JPH06219726A - Production of porous silica material by sol-gel method - Google Patents

Production of porous silica material by sol-gel method

Info

Publication number
JPH06219726A
JPH06219726A JP2738393A JP2738393A JPH06219726A JP H06219726 A JPH06219726 A JP H06219726A JP 2738393 A JP2738393 A JP 2738393A JP 2738393 A JP2738393 A JP 2738393A JP H06219726 A JPH06219726 A JP H06219726A
Authority
JP
Japan
Prior art keywords
drying
gel
alkoxysilane
sol
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2738393A
Other languages
Japanese (ja)
Other versions
JP3431197B2 (en
Inventor
Masahiro Mori
正博 森
Kazuaki Shimono
和昭 下野
Ryuji Yao
竜司 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Industrial Co Ltd
Original Assignee
Meisei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Industrial Co Ltd filed Critical Meisei Industrial Co Ltd
Priority to JP02738393A priority Critical patent/JP3431197B2/en
Publication of JPH06219726A publication Critical patent/JPH06219726A/en
Application granted granted Critical
Publication of JP3431197B2 publication Critical patent/JP3431197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels
    • C01B33/163Preparation of silica xerogels by hydrolysis of organosilicon compounds, e.g. ethyl orthosilicate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To produce a porous silica material having large size and resistant to crack generation with a simple apparatus in a short time by hydrolyzing a specific trifunctional alkoxysilane or its polycondensate, gelatinizing the hydrolyzed substance and drying the product. CONSTITUTION:A trifunctional alkoxysilane expressed by formula (R<1> and R<2> are same or different 1-5C alkyl or phenyl; (n) is 1-10) (e.g. methyltrimethoxysilane) or its polycondensation product is dissolved in an alcohol, incorporated with an acid catalyst (e.g. hydrochloric acid) or a base catalyst (e.g. ammonia) as a catalyst for hydrolysis and polycondensation reaction and hydrolyzed at room temperature. The obtained sol liquid is left standing in closed state to obtain a white wet gel, which is dried in air or under heating to obtain the objective porous silica. Drying with heat is preferable to air-drying since the drying process completes in shorter time. The heat-drying is preferably carried out by drying at a temperature below the boiling point of the solvent and removing the excess water. For example, the gel is dried at 60 deg.C for 4hr and then dried at 105 deg.C for 24hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゾル−ゲル法によるシ
リカ多孔質体の製造方法に関し、特に、乾燥工程が簡単
で得られる多孔質体にクラックが発生し難い、シリカ多
孔質体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous silica material by a sol-gel method, and particularly to a method for producing a porous silica material in which a drying step is simple and cracks hardly occur in the porous material obtained. Regarding the method.

【0002】[0002]

【従来の技術】従来、高純度品の製造が可能でかつ低温
合成の可能なガラスの製造法の一つとしてゾル−ゲル法
がある。ゾル−ゲル法によりシリカガラスのバルク体
(板材や棒材)を製造するには、まずゾル−ゲル法によ
りシリカ多孔質体を製造し、これを加熱して無孔質シリ
カガラスのバルク体を得ている。そして、ゾル−ゲル法
によるシリカ多孔質体の製造法は、一般に、アルコキシ
シランを加水分解し、生成したシリカゾルを重縮合して
湿潤ゲルとし、これを乾燥してシリカ多孔質体としてい
る。このゾル−ゲル法によるシリカ多孔質体の製造方法
においては、ゲル化後の湿潤ゲルの乾燥工程で、溶媒の
蒸発によって多孔質体の体積収縮が起こり、得られた多
孔質体にクラックが発生しやすいという大きな問題があ
った。このため寸法の大きなものの製造は困難であっ
た。
2. Description of the Related Art Conventionally, there is a sol-gel method as one of the methods for producing a glass capable of producing a highly pure product and capable of being synthesized at a low temperature. In order to manufacture a bulk body of silica glass (a plate material or a bar material) by the sol-gel method, first, a silica porous body is manufactured by the sol-gel method, and this is heated to form a non-porous silica glass bulk body. It has gained. In the method for producing a silica porous body by the sol-gel method, generally, alkoxysilane is hydrolyzed, the generated silica sol is polycondensed into a wet gel, and this is dried to obtain a silica porous body. In the method for producing a silica porous body by the sol-gel method, in the step of drying the wet gel after gelation, the volume contraction of the porous body occurs due to the evaporation of the solvent, and cracks are generated in the obtained porous body. There was a big problem that it was easy to do. For this reason, it was difficult to manufacture a product having a large size.

【0003】かかる問題を解決するために、近年いくつ
かの方法が提案されている。その代表的な方法として、
溶媒の蒸発速度を抑えて数週間から数カ月の時間を費
やしてゆっくりと乾燥する方法、原料溶液にシリカ微
粉末を添加し、ゲルの細孔径の分布幅を広くしてゲルの
収縮率を小さくする方法、ホルムアミド等の乾燥抑制
剤を添加する方法、湿潤ゲル中に存在する気液界面を
なくして、ゲルの網状構造の収縮、破壊の原因となる気
液界面での表面張力を弱めて溶媒を除去すべく、超臨界
条件下で乾燥する方法がある。このうち、の超臨界条
件下で乾燥する方法は、シリカ粒子が微細でゲルの細孔
径が極めて小さい透明性シリカ多孔質体を製造する方法
としても用いられている。
In order to solve such problems, some methods have been proposed in recent years. As a typical method,
A method of slowly drying by spending several weeks to several months while suppressing the evaporation rate of the solvent, adding silica fine powder to the raw material solution to widen the distribution range of the pore size of the gel and reduce the shrinkage rate of the gel Method, a method of adding a drying inhibitor such as formamide, eliminating the gas-liquid interface present in the wet gel, shrinking the network structure of the gel, weakening the surface tension at the gas-liquid interface causing solvent There is a method of drying under supercritical conditions for removal. Of these, the method of drying under supercritical conditions is also used as a method of producing a transparent silica porous body having fine silica particles and an extremely small gel pore size.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術乃至の方法では、製造に長期を要し生産性が
極めて悪い。また上記従来技術の方法では、超臨界条
件を達成するのにオートクレーブを用いなければなら
ず、多大の設備投資を要するという問題がある。
However, in the above-mentioned conventional techniques and methods, it takes a long time to manufacture and the productivity is extremely poor. Further, the above-mentioned conventional method has a problem that an autoclave must be used to achieve the supercritical condition, and a large amount of equipment investment is required.

【0005】従って、本発明の目的は、得られる多孔質
体にクラックが発生し難く、しかも乾燥工程が簡単でか
つ短時間ですみ、安価に寸法の大きな多孔質体を製造す
ることのできるゾル−ゲル法によるシリカ多孔質体の製
造方法を提供することにある。
Therefore, an object of the present invention is to provide a sol which is less likely to cause cracks in the obtained porous body, has a simple drying process and requires only a short time, and can inexpensively produce a large-sized porous body. -To provide a method for producing a silica porous body by a gel method.

【0006】[0006]

【課題を解決するための手段】ところで、ゲルの乾燥工
程においてゲルにクラックを発生させる力は、気−液−
固界面で生ずる毛細管力であり、この毛細管力は次式
(I)で示される。 ΔP=2γ cosθ/r (I) ここで、ΔPは毛細管力、rはゲルの細孔半径、γは細
孔を満たしている液体の表面張力、θはゲルと細孔を満
たしている液体のぬれ角度である。
[Means for Solving the Problems] By the way, in the gel drying step, the force that causes cracks in the gel is gas-liquid-
It is a capillary force generated at the solid interface, and this capillary force is expressed by the following equation (I). ΔP = 2γ cos θ / r (I) where ΔP is the capillary force, r is the pore radius of the gel, γ is the surface tension of the liquid filling the pores, and θ is the gel and the liquid filling the pores. The wetting angle.

【0007】乾燥工程におけるゲルのクラック発生を抑
制するためには、ゲルを柔軟にする、以外に上記式
(I)より、rを大きくする、すなわち、ゲルの細孔
半径を大きくする、γを小さくする、すなわち、細孔
を満たしている液体の表面張力を下げる、 cosθを大
きくする、すなわち、ゲルと細孔を満たしている液体の
ぬれを悪くする、ことが有効と考えられる。
In order to suppress the generation of cracks in the gel in the drying step, in addition to making the gel flexible, from the above formula (I), r is increased, that is, the pore radius of the gel is increased, and γ is It is considered effective to reduce the surface tension of the liquid that fills the pores, increase cos θ, that is, reduce the wetting of the liquid that fills the pores with the gel.

【0008】そこで、上記方策を鋭意検討の結果、アル
コキシシランとして3官能アルコキシシラン又はその重
縮合物(以下、アルコキシシランの重縮合物を含め、単
に「アルコキシシラン」ということがある。)を用いる
ことが、乾燥工程でのゲルのクラック発生防止に最も有
効な手段である、ことを見出した。3官能アルコキシシ
ラン又はその重縮合物を用いることにより、従来用いら
れている4官能アルコキシシラン又はその重縮合物を用
いた場合に比べて、三次元網状構造の発達を一部阻害
し、ゲルに柔軟性を付与することができ、またゲルの細
孔半径を大きくすると考えられる。すなわち、3官能ア
ルコキシシラン又はその重縮合物を用いた場合でも、各
官能基が完全に反応するわけではなく、部分的には未反
応の状態でゲル化し、ゲルに鎖状部分を形成してゲルに
柔軟性を付与することができるのである。さらに、ゲル
骨格にアルキル基が導入されているためゲルを疎水性に
することができるのである。
Therefore, as a result of intensive studies on the above measures, a trifunctional alkoxysilane or a polycondensate thereof (hereinafter, simply referred to as “alkoxysilane” including a polycondensate of alkoxysilane) may be used as the alkoxysilane. It has been found that that is the most effective means for preventing the occurrence of gel cracks in the drying step. By using a trifunctional alkoxysilane or a polycondensate thereof, compared to the case of using a conventionally used tetrafunctional alkoxysilane or a polycondensate thereof, the development of a three-dimensional network structure is partially inhibited, and a gel is formed. It is considered that flexibility can be imparted and the pore radius of the gel is increased. That is, even when a trifunctional alkoxysilane or a polycondensate thereof is used, each functional group does not completely react, and partially gels in an unreacted state to form a chain portion in the gel. It is possible to give the gel flexibility. Furthermore, since the alkyl group is introduced into the gel skeleton, the gel can be made hydrophobic.

【0009】このように、ゲルのクラック発生防止に極
めて有効な3官能アルコキシシラン又はその重縮合物を
用いれば、従来のような長時間を費やす乾燥法や超臨界
乾燥条件下での乾燥法を用いる必要はなく、湿潤ゲルの
乾燥法として簡易な設備でかつ短時間に行うことのでき
る風乾又は加熱乾燥による方法が極めて有利である。
As described above, when a trifunctional alkoxysilane or a polycondensate thereof which is extremely effective in preventing the occurrence of gel cracks is used, a conventional drying method that takes a long time and a drying method under supercritical drying conditions can be performed. It is not necessary to use, and a method by air drying or heat drying, which can be performed in a short time with simple equipment, is extremely advantageous as a method for drying a wet gel.

【0010】従って、上記課題を解決するために、本発
明のゾル−ゲル法によるシリカ多孔質体の製造方法は、
アルコキシシランを加水分解してシリカゾルとし、該シ
リカゾルをゲル化後乾燥してシリカ多孔質体を製造する
方法において、前記アルコキシシランとして下記一般式
(I)で示される3官能アルコキシシラン又は該3官能
アルコキシシランの重縮合物を用い、前記シリカゾルの
ゲル化後の乾燥を風乾又は加熱乾燥により行うこと、を
特徴としている。
Therefore, in order to solve the above-mentioned problems, the method for producing a porous silica material by the sol-gel method of the present invention comprises:
In the method of producing a silica porous body by hydrolyzing an alkoxysilane to give a silica sol, and gelating the silica sol and then drying, a trifunctional alkoxysilane represented by the following general formula (I) or the trifunctional alkoxysilane is used as the alkoxysilane. It is characterized in that a polycondensate of an alkoxysilane is used and the silica sol is dried after gelation by air drying or heat drying.

【化2】 (式中、R1 及びR2 はそれぞれ同種又は異種の炭素数
1〜5のアルキル基又はフェニル基を表し、nは1〜1
0の整数を表す。)
[Chemical 2] (In the formula, R 1 and R 2 each represent the same or different alkyl group having 1 to 5 carbon atoms or phenyl group, and n is 1 to 1
Represents an integer of 0. )

【0011】一般式(I)中、R1 及びR2 は、同一で
も異なっていてもよく、具体的にはメチル基、エチル
基、プロピル基、ブチル基、フェニル基等が挙げられる
が、炭素数が大きくなると反応が遅くなる傾向にあると
考えられるため、メチル基又はエチル基が好ましい。ま
た、nの好ましい範囲は1〜6の整数である。
In the general formula (I), R 1 and R 2 may be the same or different, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group and a phenyl group. A methyl group or an ethyl group is preferable because the reaction tends to be slow when the number is large. Moreover, the preferable range of n is an integer of 1-6.

【0012】上記一般式(I)の3官能アルコキシシラ
ン又は該3官能アルコキシシランの重縮合物の具体例と
しては、メチルトリメトキシシラン、メチルトリエトキ
シシラン、エチルトリメトキシシラン、エチルトリエト
キシシラン、フェニルトリメトキシシラン、フェニルト
リエトキシシラン又はこれらの重縮合物が挙げられる
が、これらに限定されるものではない。なお、これらの
3官能アルコキシシラン又は該3官能アルコキシシラン
の重縮合物は、同種のものを単独で使用するのが、加水
分解及び重縮合反応を制御して所望の三次元網状構造を
得やすいが、場合によっては異種のものの混合物を用い
ることもできる。
Specific examples of the trifunctional alkoxysilane of the general formula (I) or polycondensates of the trifunctional alkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, Examples thereof include, but are not limited to, phenyltrimethoxysilane, phenyltriethoxysilane, and polycondensates thereof. It should be noted that these trifunctional alkoxysilanes or polycondensation products of the trifunctional alkoxysilanes are of the same type and are used alone, but it is easy to obtain desired three-dimensional network structure by controlling hydrolysis and polycondensation reactions. However, in some cases, a mixture of different kinds can be used.

【0013】アルコキシシランとして3官能アルコキシ
シラン又はその重縮合物に代えて2官能アルコキシシラ
ン又はその重縮合物を用いた場合には、三次元網状構造
が形成されないためゲル化し難く、一方、4官能アルコ
キシシラン又はその重縮合物を用いた場合には、三次元
網状構造が緻密に形成され過ぎてゲルに柔軟性を付与す
ることが難しくなりゲルにクラックが発生しやすくな
る。他に、組み合わせとして2官能アルコキシシラン又
はその重縮合物、3官能アルコキシシラン又はその重縮
合物及び4官能アルコキシシラン又はその重縮合物から
選ばれる2種以上を任意に組み合わせることも考えられ
る。しかし、官能基の数が多くなるに従い反応速度が速
くなる傾向にあるため官能基数の異なるアルコキシシラ
ンの混合物を用いる場合官能基数の少ないアルコキシシ
ランが未反応のままゲル中に残留してしまい、該アルコ
キシシランを混合した効果がほとんど現れなかったりし
て、所望の三次元網状構造を得ることが難しいか、或い
は所望の三次元網状構造を得るには反応条件等を厳密に
コントロールしなければならない。従って、かかる不具
合がなく反応条件のコントロールも容易な3官能アルコ
キシシラン又はその重縮合物を使用することが極めて重
要である。
When a bifunctional alkoxysilane or a polycondensate thereof is used as the alkoxysilane instead of a trifunctional alkoxysilane or a polycondensate thereof, gelation is difficult because a three-dimensional network structure is not formed. When an alkoxysilane or a polycondensate thereof is used, the three-dimensional network structure is too densely formed and it is difficult to impart flexibility to the gel and cracks are likely to occur in the gel. In addition, as a combination, it is also possible to arbitrarily combine two or more kinds selected from a bifunctional alkoxysilane or a polycondensate thereof, a trifunctional alkoxysilane or a polycondensate thereof, and a tetrafunctional alkoxysilane or a polycondensate thereof. However, since the reaction rate tends to increase as the number of functional groups increases, when a mixture of alkoxysilanes having different functional groups is used, an alkoxysilane having a small number of functional groups remains unreacted in the gel, It is difficult to obtain a desired three-dimensional network structure because the effect of mixing alkoxysilane hardly appears, or reaction conditions and the like must be strictly controlled to obtain a desired three-dimensional network structure. Therefore, it is extremely important to use a trifunctional alkoxysilane or a polycondensate thereof which does not have such problems and whose reaction conditions can be easily controlled.

【0014】上記一般式(I)のアルコキシシラン又は
その重縮合物の加水分解および重縮合は、加水分解が下
記反応式(II)、重縮合が下記反応式(III)で示される。
In the hydrolysis and polycondensation of the alkoxysilane of the general formula (I) or the polycondensate thereof, the hydrolysis is shown by the following reaction formula (II) and the polycondensation is shown by the following reaction formula (III).

【化3】 [Chemical 3]

【化4】 なお、上記反応式(II)及び(III)において、R1 、R2
及びnは、前記と同じである。これらの反応式は完全に
化学量論的な反応が完結した場合であるが、実際にはS
iに結合した各官能基が完全に反応するわけではなく、
部分的には未反応の状態でゲルが成長していく。
[Chemical 4] In the above reaction formulas (II) and (III), R 1 , R 2
And n are the same as above. These reaction formulas are based on the case where the stoichiometric reaction is completed, but in reality, S
Each functional group bonded to i does not completely react,
The gel grows in a partially unreacted state.

【0015】上記アルコキシシラン又はその重縮合物の
加水分解、重縮合反応における溶媒としてはアルコール
を用い、また、加水分解、重縮合反応の触媒としては、
酸触媒、塩基触媒を用いる。酸触媒としては、塩酸、フ
ッ化アンモニウム等が挙げられ、塩基触媒としては、ア
ンモニア、ピペリジン等が挙げられるが、特にこれらに
限定されるものではない。なお、アルコキシシラン又は
その重縮合物、水、溶媒、触媒などの使用比率は、特に
限定されず、所望の網状構造の多孔質体が得られるよう
に適宜設定すればよい。
Alcohol is used as a solvent in the hydrolysis or polycondensation reaction of the above alkoxysilane or its polycondensate, and a catalyst for the hydrolysis or polycondensation reaction is
An acid catalyst or a base catalyst is used. Examples of the acid catalyst include hydrochloric acid and ammonium fluoride, and examples of the base catalyst include ammonia and piperidine. However, the acid catalyst is not particularly limited thereto. The use ratio of alkoxysilane or its polycondensate, water, solvent, catalyst, etc. is not particularly limited and may be appropriately set so that a porous body having a desired network structure can be obtained.

【0016】上記アルコキシシラン又はその重縮合物を
加水分解してシリカゾルとし、該シリカゾルをゲル化後
乾燥するゲルの乾燥方法として、本発明では、風乾又は
加熱乾燥法を用いる。なお、加熱乾燥法は風乾より短時
間に乾燥工程が完了するので好ましい。加熱乾燥による
乾燥条件としては、溶媒の沸点以下の温度で乾燥後、余
剰水を除去する方法によるのが好ましい。他の乾燥方法
として、凍結乾燥法、真空乾燥法や超臨界乾燥法等が考
えられるが、乾燥に要する設備が大規模となるため好ま
しくない。
In the present invention, an air-drying method or a heat-drying method is used as a method for drying a gel in which the above-mentioned alkoxysilane or a polycondensate thereof is hydrolyzed to give a silica sol, and the silica sol is gelated and then dried. The heat drying method is preferable because the drying step is completed in a shorter time than air drying. The drying conditions by heat drying are preferably a method of removing excess water after drying at a temperature not higher than the boiling point of the solvent. As other drying methods, a freeze-drying method, a vacuum drying method, a supercritical drying method, and the like can be considered, but this is not preferable because the equipment required for drying becomes large-scale.

【0017】[0017]

【作用】ゾル−ゲル法によるシリカ多孔質体の製造方法
において、アルコキシシランとして、上記一般式(I)
で表される3官能アルコキシシランまたはその重縮合物
を用いるとともに、ゲルの乾燥方法として風乾又は加熱
乾燥を行うことにより、得られる多孔質体にクラックが
発生し難く、さらに乾燥工程が簡単かつ短時間となり、
安価なシリカ多孔質体を製造することができる。
In the method for producing a silica porous material by the sol-gel method, the above-mentioned general formula (I) is used as the alkoxysilane.
By using a trifunctional alkoxysilane represented by or a polycondensate thereof and performing air drying or heat drying as a method for drying the gel, cracks are less likely to occur in the obtained porous body, and the drying process is simple and short. It's time,
An inexpensive silica porous body can be manufactured.

【0018】[0018]

【実施例】以下の実施例は、本発明をさらに具体的に説
明するためのものである。これらの実施例は本発明を例
示的に示したものであって、本発明を制限するものでは
ない。
The following examples serve to explain the present invention more specifically. These examples are illustrative of the invention and are not intended to limit the invention.

【0019】実施例1 1lのビーカーにメチルトリメトキシシラン(東京化成
工業株式会社製試薬)132g、メタノール(関東化学
株式会社製特級試薬)384g、3mol/l のアンモニア
水溶液108gをとり(この場合、メチルトリメトキシ
シラン:メタノール:アンモニア水溶液のモル比は、
1:12:6)、室温で10分間撹拌した。得られたゾ
ル液を内径200mm、深さ50mmのガラス容器に注ぎ込
んだ後、密閉状態で24時間静置し、直径194mm、厚
さ23mmの白色湿潤ゲル体を得た。蓋を取り60℃で2
4時間乾燥後、105℃で24時間乾燥し、直径188
mm、厚さ22mm、密度0.11g/cm3 、空孔率95
%、熱伝導率0.026kcal/mh ℃の白色多孔質体を得
た。
Example 1 132 g of methyltrimethoxysilane (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.), 384 g of methanol (special grade reagent manufactured by Kanto Kagaku Co., Ltd.), and 108 g of 3 mol / l ammonia aqueous solution were placed in a 1 l beaker (in this case The molar ratio of methyltrimethoxysilane: methanol: ammonia aqueous solution is
1: 12: 6) and stirred at room temperature for 10 minutes. The obtained sol solution was poured into a glass container having an inner diameter of 200 mm and a depth of 50 mm, and then allowed to stand in a sealed state for 24 hours to obtain a white wet gel body having a diameter of 194 mm and a thickness of 23 mm. Remove the lid at 60 ° C for 2
After drying for 4 hours, dry at 105 ℃ for 24 hours, diameter 188
mm, thickness 22 mm, density 0.11 g / cm 3 , porosity 95
%, A white porous material having a thermal conductivity of 0.026 kcal / mh ° C. was obtained.

【0020】実施例2 1lのビーカーにメチルトリエトキシシラン(東京化成
工業株式会社製試薬)178g、エタノール(関東化学
株式会社製特級試薬)368g、0.5mol/lの塩酸1
08gをとり(この場合、メチルトリエトキシシラン:
エタノール:塩酸のモル比は、1:8:6)、室温で1
0分間撹拌した。得られたゾル液を内径200mm、深さ
50mmのガラス容器に注ぎ込んだ後、密閉状態で24時
間静置し、直径192mm、厚さ24mmの白色湿潤ゲル体
を得た。蓋を取り60℃で24時間乾燥後、105℃で
24時間乾燥し、直径184mm、厚さ23mm、密度0.
12g/cm3 、空孔率94%、熱伝導率0.027kcal
/mh ℃の白色多孔質体を得た。
Example 2 178 g of methyltriethoxysilane (reagent manufactured by Tokyo Kasei Kogyo Co., Ltd.), 368 g of ethanol (special grade reagent manufactured by Kanto Kagaku Co., Ltd.) and 0.5 mol / l of hydrochloric acid 1 were placed in a 1 l beaker.
Take 08 g (in this case methyltriethoxysilane:
Ethanol: hydrochloric acid molar ratio is 1: 8: 6), 1 at room temperature
Stir for 0 minutes. The obtained sol solution was poured into a glass container having an inner diameter of 200 mm and a depth of 50 mm and then allowed to stand in a sealed state for 24 hours to obtain a white wet gel body having a diameter of 192 mm and a thickness of 24 mm. After removing the lid and drying at 60 ° C. for 24 hours, it was dried at 105 ° C. for 24 hours, and had a diameter of 184 mm, a thickness of 23 mm and a density of 0.
12g / cm 3 , porosity 94%, thermal conductivity 0.027kcal
A white porous body having a temperature of / mh ° C was obtained.

【0021】実施例3 1lのビーカーにメチルトリメトキシシランの重縮合物
(コルコート株式会社製,商品名:MTMSP−1,平
均重合度n=4)102g、メタノール(関東化学株式
会社製特級試薬)480g、9mol/l のアンモニア水溶
液54gをとり(この場合、メチルトリメトキシシラン
の重縮合物:メタノール:アンモニア水溶液のモル比
は、1:60:12)、室温で10分間撹拌した。得ら
れたゾル液を内径200mm、深さ50mmのガラス容器に
注ぎ込んだ後、密閉状態で24時間静置し、直径190
mm、厚さ23mmの白色湿潤ゲル体を得た。蓋を取り60
℃で24時間乾燥後、105℃で24時間乾燥し、直径
180mm、厚さ22mm、密度0.12g/cm3 、空孔率
94%、熱伝導率0.027kcal/mh ℃の白色多孔質体
を得た。
Example 3 102 g of a polycondensate of methyltrimethoxysilane (manufactured by Colcoat Co., Ltd., trade name: MTMSP-1, average degree of polymerization n = 4) was placed in a 1 l beaker, methanol (special grade reagent manufactured by Kanto Kagaku Co., Ltd.). 480 g and 54 g of a 9 mol / l ammonia aqueous solution were taken (in this case, the polycondensation product of methyltrimethoxysilane: methanol: ammonia aqueous solution molar ratio was 1:60:12) and stirred at room temperature for 10 minutes. The obtained sol solution was poured into a glass container having an inner diameter of 200 mm and a depth of 50 mm, and then allowed to stand in a sealed state for 24 hours to give a diameter of 190
A white wet gel body having a thickness of 23 mm and a thickness of 23 mm was obtained. Remove the lid 60
After being dried at 105 ° C for 24 hours, dried at 105 ° C for 24 hours, a white porous body having a diameter of 180 mm, a thickness of 22 mm, a density of 0.12 g / cm 3 , a porosity of 94% and a thermal conductivity of 0.027 kcal / mh ° C. Got

【0022】比較例1 実施例1において、メチルトリメトキシシランの代わり
にテトラメトキシシラン(東京化成工業株式会社製試
薬)152g、3mol/l のアンモニア水溶液の代わりに
0.1mol/l のアンモニア水溶液108gを用いた(こ
の場合、テトラメトキシシラン:メタノール:アンモニ
ア水溶液のモル比は、1:8:6)以外は実施例1と同
様にして、直径190mm、厚さ21mmの無色透明湿潤ゲ
ル体を得た。蓋を取り該ゲル体を風乾したところ数時間
でクラックが入り、数日後には破砕して細片化した。
Comparative Example 1 In Example 1, 152 g of tetramethoxysilane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of methyltrimethoxysilane, and 108 g of 0.1 mol / l ammonia aqueous solution was used instead of 3 mol / l ammonia aqueous solution. Was used (in this case, the molar ratio of tetramethoxysilane: methanol: ammonia aqueous solution was 1: 8: 6) in the same manner as in Example 1 to obtain a colorless transparent wet gel body having a diameter of 190 mm and a thickness of 21 mm. It was When the lid was removed and the gel was air-dried, cracks appeared in a few hours, and after a few days, the gel was crushed into pieces.

【0023】比較例2 実施例3において、メチルトリメトキシシランの重縮合
物の代わりにテトラメトキシシランの重縮合物(コルコ
ート株式会社製,商品名:メチルシリケート51,平均
重合度n=4)118g、9mol/l のアンモニア水溶液
の代わりに0.3mol/l のアンモニア水溶液54gを用
いた(この場合、テトラメトキシシランの重縮合物:メ
タノール:アンモニア水溶液のモル比は、1:60:1
2)以外は実施例3と同様にして、直径188mm、厚さ
23mmの無色透明湿潤ゲル体を得た。蓋を取り該ゲル体
を風乾したところ数時間でクラックが入り、数日後には
破砕して細片化した。
Comparative Example 2 118 g of a tetramethoxysilane polycondensate (trade name: methyl silicate 51, average degree of polymerization n = 4, manufactured by Colcoat Co., Ltd.) instead of the polycondensate of methyltrimethoxysilane in Example 3 , 54 g of 0.3 mol / l ammonia aqueous solution was used instead of 9 mol / l ammonia aqueous solution (in this case, the molar ratio of polycondensation product of tetramethoxysilane: methanol: ammonia aqueous solution was 1: 60: 1).
A colorless and transparent wet gel body having a diameter of 188 mm and a thickness of 23 mm was obtained in the same manner as in Example 3 except for 2). When the lid was removed and the gel was air-dried, cracks appeared in a few hours, and after a few days, the gel was crushed into pieces.

【0024】[0024]

【発明の効果】本発明によるゾル−ゲル法によるシリカ
多孔質体の製造方法によれば、アルコキシシランとし
て、所定の3官能アルコキシシランまたはその重縮合物
を用いるとともに、ゲルの乾燥方法として風乾又は加熱
乾燥を行うようにしたので、得られる多孔質体にクラッ
クが発生し難く、寸法の大きな多孔質体を簡単な設備で
かつ短時間に製造することができる。そして、得られた
多孔質体は、軽量で熱伝導率が小さくかつ耐水性乃至耐
湿性に優れ、断熱材、吸音材等の種々の用途に利用する
ことができる。
According to the method for producing a silica porous material by the sol-gel method according to the present invention, a predetermined trifunctional alkoxysilane or its polycondensate is used as the alkoxysilane, and the gel is dried by air or Since heating and drying are performed, cracks are unlikely to occur in the obtained porous body, and a porous body having a large size can be manufactured with simple equipment in a short time. The obtained porous body is lightweight, has low thermal conductivity, is excellent in water resistance or moisture resistance, and can be used for various applications such as a heat insulating material and a sound absorbing material.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年2月25日[Submission date] February 25, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】乾燥工程におけるゲルのクラック発生を抑
制するためには、ゲルを柔軟にする、以外に上記式
(I)より、rを大きくする、すなわち、ゲルの細孔
半径を大きくする、γを小さくする、すなわち、細孔
を満たしている液体の表面張力を下げる、 cosθを
さくする、すなわち、ゲルと細孔を満たしている液体の
ぬれを悪くする、ことが有効と考えられる。
In order to suppress the generation of cracks in the gel in the drying step, in addition to making the gel flexible, from the above formula (I), r is increased, that is, the pore radius of the gel is increased, and γ is smaller, i.e., lower the surface tension of the liquid meets the pores, small and cosθ
To fence, that is, poor wetting of the liquid meets the gel and pores, it is considered effective.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルコキシシランを加水分解してシリカゾ
ルとし、該シリカゾルをゲル化後乾燥してシリカ多孔質
体を製造する方法において、前記アルコキシシランとし
て下記一般式(I)で示される3官能アルコキシシラン
又は該3官能アルコキシシランの重縮合物を用い、前記
シリカゾルのゲル化後の乾燥を風乾又は加熱乾燥により
行うことを特徴とする、ゾル−ゲル法によるシリカ多孔
質体の製造方法。 【化1】 (式中、R1 及びR2 はそれぞれ同種又は異種の炭素数
1〜5のアルキル基又はフェニル基を表し、nは1〜1
0の整数を表す。)
1. A method for producing a porous silica material by hydrolyzing an alkoxysilane to give a silica sol, gelling the silica sol, and then drying the silica sol, wherein the alkoxysilane is a trifunctional alkoxy represented by the following general formula (I). A method for producing a porous silica material by a sol-gel method, characterized in that silane or a polycondensation product of the trifunctional alkoxysilane is used, and the silica sol is dried after gelation by air drying or heat drying. [Chemical 1] (In the formula, R 1 and R 2 each represent the same or different alkyl group having 1 to 5 carbon atoms or phenyl group, and n is 1 to 1
Represents an integer of 0. )
JP02738393A 1993-01-22 1993-01-22 Method for producing porous silica body by sol-gel method Expired - Fee Related JP3431197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02738393A JP3431197B2 (en) 1993-01-22 1993-01-22 Method for producing porous silica body by sol-gel method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02738393A JP3431197B2 (en) 1993-01-22 1993-01-22 Method for producing porous silica body by sol-gel method

Publications (2)

Publication Number Publication Date
JPH06219726A true JPH06219726A (en) 1994-08-09
JP3431197B2 JP3431197B2 (en) 2003-07-28

Family

ID=12219533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02738393A Expired - Fee Related JP3431197B2 (en) 1993-01-22 1993-01-22 Method for producing porous silica body by sol-gel method

Country Status (1)

Country Link
JP (1) JP3431197B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010949A1 (en) * 2005-07-19 2007-01-25 Dynax Corporation Method for producing alkylsiloxane aerogel, alkylsiloxane aerogel, apparatus for producing same, and method for manufacturing panel containing same
WO2013009984A3 (en) * 2011-07-12 2013-06-13 Board Of Trustees Of Michigan State University Porous sol gels and methods and structures related thereto
US9093717B2 (en) 2011-05-20 2015-07-28 Board Of Trustees Of Michigan State University Methods of making and using oxide ceramic solids and products and devices related thereto
WO2015129736A1 (en) * 2014-02-26 2015-09-03 日立化成株式会社 Aerogel
US9322596B2 (en) 2009-02-19 2016-04-26 Tokyo Metropolitan University Drying device and method of aqueous moisture gel
WO2016167257A1 (en) * 2015-04-17 2016-10-20 日東電工株式会社 Method for producing porous silicone sheet, frozen body, and porous silicone sheet rolled-body
US10388975B2 (en) 2013-01-31 2019-08-20 Board Of Trustees Of Michigan State University Template-based methods of making and using ceramic solids
US10821705B2 (en) 2015-09-02 2020-11-03 Hitachi Chemical Company, Ltd. Aerogel laminated composite and thermal insulation material
CN113060739A (en) * 2021-03-19 2021-07-02 中建材科创新技术研究院(山东)有限公司 Silica aerogel microsphere and preparation method and application thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250900B2 (en) * 2005-07-19 2013-07-31 株式会社ダイナックス Alkylsiloxane airgel manufacturing method, alkylsiloxane airgel, manufacturing apparatus thereof, and panel manufacturing method including the same
WO2007010949A1 (en) * 2005-07-19 2007-01-25 Dynax Corporation Method for producing alkylsiloxane aerogel, alkylsiloxane aerogel, apparatus for producing same, and method for manufacturing panel containing same
US9322596B2 (en) 2009-02-19 2016-04-26 Tokyo Metropolitan University Drying device and method of aqueous moisture gel
US9093717B2 (en) 2011-05-20 2015-07-28 Board Of Trustees Of Michigan State University Methods of making and using oxide ceramic solids and products and devices related thereto
US9808964B2 (en) 2011-07-12 2017-11-07 Board Of Trustees Of Michigan State University Porous sol gels and methods and structures related thereto
WO2013009984A3 (en) * 2011-07-12 2013-06-13 Board Of Trustees Of Michigan State University Porous sol gels and methods and structures related thereto
US10388975B2 (en) 2013-01-31 2019-08-20 Board Of Trustees Of Michigan State University Template-based methods of making and using ceramic solids
WO2015129736A1 (en) * 2014-02-26 2015-09-03 日立化成株式会社 Aerogel
JPWO2015129736A1 (en) * 2014-02-26 2017-03-30 日立化成株式会社 Airgel
US10563016B2 (en) 2014-02-26 2020-02-18 Hitachi Chemical Company, Ltd. Aerogel
US10738165B2 (en) 2014-02-26 2020-08-11 Hitachi Chemical Company, Ltd. Aerogel
CN111875836A (en) * 2014-02-26 2020-11-03 日立化成株式会社 Aerogel
US11220579B2 (en) 2014-02-26 2022-01-11 Showa Denko Materials Co., Ltd. Sol composition
CN107531918A (en) * 2015-04-17 2018-01-02 日东电工株式会社 The rolled body of the manufacture method of organosilicon porous chips, freezes body and organosilicon porous chips
WO2016167257A1 (en) * 2015-04-17 2016-10-20 日東電工株式会社 Method for producing porous silicone sheet, frozen body, and porous silicone sheet rolled-body
US11820114B2 (en) 2015-04-17 2023-11-21 Nitto Denko Corporation Method for producing porous silicone sheet, frozen body, and porous silicone sheet rolled-body
US10821705B2 (en) 2015-09-02 2020-11-03 Hitachi Chemical Company, Ltd. Aerogel laminated composite and thermal insulation material
CN113060739A (en) * 2021-03-19 2021-07-02 中建材科创新技术研究院(山东)有限公司 Silica aerogel microsphere and preparation method and application thereof

Also Published As

Publication number Publication date
JP3431197B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JP2725573B2 (en) Manufacturing method of hydrophobic airgel
JP2893104B2 (en) Method for producing inorganic porous body having organic functional groups bonded thereto
EP2957340B1 (en) Xerogel production method
JP6195198B2 (en) Method for producing silica airgel
JPH0834678A (en) Aerogel panel
KR20180029500A (en) Method of preparing for silica aerogel and silica aerogel prepared by the same
JP2011093744A (en) Silica xerogel and method for manufacturing the same
JP3339394B2 (en) Manufacturing method of hydrophobic airgel
JPH06219726A (en) Production of porous silica material by sol-gel method
JP2021523968A (en) Method for synthesizing pre-hydrolyzed polysilicate
WO2019069494A1 (en) Coating liquid, method for manufacturing coating film, and coating film
KR20180029501A (en) Method of preparing for silica aerogel and silica aerogel prepared by the same
JP4321686B2 (en) Organic-inorganic composite and method for producing porous silicon oxide
WO1996004210A1 (en) Process for producing silica glass
JPH08300567A (en) Manufacture of aerogel panel
JP2005290033A (en) Method for producing organic-inorganic hybrid-based porous body
JPH04193708A (en) Porous silica gel and its production
JPH04198238A (en) Preparation of hydrophobic aerogel
JP3579998B2 (en) Manufacturing method of density gradient airgel
JP4060208B2 (en) Composite structure comprising porous silica containing helix structure and method for producing the same
JPH0549910A (en) Production of aerogel
JP3045411B2 (en) Method for producing inorganic microporous body
JP3048276B2 (en) Airgel production method
JPH08151210A (en) Production of aerogel filler
JP2912718B2 (en) Method for producing transparent inorganic porous material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees