JPH06220585A - High expansion alloy with high electric resistance - Google Patents

High expansion alloy with high electric resistance

Info

Publication number
JPH06220585A
JPH06220585A JP1676293A JP1676293A JPH06220585A JP H06220585 A JPH06220585 A JP H06220585A JP 1676293 A JP1676293 A JP 1676293A JP 1676293 A JP1676293 A JP 1676293A JP H06220585 A JPH06220585 A JP H06220585A
Authority
JP
Japan
Prior art keywords
alloy
content
expansion
thermal expansion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1676293A
Other languages
Japanese (ja)
Inventor
Toshihiko Takemoto
敏彦 武本
Kazunobu Yamazaki
和信 山崎
Hirohisa Kato
浩久 加藤
Koji Seto
孝二 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1676293A priority Critical patent/JPH06220585A/en
Publication of JPH06220585A publication Critical patent/JPH06220585A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To reduce the content of expensive Ni and to obtain an inexpensive alloy material having superior high expansion characteristic. CONSTITUTION:This high expansion alloy has a composition consisting of, by weight, 9.5-19.5% Ni, 2.5-10.4% Mn, and the balance Fe and also has an austenite single phase structure at room temp. Further, thermal expansion coefficient at 30-300 deg.C and electric resistivity at room temp. are regulated to >=20.0X10<-6>/ deg.C and >=0.7muOMEGA.m, respectively. Moreover, it is preferable to regulate the value of X defined by X=1.89X(Mn%)+(Ni%) to 26.5-29.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温度センサーや温度補
償部品として電気製品等に組み込まれる安価な高膨張合
金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inexpensive high-expansion alloy that is incorporated in electric appliances and the like as a temperature sensor and a temperature compensation component.

【0002】[0002]

【従来の技術】高膨張合金は、機械的圧接又は溶接接合
等によってFe−Ni系のいわゆるアンバ一型低膨張合
金や普通鋼、ステンレス鋼等と張り合せた複合部材とし
て使用されている。たとえば、複合部材のバイメタル機
能を利用し、温度センサーや温度補償部品として電気製
品等に組み込まれている。この種の高膨張合金として
は、たとえばJIS C2530に記載されているよう
にFe−Ni−Mn系高膨張合金が代表的な材料であ
る。Fe−Ni−Mn系高膨張合金は、Fe−36%N
i等の低膨張合金と組み合せることにより、高感度バイ
メタルとなる。
2. Description of the Related Art High-expansion alloys are used as composite members that are bonded to Fe--Ni-based so-called Invar-type low-expansion alloys, ordinary steel, stainless steel, etc. by mechanical pressure welding or welding. For example, by utilizing the bimetal function of a composite member, it is incorporated in electric products and the like as a temperature sensor and a temperature compensation component. As a high-expansion alloy of this kind, a Fe-Ni-Mn high-expansion alloy is a typical material as described in JIS C2530, for example. Fe-Ni-Mn-based high expansion alloy is Fe-36% N
A high-sensitivity bimetal can be obtained by combining it with a low expansion alloy such as i.

【0003】従来から使用されているFe−Ni−Mn
系高膨張合金は、一般的には20〜22重量%のNiを
含有するFe−Ni系合金にMnを添加した合金が主体
であり、たとえばFe−20%Ni−6%Mn系合金が
バイメタル用高膨張側素材として使用されている。バイ
メタル用素材として要求される主な特性は、30〜30
0℃の熱膨張係数と室温での電気抵抗率である。たとえ
ば、Fe−Ni−Mn系高膨張合金には、30〜300
℃の熱膨張係数は20.0〜22.0×10-6/℃、室
温での電気抵抗率は0.70〜0.82μΩ・mの特性
を有する素材が要求される。
Fe-Ni-Mn used conventionally
The high-expansion alloys are generally alloys obtained by adding Mn to a Fe-Ni alloy containing 20 to 22% by weight of Ni. For example, Fe-20% Ni-6% Mn alloy is a bimetal. It is used as a high expansion side material. The main characteristics required for bimetal materials are 30 to 30.
The coefficient of thermal expansion is 0 ° C. and the electrical resistivity at room temperature. For example, the Fe-Ni-Mn high-expansion alloy contains 30 to 300
A material having a coefficient of thermal expansion of 20.0 to 22.0 × 10 −6 / ° C. and an electric resistivity of 0.70 to 0.82 μΩ · m at room temperature is required.

【0004】[0004]

【発明が解決しようとする課題】Fe−20%Ni−6
%Mn系合金は、高価なNiを多量に含むことから、素
材コストが高い。そのため、コストに見合った特殊な用
途に使用され、汎用性に乏しい材料である。この点、F
e−20%Ni−6%Mn系合金よりもNi含有量が少
なく、しかもFe−20%Ni−6%Mn系合金と同等
の熱膨張特性及び電気抵抗率を有する安価なバイメタル
用高膨張合金が強く要望されている。本発明は、このよ
うな要求に応えるべく開発されたものであり、Ni含有
量及びMn含有量を相互に規定することにより、Ni含
有量を低減しても高い熱膨張特性及び電気抵抗値を示す
合金を提供することを目的とする。
Problem to be Solved by the Invention Fe-20% Ni-6
The% Mn-based alloy contains a large amount of expensive Ni and thus has a high material cost. Therefore, it is a material that is used for a special purpose commensurate with cost and lacks versatility. This point, F
e Inexpensive high-expansion alloy for bimetal, which has a smaller Ni content than the 20% Ni-6% Mn alloy and has the same thermal expansion characteristics and electrical resistivity as the Fe-20% Ni-6% Mn alloy. Is strongly requested. The present invention was developed to meet such requirements, and by mutually defining the Ni content and the Mn content, high thermal expansion characteristics and electric resistance values can be obtained even if the Ni content is reduced. It is intended to provide the alloys shown.

【0005】[0005]

【課題を解決するための手段】本発明の高膨張合金は、
その目的を達成するため、Ni:9.5〜19.5重量
%、Mn:2.5〜10.4重量%、残部Feの組成を
もち、室温でオーステナイト単相組織を呈し、30〜3
00℃の温度範囲における熱膨張係数が20.0×10
-6/℃以上、室温での電気抵抗率が0.7μΩ・m以上
であることを特徴とする。ここで、X=1.89×(%
Mn)+(%Ni)で定義されるX値が26.5〜2
9.5の範囲にあるように、Ni含有量及びMn含有量
に相関関係を持たせることにより、熱膨張係数を21.
0×10-6/℃以上にすることが好ましい。
The high expansion alloy of the present invention comprises:
In order to achieve the object, it has a composition of Ni: 9.5 to 19.5% by weight, Mn: 2.5 to 10.4% by weight, and the balance of Fe, and exhibits an austenite single-phase structure at room temperature.
The thermal expansion coefficient in the temperature range of 00 ° C is 20.0 × 10
It is characterized by having an electric resistivity of 0.7 μΩ · m or more at room temperature of −6 ° C. or more. Here, X = 1.89 × (%
X value defined by Mn) + (% Ni) is 26.5-2
By making the Ni content and the Mn content have a correlation so as to be in the range of 9.5, the coefficient of thermal expansion is 21.
It is preferably 0 × 10 −6 / ° C. or more.

【0006】[0006]

【作用】本発明者等は、Fe−Ni−Mn系合金の熱膨
張特性と電気抵抗率を詳細に調べた結果、室温での組織
がオーステナイト単相となるようにNi含有量及びMn
含有量を厳格に制御するとき、Ni含有量が低い場合で
も実用に供せられるに充分に大きい熱膨張係数と電気抵
抗率を有する合金を見出し本発明に至った。Fe−Ni
−Mn三元合金の常温組織と熱膨張係数及び電気抵抗率
の関係を示す図1から明らかなように、常温でオーステ
ナイト単相組織とし、高膨張係数と高電気抵抗率を得る
には、Ni含有量及びMn含有量の下限が規制される。
特に、式(1)で表されるX値が26.5〜29.5の
範囲にあるとき、30〜300℃の温度範囲における熱
膨張係数が21.0×10-6/℃を越える高い値を示
す。 X=1.89×(%Mn)+(%Ni) ・・・・(1)
The inventors of the present invention have investigated the thermal expansion characteristics and the electrical resistivity of the Fe-Ni-Mn-based alloy in detail, and as a result, have found that the Ni content and Mn so that the structure at room temperature has an austenite single phase.
When the Ni content is strictly controlled, an alloy having a sufficiently large coefficient of thermal expansion and electrical resistivity to be put to practical use even when the Ni content is low was found, and the present invention was completed. Fe-Ni
As is clear from FIG. 1, which shows the relationship between the room temperature structure of the —Mn ternary alloy and the thermal expansion coefficient and the electrical resistivity, it is necessary to use a Ni The lower limits of the content and the Mn content are regulated.
In particular, when the X value represented by the formula (1) is in the range of 26.5 to 29.5, the coefficient of thermal expansion in the temperature range of 30 to 300 ° C. is high, exceeding 21.0 × 10 −6 / ° C. Indicates a value. X = 1.89 × (% Mn) + (% Ni) ··· (1)

【0007】X値は、図1のデータから得られたもの
で、Fe−Ni−Mn系三元合金のオーステナイト生成
能を示す指標である。すなわち、Mnは、Niの1.8
9倍に相当するオーステナイト生成能をもつ。たとえ
ば、Mn含有量を1重量%増加するとき、Ni含有量を
1.89重量%減少させても、同等のオーステナイト安
定度が得られる。X値が26.5未満ではオーステナイ
ト+マルテンサイト二相組織となり、29.5を超える
とオーステナイト相が安定になりすぎ、何れの場合も熱
膨張係数が21.0×10-6/℃を下回る。
The X value is obtained from the data shown in FIG. 1 and is an index showing the austenite forming ability of the Fe-Ni-Mn ternary alloy. That is, Mn is 1.8 of Ni.
It has an austenite forming ability equivalent to 9 times. For example, when the Mn content is increased by 1% by weight, the equivalent austenite stability is obtained even when the Ni content is decreased by 1.89% by weight. When the X value is less than 26.5, the austenite + martensite two-phase structure is formed, and when it exceeds 29.5, the austenite phase becomes too stable, and in any case, the thermal expansion coefficient is less than 21.0 × 10 -6 / ° C. .

【0008】以下、本発明合金の成分及び含有量を説明
する。 Ni: 室温でオーステナイト単相組織を得るために必
要な合金元素であり、Ni含有量が低すぎるとオーステ
ナイト単相組織が得られず、高膨張特性を示さない。ま
た、高膨張を確保するには、9.5重量%以上のNi含
有量が必要である。しかし、19.4重量%を超える多
量のNiが含まれると、熱膨張係数及び電気抵抗率を上
昇させる作用が飽和するばかりでなく、高価な合金材料
となる。したがって、本発明においては、Ni含有量を
9.5〜19.4重量%の範囲に規定した。
The components and contents of the alloy of the present invention will be described below. Ni: An alloying element necessary for obtaining an austenite single phase structure at room temperature. If the Ni content is too low, an austenite single phase structure cannot be obtained and high expansion characteristics are not exhibited. Further, a Ni content of 9.5% by weight or more is necessary to secure high expansion. However, when a large amount of Ni exceeding 19.4% by weight is contained, not only the effect of increasing the thermal expansion coefficient and the electrical resistivity is saturated, but also an expensive alloy material is obtained. Therefore, in the present invention, the Ni content is specified in the range of 9.5 to 19.4% by weight.

【0009】Mn: 室温でオーステナイト単相組織を
得るために必要な合金元素であり、2.5重量%以上の
含有が必要である。しかし、10.4重量%を超えるM
n含有量は、溶製時の耐火物の劣化やMnヒュームの発
生等のため、製造が困難となる。そこで、本発明におい
ては、Mn含有量を2.5〜10.4重量%の範囲に規
定した。本発明の合金を溶製するとき、Fe,Ni,M
n等の原料からC,N,Cu,Mo,Co等が混入する
ことがある。また、脱酸剤等からSi,Alが混入する
こともある。これらの不純物元素は、オーステナイト単
相組織の形成,高膨張特性及び高電気抵抗率等に悪影響
を与えない限り、少量含有しても差し支えない。
Mn: An alloying element necessary for obtaining an austenite single-phase structure at room temperature, and must be contained in an amount of 2.5% by weight or more. However, M exceeding 10.4% by weight
The n content is difficult to manufacture due to deterioration of refractory during melting and generation of Mn fumes. Therefore, in the present invention, the Mn content is defined in the range of 2.5 to 10.4% by weight. When melting the alloy of the present invention, Fe, Ni, M
C, N, Cu, Mo, Co and the like may be mixed from raw materials such as n. Further, Si and Al may be mixed in from a deoxidizer or the like. These impurity elements may be contained in a small amount as long as they do not adversely affect the formation of austenite single phase structure, high expansion characteristics, high electrical resistivity and the like.

【0010】熱膨張係数は、従来のバイメタル用Fe−
Ni−Mn系高膨張合金と同等以上の熱膨張特性を得る
ために、20.0×10-6/℃以上が必要である。更に
高性能のバイメタルを得るためには、21.0×10-6
/℃以上の熱膨張係数が好ましい。また、一般にバイメ
タル用高膨張合金として要求される電気低効率が満足さ
れるように、電気抵抗率の下限を0.7μΩ・mに設定
した。
The coefficient of thermal expansion is Fe-for the conventional bimetal.
In order to obtain thermal expansion characteristics equivalent to or higher than those of the Ni-Mn-based high expansion alloy, 20.0 × 10 -6 / ° C or higher is required. To obtain higher performance bimetal, 21.0 × 10 -6
A thermal expansion coefficient of / ° C or higher is preferred. In addition, the lower limit of the electrical resistivity is set to 0.7 μΩ · m so that the low electrical efficiency generally required for a high expansion alloy for bimetals is satisfied.

【0011】[0011]

【実施例】表1に示す組成をもつ合金を真空誘導溶解炉
にて溶製し、12kgの鋼塊を得た。なお、表1におい
て、A−1は従来合金、B1〜B9は本発明合金、C1
〜C4は比較合金である。
Example An alloy having the composition shown in Table 1 was melted in a vacuum induction melting furnace to obtain a 12 kg steel ingot. In Table 1, A-1 is a conventional alloy, B1 to B9 are alloys of the present invention, and C1.
~ C4 are comparative alloys.

【表1】 [Table 1]

【0012】得られた鋼塊を鍛造し、熱延,焼鈍,冷延
及び焼鈍の工程を経て板厚1.5mmの焼鈍済み冷延板
を得た。冷延板から、幅5mm及び長さ50mmの熱膨
張測定用試料と幅3mm及び長さ200mmの電気抵抗
測定用試料を切り出した。また、組織観察用試料とし
て、幅30mm及び長さ30mmの試験片を切り出し
た。熱膨張係数は、30〜300℃の温度範囲で測定し
た。電気抵抗率は、25℃の室温で測定した。それぞれ
の測定結果を、表2に示す。
The obtained steel ingot was forged, and annealed cold-rolled sheet having a sheet thickness of 1.5 mm was obtained through the steps of hot rolling, annealing, cold rolling and annealing. From the cold rolled plate, a sample for measuring thermal expansion having a width of 5 mm and a length of 50 mm and a sample for measuring electrical resistance having a width of 3 mm and a length of 200 mm were cut out. Further, a test piece having a width of 30 mm and a length of 30 mm was cut out as a structure observation sample. The coefficient of thermal expansion was measured in the temperature range of 30 to 300 ° C. The electrical resistivity was measured at room temperature of 25 ° C. Table 2 shows the respective measurement results.

【表2】 [Table 2]

【0013】従来合金A−1は、常温でオーステナイト
単相組織を有し、熱膨張係数αが21.0×10-6
℃、電気抵抗ρが0.79μΩ・mであった。また、本
発明合金B−1〜B−9は、常温でオーステナイト単相
組織を有し、熱膨張係数αが20.0×10-6/℃以
上、電気抵抗ρが0.70μΩ・m以上であり、Ni含
有量が高い高価な従来合金のFe−20%Ni−6%M
n合金と同等の値を示した。なかでも、X値が26.5
〜29.5の範囲にあるB−1,B−2,B−5及びB
−7の各合金は、21.0×10-6/℃以上の高い熱膨
張係数を呈した。これに対し、比較合金のC−1〜C−
7は、常温でオーステナイトとマルテンサイトの二相組
織となり、熱膨張係数αが20.0×10-6/℃未満、
電気抵抗ρが0.70μΩ・m未満と従来合金A−1よ
り著しく低い値を示した。この対比から明らかなよう
に、Ni含有量及びMn含有量を本発明に従って規定し
た合金にあっては、Ni含有量が低いにも拘らず、従来
のFe−20%Ni−6%Mn合金に匹敵する高膨張合
金として使用されることが判る。
Conventional alloy A-1 has an austenite single phase structure at room temperature and has a thermal expansion coefficient α of 21.0 × 10 -6 /
The temperature and the electrical resistance ρ were 0.79 μΩ · m. Further, the alloys B-1 to B-9 of the present invention have an austenite single phase structure at room temperature, a coefficient of thermal expansion α of 20.0 × 10 −6 / ° C. or more, and an electric resistance ρ of 0.70 μΩ · m or more. And an expensive conventional alloy with a high Ni content, Fe-20% Ni-6% M
It showed the same value as the n alloy. Among them, the X value is 26.5.
B-1, B-2, B-5 and B in the range of
Each alloy of -7 exhibited a high coefficient of thermal expansion of 21.0 × 10 -6 / ° C or higher. In contrast, comparative alloys C-1 to C-
No. 7 has a two-phase structure of austenite and martensite at room temperature and has a thermal expansion coefficient α of less than 20.0 × 10 −6 / ° C.,
The electrical resistance ρ was less than 0.70 μΩ · m, which was significantly lower than that of the conventional alloy A-1. As is clear from this comparison, in the alloy having the Ni content and the Mn content defined according to the present invention, even though the Ni content is low, the conventional Fe-20% Ni-6% Mn alloy is It can be seen that it is used as a comparable high expansion alloy.

【0014】[0014]

【発明の効果】以上に説明したように、本発明において
は、Ni含有量及びMn含有量の調節によって、従来か
ら高膨張合金として使用されているFe−20%Ni−
6%Mn合金に比較してNi含有量が少なく、Fe−2
0%Ni−6%Mn合金に匹敵する性能をもつ高膨張合
金が得られる。この高膨張合金は、Ni含有量が少ない
ことから安価な材料であり、コスト面からの制約を受け
ることなく、広範な分野に使用される。
As described above, in the present invention, by adjusting the Ni content and the Mn content, Fe-20% Ni- which has been conventionally used as a high expansion alloy.
Fe content is lower than that of a 6% Mn alloy, and Fe-2
High expansion alloys with performance comparable to 0% Ni-6% Mn alloys are obtained. This high expansion alloy is an inexpensive material because it has a low Ni content, and is used in a wide range of fields without being restricted by the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 熱膨張係数及び電気抵抗率を整理して示した
Fe−Ni−Mn系合金の常温組織図
FIG. 1 is a room temperature microstructure diagram of a Fe—Ni—Mn-based alloy in which the coefficients of thermal expansion and electrical resistivity are arranged.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬戸 孝二 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Seto 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Nisshin Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni:9.5〜19.5重量%、Mn:
2.5〜10.4重量%、残部Feの組成をもち、室温
でオーステナイト単相組織を呈し、30〜300℃の温
度範囲における熱膨張係数が20.0×10-6/℃以
上、室温での電気抵抗率が0.7μΩ・m以上である高
膨張合金。
1. Ni: 9.5 to 19.5% by weight, Mn:
It has a composition of 2.5 to 10.4% by weight and the balance of Fe, exhibits an austenite single phase structure at room temperature, and has a thermal expansion coefficient of 20.0 × 10 −6 / ° C. or more in the temperature range of 30 to 300 ° C. High-expansion alloy with an electrical resistivity of 0.7 μΩ · m or more.
【請求項2】 Ni:9.5〜19.5重量%、Mn:
2.5〜10.4重量%、残部Feの組成をもち、X=
1.89×(%Mn)+(%Ni)で定義されるX値が
26.5〜29.5の範囲にあり、室温でオーステナイ
ト単相組織を呈し、30〜300℃の温度範囲における
熱膨張係数が21.0×10-6/℃以上、室温での電気
抵抗率が0.7μΩ・m以上である高膨張合金。
2. Ni: 9.5 to 19.5% by weight, Mn:
2.5 to 10.4% by weight, the balance Fe composition, X =
The X value defined by 1.89 × (% Mn) + (% Ni) is in the range of 26.5 to 29.5, exhibits an austenite single phase structure at room temperature, and has a heat in the temperature range of 30 to 300 ° C. A high expansion alloy having a coefficient of expansion of 21.0 × 10 −6 / ° C. or higher and an electric resistivity of 0.7 μΩ · m or higher at room temperature.
JP1676293A 1993-01-06 1993-01-06 High expansion alloy with high electric resistance Withdrawn JPH06220585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1676293A JPH06220585A (en) 1993-01-06 1993-01-06 High expansion alloy with high electric resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1676293A JPH06220585A (en) 1993-01-06 1993-01-06 High expansion alloy with high electric resistance

Publications (1)

Publication Number Publication Date
JPH06220585A true JPH06220585A (en) 1994-08-09

Family

ID=11925243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1676293A Withdrawn JPH06220585A (en) 1993-01-06 1993-01-06 High expansion alloy with high electric resistance

Country Status (1)

Country Link
JP (1) JPH06220585A (en)

Similar Documents

Publication Publication Date Title
US6146474A (en) Iron-cobalt alloy
US4290828A (en) Method for manufacturing bimetal
EP1281784B1 (en) Electric resistance material
JP3332400B2 (en) High expansion alloy for bimetal
US6322638B1 (en) Electromagnetic steel sheet having excellent high-frequency magnetic properties
JPH06220585A (en) High expansion alloy with high electric resistance
US4131457A (en) High-strength, high-expansion manganese alloy
JPH06220586A (en) High expansion alloy with superior manufacturability
JP3316024B2 (en) Fe-Ni-Mn alloy exhibiting high expansion characteristics
JPS63121641A (en) External coating of sheathed heater made of austenitic stainless steel
JP3221462B2 (en) High-strength high-expansion alloy for juxtaposed bimetal, method for producing the same, and high-strength juxtaposed bimetal
JP3112199B2 (en) High strength and high thermal expansion Fe-Ni alloy and method for producing the same
US4196261A (en) Stable bimetal strip
JPH06322486A (en) Shadow mask supporting member and its production
KR0129826B1 (en) Shadow mask support member and method of producing same
JP2961697B2 (en) High expansion alloy
JP3354480B2 (en) High strength and high expansion alloy metal sheet and method for producing the same
JP3587949B2 (en) High strength and high expansion alloys and materials
US20100021338A1 (en) High-temperature alloy
JP3364322B2 (en) Stainless steel for automotive exhaust manifolds with excellent manufacturability, workability and high-temperature strength after long-term aging at high temperatures
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP3030065B2 (en) High expansion alloy
JPH044391B2 (en)
JPS5924172B2 (en) heat resistant bimetal
JPH06256890A (en) Heat resistant iron alloy for casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307