 47に回収さ れる。したがって、残留ガスを確実に回収することができる。その結果、吸入行程中に おける残量ガスの再膨張が少なくなり、圧縮室 26への冷媒ガスの吸入が確実になる 。よって、ピストン式圧縮機 10の体積効率を向上させることができる。 For this reason, for example, compared with the case where the narrow passage 50 is partitioned from the wide passage 51, the amount of refrigerant gas sucked into the compression chamber 26 from the inlet 43a of the suction port 43 can be increased. (3) As shown in FIG. 3, when the piston 31 is located at the top dead center, the narrow passage 50 at the inlet 43a of the suction port 43 is directly communicated with the compression chamber 26. Therefore, when the high-pressure groove 47 communicates with the narrow passage 50, the residual gas in the compression chamber 26 is quickly collected in the high-pressure groove 47. Therefore, the residual gas can be reliably recovered. As a result, the remaining gas re-expansion during the suction stroke is reduced, and the refrigerant gas is reliably sucked into the compression chamber 26. Therefore, the volumetric efficiency of the piston compressor 10 can be improved.
[0043] 次に、本発明を具体ィ匕した第 2の実施形態に係るピストン式圧縮機を図 6にしたが つて説明する。なお、第 2の実施形態は、第 1の実施形態のピストン式圧縮機 10にお いて、吸入ポート 43を変更したのみの構成であるため、同様の部分については重複 説明を省略する。  [0043] Next, a piston compressor according to a second embodiment embodying the present invention will be described with reference to FIG. Note that the second embodiment has a configuration in which only the suction port 43 is changed in the piston type compressor 10 of the first embodiment, and therefore, duplicate description of the same parts is omitted.
[0044] 図 6に示すように、第 2の実施形態の吸入ポート 43の入口 43aにおいて、幅狭通路 50は、幅広通路 51に対してロータリバルブ 41の回転方向の先行側に偏って形成さ れている。換言すれば、幅狭通路 50は、幅広通路 51に対し、第 2先行端縁 51aに偏 つて配置されている。第 2実施形態では、幅狭通路 50の第 1先行端縁 50aは、幅広 通路 51の第 2先行端縁 51aと同一直線上に位置している。第 2実施形態の幅狭通路 50の第 1開口幅 Ta及び幅広通路 51の第 2開口幅 Tbは、第 1の実施形態と同じに設 定してある。  [0044] As shown in FIG. 6, in the inlet 43a of the suction port 43 of the second embodiment, the narrow passage 50 is formed to be biased toward the leading side in the rotational direction of the rotary valve 41 with respect to the wide passage 51. It is. In other words, the narrow passage 50 is arranged to be biased toward the second leading edge 51a with respect to the wide passage 51. In the second embodiment, the first leading edge 50a of the narrow passage 50 is located on the same straight line as the second leading edge 51a of the wide passage 51. The first opening width Ta of the narrow passage 50 and the second opening width Tb of the wide passage 51 of the second embodiment are set to be the same as those of the first embodiment.
[0045] 高圧溝 47と吸入連通路 45の間のシール領域 Sの部分のシール幅 Wは、第 3開口 幅 Tcよりわずかに大きく設定されている。幅狭通路 50の第 1後行端縁 50bから、幅 広通路 51の第 2先行端縁 51aまでの寸法である第 3開口幅 Tcは、第 2実施形態では 、幅狭通路 50の第 1後行端縁 50bから第 1先行端縁 50aまでの寸法に等しい (Ta = Tc)。このように、第 2の実施形態におけるシール領域 Sのシール幅 Wは、第 1の実施 形態に比して小さく設定されている。  [0045] The seal width W of the seal region S between the high-pressure groove 47 and the suction communication passage 45 is set to be slightly larger than the third opening width Tc. The third opening width Tc, which is the dimension from the first trailing edge 50b of the narrow passage 50 to the second leading edge 51a of the wide passage 51, is the first width of the narrow passage 50 in the second embodiment. Equal to the dimension from the trailing edge 50b to the first leading edge 50a (Ta = Tc). Thus, the seal width W of the seal region S in the second embodiment is set to be smaller than that in the first embodiment.
[0046] 第 2の実施形態は、更に以下の利点も有する。  [0046] The second embodiment further has the following advantages.
[0047] (4)図 6に示すように、第 2の実施形態の幅狭通路 50は、第 1の実施形態に比して 、幅広通路 51の第 1先行端縁 50a寄りに偏って配置されている。第 2実施形態のシ ール幅 Wは、第 1実施形態のそれよりも小さく設定されている。このことから、高圧溝 4 7と吸入連通路 45の出口 45bとの間の寸法を、より一層小さくすることができる。その 結果として、ロータリバルブ 41の高圧溝 47がシリンダブロック 11の幅狭通路 50に連 通開始するタイミングから、ロータリバルブ 41の吸入連通路 45がシリンダブロック 11 の吸入ポート 43に連通開始するタイミングまでの時間を、さらに縮めることができる。 その結果として、圧縮室 26へのガスの吸入損失量を、低減することができる。 [0047] (4) As shown in FIG. 6, the narrow passage 50 of the second embodiment is arranged closer to the first leading edge 50a of the wide passage 51 than the first embodiment. Has been. The seal width W of the second embodiment is set smaller than that of the first embodiment. Therefore, the dimension between the high pressure groove 47 and the outlet 45b of the suction communication passage 45 can be further reduced. That As a result, from the timing when the high pressure groove 47 of the rotary valve 41 starts to communicate with the narrow passage 50 of the cylinder block 11 to the timing when the suction communication passage 45 of the rotary valve 41 starts to communicate with the suction port 43 of the cylinder block 11. Time can be further reduced. As a result, the amount of gas suction loss into the compression chamber 26 can be reduced.
[0048] 次に、本発明を具体化した第 3の実施形態のピストン式圧縮機を、図 7にしたがって 説明する。第 3の実施形態は、第 1の実施形態において、幅狭通路 50と幅広通路 51 の位置関係を上死点側と下死点側とで逆転させ、吸入ポート 43と残留ガスバイパス 溝 46の位置関係を上死点側と下死点側とで逆転させて 、る。同様の部分にっ 、て は重複説明を省略する。  [0048] Next, a piston compressor according to a third embodiment of the present invention will be described with reference to FIG. In the third embodiment, in the first embodiment, the positional relationship between the narrow passage 50 and the wide passage 51 is reversed between the top dead center side and the bottom dead center side so that the suction port 43 and the residual gas bypass groove 46 The positional relationship is reversed between the top dead center side and the bottom dead center side. For the same part, duplicate explanation is omitted.
[0049] 図 7に示すように、ロータリバルブ 41の外周面 41aにおいて、残留ガスバイパス溝 4 6の高圧溝 47及び低圧溝 48は、ロータリバルブ 41の中心軸線 L2方向に関して、吸 入ポート 43に対して下死点側に設けられている。すなわち、高圧開口としての高圧 溝 47は、吸入ポート 43に対して、ピストン式圧縮機 10の前方側に配置されている。 残留ガスバイパス溝 46の連通溝 49は、高圧溝 47と低圧溝 48の下死点側の端部同 士を連通している。すなわち、連通溝 49は、高圧溝 47と低圧溝 48の、ピストン式圧 縮機 10における前方側の端部同士を連通している。  [0049] As shown in FIG. 7, on the outer peripheral surface 41a of the rotary valve 41, the high pressure groove 47 and the low pressure groove 48 of the residual gas bypass groove 46 are connected to the suction port 43 with respect to the central axis L2 direction of the rotary valve 41. It is provided on the bottom dead center side. That is, the high-pressure groove 47 as a high-pressure opening is disposed on the front side of the piston compressor 10 with respect to the suction port 43. The communication groove 49 of the residual gas bypass groove 46 communicates the end of the high pressure groove 47 and the low pressure groove 48 on the bottom dead center side. That is, the communication groove 49 communicates the front end portions of the high-pressure groove 47 and the low-pressure groove 48 in the piston-type compressor 10.
[0050] 図 7に二点鎖線で示すように、前記シリンダブロック 11に穿設された各吸入ポート 4 3の入口 43aは、周方向に関して、 2種類の開口幅 Ta, Tbを有する。つまり、ロータリ バルブ 41の外周面 41aに対向する吸入ポート 43の開口は、 2種類の開口幅 Ta, Tb を有する。吸入ポート 43の入口 43aは、ロータリバルブ 41の中心軸線 L2方向に関し て前記下死点側の幅狭通路 50と、上死点側の幅広通路 51とを有している。幅狭通 路 50は、ロータリバルブ 41の周方向に関して一定寸法の第 1開口幅 Taで、中心軸 線 L2方向へ延びる。幅広通路 51は、前記周方向に関して一定寸法の第 2開口幅 T bで、中心軸線 L2方向へ延びる。  [0050] As shown by a two-dot chain line in FIG. 7, the inlet 43a of each suction port 43 formed in the cylinder block 11 has two kinds of opening widths Ta and Tb in the circumferential direction. That is, the opening of the suction port 43 facing the outer peripheral surface 41a of the rotary valve 41 has two types of opening widths Ta and Tb. The inlet 43a of the suction port 43 has the narrow passage 50 on the bottom dead center side and the wide passage 51 on the top dead center side in the direction of the central axis L2 of the rotary valve 41. The narrow passage 50 has a first opening width Ta having a constant dimension in the circumferential direction of the rotary valve 41, and extends in the direction of the central axis L2. The wide passage 51 extends in the direction of the central axis L2 with a second opening width Tb having a constant dimension in the circumferential direction.
[0051] 前記幅狭通路 50の第 1開口幅 Taは、シール領域 Sのシール幅 Wよりも小さく設定 されている(W>Ta)。幅広通路 51の第 2開口幅 Tbは、前記シール領域 Sのシール 幅 Wよりも大きく設定されている(W<Tb)。吸入ポート 43の入口 43aにおいて、幅狭 通路 50は幅広通路 51に連設されて 、る。幅狭通路 50と幅広通路 51の間の境界は 、段差状に形成されている。ロータリバルブ 41の回転時、前記高圧溝 47は、幅広通 路 51よりも下死点側つまり図 7の上方を通過するように配置されている。このため、口 一タリバルブ 41の回転時、高圧溝 47は、幅狭通路 50には連通されるが、幅広通路 5 1には連通されない。 [0051] The first opening width Ta of the narrow passage 50 is set smaller than the seal width W of the seal region S (W> Ta). The second opening width Tb of the wide passage 51 is set to be larger than the seal width W of the seal region S (W <Tb). The narrow passage 50 is connected to the wide passage 51 at the inlet 43 a of the suction port 43. The boundary between narrow passage 50 and wide passage 51 is It is formed in a step shape. When the rotary valve 41 rotates, the high-pressure groove 47 is disposed so as to pass through the bottom dead center side with respect to the wide passage 51, that is, above the upper side in FIG. Therefore, when the single valve 41 rotates, the high-pressure groove 47 communicates with the narrow passage 50 but does not communicate with the wide passage 51.
[0052] 幅狭通路 50の第 1後行端縁 50bから、幅広通路 51の第 2先行端縁 51aまでの、周 方向に沿った第 3開口幅 Tcは、前記シール領域 Sのシール幅 Wよりもわずかに小さ く設定されている。このため、高圧溝 47が幅狭通路 50を通過した直後に、吸入連通 路 45の出口 45bは、幅広通路 51に連通する。ピストン 31が上死点にある吐出終了 直後の圧縮室 26には、図 7の下方つまり下死点側に配置されて!、る幅広通路 51が 、直接連通する。  [0052] The third opening width Tc along the circumferential direction from the first trailing edge 50b of the narrow passage 50 to the second leading edge 51a of the wide passage 51 is the seal width W of the seal region S. It is set slightly smaller than. Therefore, immediately after the high pressure groove 47 passes through the narrow passage 50, the outlet 45 b of the suction communication passage 45 communicates with the wide passage 51. In the compression chamber 26 immediately after the end of the discharge with the piston 31 at the top dead center, a wide passage 51 arranged directly below the bottom dead center in FIG.
[0053] 第 3の実施形態は、更に以下の利点も有する。  [0053] The third embodiment further has the following advantages.
[0054] (5)幅広通路 51は、ロータリバルブ 41の中心軸線 L2方向に関して、幅狭通路 50 よりも上死点側に形成されている。従って、第 1実施形態の場合と比較して、第 3実施 形態では、圧縮室 26への冷媒ガスの吸入開始時、ロータリバルブ 41の吸入連通路 45に連通するシリンダブロック 11の吸入ポート 43の面積を、大きくすることができる。 よって、圧縮室 26への吸入ガス量を多くすることができる。第 1実施形態では、幅狭 通路 50が幅広通路 51よりも上死点側に形成され、かつ、幅狭通路 50の第 1先行端 縁 50aが、幅広通路 51の第 2先行端縁 51aよりも後行側に形成されていた。  (5) The wide passage 51 is formed on the top dead center side with respect to the narrow passage 50 in the direction of the central axis L2 of the rotary valve 41. Therefore, compared with the case of the first embodiment, in the third embodiment, the suction port 43 of the cylinder block 11 communicated with the suction communication passage 45 of the rotary valve 41 at the start of the suction of the refrigerant gas into the compression chamber 26. The area can be increased. Therefore, the amount of gas sucked into the compression chamber 26 can be increased. In the first embodiment, the narrow passage 50 is formed on the top dead center side of the wide passage 51, and the first leading edge 50a of the narrow passage 50 is more than the second leading edge 51a of the wide passage 51. Was also formed on the trailing side.
[0055] なお、上記各実施形態は、以下のように変更してもよ!/、。  [0055] The above embodiments may be modified as follows! /.
[0056] 図 8に示すように、各実施形態において、幅狭通路 50は、互いに分離された複数 の小通路カゝら構成されてもよい。幅狭通路 50の第 1開口幅 Taは、最も先行側の小通 路の第 1先行端縁 50aと、最も後行側の小通路の第 1後行端縁 50bとの間の寸法で ある。第 1先行端縁 50aと第 2先行端縁 51aが同一線上であるため、 Ta=Tcである。 第 3開口幅 Tcが、高圧溝 47と吸入連通路 45との間のシール幅 Wよりも小さく設定さ れればよい。  [0056] As shown in FIG. 8, in each embodiment, the narrow passage 50 may be composed of a plurality of small passage caps separated from each other. The first opening width Ta of the narrow passage 50 is a dimension between the first leading edge 50a of the most preceding small passage and the first trailing edge 50b of the most trailing small passage. . Since the first leading edge 50a and the second leading edge 51a are on the same line, Ta = Tc. The third opening width Tc may be set to be smaller than the seal width W between the high pressure groove 47 and the suction communication passage 45.
[0057] 図 9に示すように、第 1及び第 2の実施形態において、幅狭通路 50を一対の長孔状 に形成してもよい。つまり、幅狭通路 50の形状は、第 1〜第 3の実施形態の形状に限 定されず、例えば楕円孔状ゃ丸孔状でもよい。 [0058] 図 9に示すように、幅狭通路 50は、幅広通路 51から分離させてもよい。例えば幅狭 通路 50は、ロータリバルブ 41の周方向に延びる 2個の長孔状の小通路よりなる。第 1 先行端縁 50aは、複数の小通路のうち最も先行側の端縁よりなり、第 1後行端縁 50b は、複数の小通路のうち最も後行側の端縁よりなる。幅狭通路 50の第 3開口幅 Tcは 、幅広通路 51の第 2先行端縁 51aと、幅狭通路 50の第 1後行端縁 50bとの間の寸法 である。この第 3開口幅 Tcが、高圧溝 47と吸入連通路 45との間のシール幅 Wより小 さくなつていればよい。 As shown in FIG. 9, in the first and second embodiments, the narrow passage 50 may be formed in a pair of long holes. That is, the shape of the narrow passage 50 is not limited to the shape of the first to third embodiments, and may be, for example, an elliptical hole shape or a round hole shape. As shown in FIG. 9, the narrow passage 50 may be separated from the wide passage 51. For example, the narrow passage 50 includes two long hole-like small passages extending in the circumferential direction of the rotary valve 41. The first leading edge 50a is the most leading edge of the plurality of small passages, and the first trailing edge 50b is the most trailing edge of the plurality of small passages. The third opening width Tc of the narrow passage 50 is a dimension between the second leading edge 51a of the wide passage 51 and the first trailing edge 50b of the narrow passage 50. The third opening width Tc only needs to be smaller than the seal width W between the high pressure groove 47 and the suction communication path 45.
[0059] 図 10に示すように、幅広通路 51の開口幅つまり周方向寸法は、幅狭通路 50に近 づくにしたがって減少してもよい。図 10の場合、幅広通路 51の第 2先行端縁 5 laお よび第 2後行端縁 51bは、幅広通路 51の開口幅が最大になる部分、すなわち下死 点側の端部よりなる。  As shown in FIG. 10, the opening width, that is, the circumferential dimension of the wide passage 51 may be reduced as the narrow passage 50 is approached. In the case of FIG. 10, the second leading edge 5 la and the second trailing edge 51b of the wide passage 51 are formed of a portion where the opening width of the wide passage 51 is maximum, that is, an end on the bottom dead center side.
[0060] 第 3の実施形態において、幅狭通路 50を、幅広通路 51に対してロータリバルブ 41 の回転方向の先行側、つまり第 2先行端縁 5 la寄りに偏って形成してもよい。幅狭通 路 50の第 1先行端縁 50aは、幅広通路 51の第 2先行端縁 51aと同一直線上に位置 してちよい。  In the third embodiment, the narrow passage 50 may be formed so as to be biased toward the leading side in the rotational direction of the rotary valve 41 with respect to the wide passage 51, that is, closer to the second leading edge 5 la. The first leading edge 50a of the narrow passage 50 may be positioned on the same straight line as the second leading edge 51a of the wide passage 51.
[0061] 各実施形態において、吸入ポート 43は、入口 43aに幅狭通路 50及び幅広通路 51 を備えていればよぐ吸入ポート 43の出口の形状や、吸入ポート 43内部の通路形状 は、任意に変更してもよい。  [0061] In each embodiment, the shape of the outlet of the suction port 43 and the shape of the passage inside the suction port 43 are arbitrary if the suction port 43 includes the narrow passage 50 and the wide passage 51 in the inlet 43a. You may change to
[0062] 各実施形態において、幅狭通路 50の第 1後行端縁 50bは、幅広通路 51の第 2後 行端縁 51bよりも先行側に位置していればよぐ幅狭通路 50は、幅広通路 51に対し て後行側に偏って 、てもよ 、。 [0062] In each of the embodiments, the narrow passage 50 is not limited as long as the first trailing edge 50b of the narrow passage 50 is positioned ahead of the second trailing edge 51b of the wide passage 51. It may be biased toward the trailing side with respect to the wide passage 51.
[0063] 両頭ピストン式圧縮機に本発明を適用してもよい。 [0063] The present invention may be applied to a double-headed piston compressor.

Claims

請求の範囲  The scope of the claims
回転シャフト(19)と、該回転シャフト(19)の周囲に配列された複数のシリンダボア( 11a)を有するシリンダブロック(11)と、各シリンダボア(11a)に収容されるピストン(3 1)と、前記回転シャフト(19)と同期回転するロータリバルブ (41)とを備えるピストン 式圧縮機であって、  A rotating shaft (19), a cylinder block (11) having a plurality of cylinder bores (11a) arranged around the rotating shaft (19), and a piston (31) accommodated in each cylinder bore (11a), A piston type compressor comprising a rotary valve (41) that rotates synchronously with the rotary shaft (19),
前記ピストン(31)は前記シリンダボア(11a)内に圧縮室(26)を区画し、前記シリン ダブロック(11)は吸入圧領域(28)をそれぞれ圧縮室(26)に連通させる複数の吸 入ポート (43)を有し、前記ピストン(31)が、前記圧縮室(26)の容積を最大にする下 死点と、圧縮室(26)の容積を最小にする上死点との間を往復動させられることで、口 一タリバルブ (41)を介しての前記吸入圧領域(28)から前記圧縮室(26)へのガスの 吸入、前記圧縮室(26)内でのガスの圧縮、並びに前記圧縮室(26)からのガスの吐 出が行われ、  The piston (31) defines a compression chamber (26) in the cylinder bore (11a), and the cylinder block (11) has a plurality of suction ports that respectively connect the suction pressure region (28) to the compression chamber (26). And a piston (31) between a bottom dead center that maximizes the volume of the compression chamber (26) and a top dead center that minimizes the volume of the compression chamber (26). By being reciprocated, the suction of the gas from the suction pressure region (28) to the compression chamber (26) through the single valve (41), the compression of the gas in the compression chamber (26), In addition, gas is discharged from the compression chamber (26),
前記ロータリバルブ (41)は吸入連通路 (45)および残留ガスバイノ ス通路 (46)を 有し、前記ロータリバルブ (41)が回転することで、前記吸入連通路 (45)は各吸入ポ ート (43)を前記吸入圧領域 (28)に順次連通させ、前記残留ガスバイパス通路 (46) は、吐出終了後の高圧側の圧縮室(26)に対応する吸入ポート (43A)を、低圧側の 圧縮室(26)に対応する吸入ポート (43B)に連通させ、前記吸入ポート (43)の開口 (43a)に対向する前記ロータリバルブ (41)の外周面 (41a)の部分は、前記残留ガス バイパス通路 (46)が前記吸入ポート (43)の開口(43a)を通じて前記吸入連通路 (4 5)に連通することを防止するシール領域 (S)を構成するピストン式圧縮機にぉ ヽて、 前記各吸入ポート (43)は、上死点側の幅狭通路(50)および下死点側の幅広通 路(51)を有し、前記ロータリバルブ (41)の回転方向に関して、前記ロータリバルブ( 41)の外周面 (41a)に対向する前記幅狭通路(50)の開口の幅 (Ta)は、前記幅広 通路(51)の開口の幅 (Tb)よりも小さぐ  The rotary valve (41) has a suction communication passage (45) and a residual gas bin passage (46). When the rotary valve (41) rotates, the suction communication passage (45) is connected to each suction port. (43) is sequentially communicated to the suction pressure region (28), and the residual gas bypass passage (46) connects the suction port (43A) corresponding to the high-pressure side compression chamber (26) after the end of discharge to the low-pressure side. The portion of the outer peripheral surface (41a) of the rotary valve (41) that communicates with the suction port (43B) corresponding to the compression chamber (26) and faces the opening (43a) of the suction port (43) In comparison with a piston type compressor that constitutes a seal region (S) that prevents the gas bypass passage (46) from communicating with the suction communication passage (45) through the opening (43a) of the suction port (43). Each of the suction ports (43) has a narrow passage (50) on the top dead center side and a wide passage (51) on the bottom dead center side, and the rotary valve The opening width (Ta) of the narrow passage (50) facing the outer peripheral surface (41a) of the rotary valve (41) with respect to the rotational direction of the hub (41) is the width of the opening of the wide passage (51). Smaller than (Tb)
前記幅狭通路(50)の開口は、回転する前記ロータリバルブ (41)の吸入連通路 (4 5)が先に通過する第 1先行端縁 (50a)と、その後に通過する第 1後行端縁 (50b)と を有し、前記幅広通路(51)の開口は、回転するロータリバルブ (41)の吸入連通路( 45)が先に通過する第 2先行端縁 (51a)と、その後に通過する第 2後行端縁 (51b)と を有し、 The opening of the narrow passage (50) includes a first leading edge (50a) through which the suction communication passage (45) of the rotating rotary valve (41) passes first, and a first following passage through which the passage follows. And the opening of the wide passage (51) has a second leading edge (51a) through which the suction communication passage (45) of the rotating rotary valve (41) passes first, and thereafter With a second trailing edge (51b) passing through Have
前記吸入連通路 (45)は、第 2後行端縁 (51b)よりも先に第 1後行端縁 (50b)を通 過し、  The suction communication passage (45) passes through the first trailing edge (50b) before the second trailing edge (51b),
前記残留ガスバイパス通路 (46)は高圧開口(47)を有し、高圧開口(47)は、前記 高圧側の圧縮室(26)に対応する吸入ポート (43A)に連通する際に同吸入ポート (4 3A)の前記幅狭通路(50)のみに対向し、  The residual gas bypass passage (46) has a high pressure opening (47), and the high pressure opening (47) is connected to the suction port (43A) corresponding to the compression chamber (26) on the high pressure side. (4 3A) facing only the narrow passage (50),
前記幅狭通路(50)は、前記上死点に位置するピストン(31)によって区画された圧 縮室(26)に連通可能なように配置され、  The narrow passage (50) is arranged so as to be able to communicate with a compression chamber (26) defined by a piston (31) located at the top dead center,
前記ロータリバルブ (41)の回転方向に関して、前記第 1後行端縁 (50b)と第 2先 行端縁 (51a)との間の幅 (Tc)は、前記高圧開口(47)と吸入連通路 (45)の開口(4 5b)との間の前記シール領域 (S)の部分の寸法 (W)よりも小さく、前記幅狭通路(50 )が前記シール領域 (S)によって閉塞された直後に、前記吸入連通路 (45)の開口( 45b)が前記幅広通路(51)に連通されることを特徴とするピストン式圧縮機。  With respect to the rotational direction of the rotary valve (41), the width (Tc) between the first trailing edge (50b) and the second leading edge (51a) is the same as the high pressure opening (47) and the suction channel. Immediately after the narrow passage (50) is closed by the sealing region (S), which is smaller than the dimension (W) of the portion of the sealing region (S) between the opening (45b) of the passage (45). Further, an opening (45b) of the suction communication passage (45) communicates with the wide passage (51).
[2] 前記幅広通路(51)は前記幅狭通路(50)に連設されている請求項 1に記載のビス トン式圧縮機。 [2] The piston compressor according to claim 1, wherein the wide passage (51) is connected to the narrow passage (50).
[3] 前記幅狭通路(50)は、前記幅広通路(51)に対し、前記第 2先行端縁 (51b)に偏 つて配置されている請求項 1又は 2に記載のピストン式圧縮機。  [3] The piston type compressor according to claim 1 or 2, wherein the narrow passage (50) is arranged so as to be biased toward the second leading edge (51b) with respect to the wide passage (51).
[4] 前記第 1先行端縁 (50a)および第 2先行端縁 (51a)は、同一直線上に位置してい る請求項 3に記載のピストン式圧縮機。  4. The piston type compressor according to claim 3, wherein the first leading edge (50a) and the second leading edge (51a) are located on the same straight line.
[5] 回転シャフト(19)と、該回転シャフト(19)の周囲に配列された複数のシリンダボア( 11a)を有するシリンダブロック(11)と、各シリンダボア(11a)に収容されるピストン(3 1)と、前記回転シャフト(19)と同期回転するロータリバルブ (41)とを備えるピストン 式圧縮機であって、  [5] A rotating shaft (19), a cylinder block (11) having a plurality of cylinder bores (11a) arranged around the rotating shaft (19), and a piston (3 1) accommodated in each cylinder bore (11a) ) And a rotary valve (41) that rotates synchronously with the rotary shaft (19),
前記ピストン(31)は前記シリンダボア(11a)内に圧縮室(26)を区画し、前記シリン ダブロック(11)は吸入圧領域(28)をそれぞれ圧縮室(26)に連通させる複数の吸 入ポート (43)を有し、前記ピストン(31)が、前記圧縮室(26)の容積を最大にする下 死点と、圧縮室(26)の容積を最小にする上死点との間を往復動させられることで、口 一タリバルブ (41)を介しての前記吸入圧領域(28)から前記圧縮室(26)へのガスの 吸入、前記圧縮室(26)内でのガスの圧縮、並びに前記圧縮室(26)からのガスの吐 出が行われ、 The piston (31) defines a compression chamber (26) in the cylinder bore (11a), and the cylinder block (11) has a plurality of suction ports that respectively connect the suction pressure region (28) to the compression chamber (26). And a piston (31) between a bottom dead center that maximizes the volume of the compression chamber (26) and a top dead center that minimizes the volume of the compression chamber (26). By being reciprocated, the gas from the suction pressure region (28) through the inlet valve (41) to the compression chamber (26) is transferred. Inhalation, gas compression in the compression chamber (26), and gas discharge from the compression chamber (26) are performed,
前記ロータリバルブ (41)は吸入連通路 (45)および残留ガスバイノ ス通路 (46)を 有し、前記ロータリバルブ (41)が回転することで、前記吸入連通路 (45)は各吸入ポ ート (43)を前記吸入圧領域 (28)に順次連通させ、前記残留ガスバイパス通路 (46) は、吐出終了後の高圧側の圧縮室(26)に対応する吸入ポート (43A)を、低圧側の 圧縮室(26)に対応する吸入ポート (43B)に連通させ、前記吸入ポート (43)の開口 (43a)に対向する前記ロータリバルブ (41)の外周面 (41a)の部分は、前記残留ガス バイパス通路 (46)が前記吸入ポート (43)の開口(43a)を通じて前記吸入連通路 (4 5)に連通することを防止するシール領域 (S)を構成するピストン式圧縮機にぉ ヽて、 前記各吸入ポート (43)は、上死点側の幅広通路(51)および下死点側の幅狭通 路(50)を有し、前記ロータリバルブ (41)の回転方向に関して、前記ロータリバルブ( 41)の外周面 (41a)に対向する前記幅狭通路(50)の開口の幅 (Ta)は、前記幅広 通路(51)の開口の幅 (Tb)よりも小さぐ  The rotary valve (41) has a suction communication passage (45) and a residual gas bin passage (46). When the rotary valve (41) rotates, the suction communication passage (45) is connected to each suction port. (43) is sequentially communicated to the suction pressure region (28), and the residual gas bypass passage (46) connects the suction port (43A) corresponding to the high-pressure side compression chamber (26) after the end of discharge to the low-pressure side. The portion of the outer peripheral surface (41a) of the rotary valve (41) that communicates with the suction port (43B) corresponding to the compression chamber (26) and faces the opening (43a) of the suction port (43) In comparison with a piston type compressor that constitutes a seal region (S) that prevents the gas bypass passage (46) from communicating with the suction communication passage (45) through the opening (43a) of the suction port (43). Each of the suction ports (43) has a wide passage (51) on the top dead center side and a narrow passage (50) on the bottom dead center side, and the rotary valve The opening width (Ta) of the narrow passage (50) facing the outer peripheral surface (41a) of the rotary valve (41) with respect to the rotational direction of the hub (41) is the width of the opening of the wide passage (51). Smaller than (Tb)
前記幅狭通路(50)の開口は、回転する前記ロータリバルブ (41)の吸入連通路 (4 5)が先に通過する第 1先行端縁 (50a)と、その後に通過する第 1後行端縁 (50b)と を有し、前記幅広通路(51)の開口は、回転するロータリバルブ (41)の吸入連通路( 45)が先に通過する第 2先行端縁 (51a)と、その後に通過する第 2後行端縁 (51b)と を有し、  The opening of the narrow passage (50) includes a first leading edge (50a) through which the suction communication passage (45) of the rotating rotary valve (41) passes first, and a first following passage through which the passage follows. And the opening of the wide passage (51) has a second leading edge (51a) through which the suction communication passage (45) of the rotating rotary valve (41) passes first, and thereafter And a second trailing edge (51b) passing through
前記吸入連通路 (45)は、第 2後行端縁 (51b)よりも先に第 1後行端縁 (50b)を通 過し、  The suction communication passage (45) passes through the first trailing edge (50b) before the second trailing edge (51b),
前記残留ガスバイパス通路 (46)は高圧開口(47)を有し、高圧開口(47)は、前記 高圧側の圧縮室(26)に対応する吸入ポート (43A)に連通す る際に同吸入ポート( 43A)の前記幅狭通路(50)のみに対向し、  The residual gas bypass passage (46) has a high-pressure opening (47), and the high-pressure opening (47) is connected to the suction port (43A) corresponding to the compression chamber (26) on the high-pressure side. Facing only the narrow passage (50) of the port (43A),
前記幅広通路(51)は前記幅狭通路(50)に連設され、前記幅広通路(51)は、前 記上死点に位置するピストン(31)によって区画された圧縮室(26)に連通可能なよう に配置され、  The wide passage (51) is connected to the narrow passage (50), and the wide passage (51) communicates with the compression chamber (26) defined by the piston (31) located at the top dead center. Arranged as possible,
前記ロータリバルブ (41)の回転方向に関して、前記第 1後行端縁 (50b)と第 2先 行端縁 (51a)との間の幅 (Tc)は、前記高圧開口(47)と吸入連通路 (45)の開口(4 5b)との間の前記シール領域 (S)の部分の寸法 (W)よりも小さく、前記幅狭通路(50 )が前記シール領域 (S)によって閉塞された直後に、前記吸入連通路 (45)の開口( 45b)が前記幅広通路(51)に連通されることを特徴とするピストン式圧縮機。 Regarding the rotational direction of the rotary valve (41), the first trailing edge (50b) and the second tip The width (Tc) between the row end edge (51a) is the dimension of the portion of the seal region (S) between the high-pressure opening (47) and the opening (45b) of the suction communication passage (45) ( Immediately after the narrow passage (50) is closed by the seal region (S), the opening (45b) of the suction communication passage (45) communicates with the wide passage (51). A piston type compressor characterized by that.
前記幅狭通路(50)は、前記幅広通路(51)に対し、前記第 2先行端縁 (51b)に偏 つて配置されている請求項 5に記載のピストン式圧縮機。  6. The piston type compressor according to claim 5, wherein the narrow passage (50) is arranged to be biased toward the second leading edge (51b) with respect to the wide passage (51).
前記第 1先行端縁 (50a)および第 2先行端縁 (51a)は、同一直線上に位置してい る請求項 6に記載のピストン式圧縮機。  The piston type compressor according to claim 6, wherein the first leading edge (50a) and the second leading edge (51a) are located on the same straight line.
PCT/JP2006/314587 2005-07-25 2006-07-24 Piston type compressor WO2007013406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-214836 2005-07-25
JP2005214836A JP2007016762A (en) 2005-06-08 2005-07-25 Piston type compressor

Publications (1)

Publication Number Publication Date
WO2007013406A1 true WO2007013406A1 (en) 2007-02-01

Family

ID=37683302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314587 WO2007013406A1 (en) 2005-07-25 2006-07-24 Piston type compressor

Country Status (2)

Country Link
US (1) US20080193304A1 (en)
WO (1) WO2007013406A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728187A3 (en) * 2012-11-02 2016-03-02 Kabushiki Kaisha Toyota Jidoshokki Piston-type compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2453593A (en) * 2007-10-12 2009-04-15 Gordon Mcnally Turbo valve gas seal system for i.c. engine rotary valve
DE102017203928A1 (en) * 2017-03-09 2018-09-13 Mahle International Gmbh axial piston

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221264A (en) * 1993-01-25 1994-08-09 Toyota Autom Loom Works Ltd Reciprocation type compressor
JPH07119631A (en) * 1993-08-26 1995-05-09 Nippondenso Co Ltd Swash plate type variable displacement compressor
JPH07279842A (en) * 1994-04-14 1995-10-27 Toyota Autom Loom Works Ltd Refrigerant gas suction structure in reciprocating type compressor
JP2004239210A (en) * 2003-02-07 2004-08-26 Toyota Industries Corp Piston compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013313A1 (en) * 1991-12-24 1993-07-08 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerant gas guiding mechanism for piston type compressor
US5478212A (en) * 1992-03-04 1995-12-26 Nippondenso Co., Ltd. Swash plate type compressor
JP3080279B2 (en) * 1992-10-05 2000-08-21 株式会社豊田自動織機製作所 Reciprocating compressor
JP3080278B2 (en) * 1992-10-05 2000-08-21 株式会社豊田自動織機製作所 Reciprocating compressor
US5486098A (en) * 1992-12-28 1996-01-23 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Swash plate type variable displacement compressor
US6158465A (en) * 1998-05-12 2000-12-12 Lambert; Steven Rotary valve assembly for engines and other applications
JP2001221157A (en) * 2000-02-04 2001-08-17 Toyota Autom Loom Works Ltd Variable displacement compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221264A (en) * 1993-01-25 1994-08-09 Toyota Autom Loom Works Ltd Reciprocation type compressor
JPH07119631A (en) * 1993-08-26 1995-05-09 Nippondenso Co Ltd Swash plate type variable displacement compressor
JPH07279842A (en) * 1994-04-14 1995-10-27 Toyota Autom Loom Works Ltd Refrigerant gas suction structure in reciprocating type compressor
JP2004239210A (en) * 2003-02-07 2004-08-26 Toyota Industries Corp Piston compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728187A3 (en) * 2012-11-02 2016-03-02 Kabushiki Kaisha Toyota Jidoshokki Piston-type compressor

Also Published As

Publication number Publication date
US20080193304A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1953385B1 (en) Double-headed swash plate compressor
JP2003148334A (en) Swash plate type compressor
JPH06117367A (en) Reciprocating compressor
WO2007013406A1 (en) Piston type compressor
JP6015433B2 (en) Swash plate compressor
JP4103822B2 (en) Piston compressor
KR101731162B1 (en) Piston type compressor
JP2007016762A (en) Piston type compressor
JP2005315176A (en) Piston variable displacement compressor
US20050265855A1 (en) Piston type compressor
JP3858814B2 (en) Adjustment method of rotating machine
JP2004239210A (en) Piston compressor
JP2001132629A (en) Swash plate compressor
JP2005299478A (en) Piston type compressor
JP2004278361A (en) Piston compressor
CN111033048A (en) Rotary compressor
KR102195808B1 (en) Suction valve of variable swash plate compressor
JP3518020B2 (en) Swing piston type compressor
CN111749866B (en) Piston type compressor
JPH05126040A (en) Reciprocation type compressor
JP3111693B2 (en) Reciprocating compressor
JPH0849653A (en) Reciprocating compressor
JP2002031058A (en) Reciprocating refrigerant compressor
KR20040017091A (en) Compressor with improved valve plate
JP6016112B2 (en) Swash plate compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006781499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11883994

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2006781499

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE