JPH04198238A - Preparation of hydrophobic aerogel - Google Patents

Preparation of hydrophobic aerogel

Info

Publication number
JPH04198238A
JPH04198238A JP2327243A JP32724390A JPH04198238A JP H04198238 A JPH04198238 A JP H04198238A JP 2327243 A JP2327243 A JP 2327243A JP 32724390 A JP32724390 A JP 32724390A JP H04198238 A JPH04198238 A JP H04198238A
Authority
JP
Japan
Prior art keywords
solvent
alkoxysilane
surface treatment
formula
gelled product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2327243A
Other languages
Japanese (ja)
Other versions
JP2756366B2 (en
Inventor
Yuriko Kamigaki
百合子 上垣
Masaru Yokoyama
勝 横山
Koichi Takahama
孝一 高濱
Hiroshi Yokogawa
弘 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2327243A priority Critical patent/JP2756366B2/en
Publication of JPH04198238A publication Critical patent/JPH04198238A/en
Application granted granted Critical
Publication of JP2756366B2 publication Critical patent/JP2756366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To prepare the title aerogel excellent in thermal insulating and light transmission properties and free from degradation with time in those properties due to adsorption of water, etc., by hydrolyzing and polycondensing a specific alkoxysilane, surface-treating the resulting gel in a specific way, and drying it in a supercritical state. CONSTITUTION:An alkoxysilane of the formula: SiR<1>n(OR<2>)4-n (wherein R<1> and R<2> are each 1-5C alkyl or phenyl; and n is 0-2) is hydrolyzed and polycondensed. The resulting gel is made hydrphobic by treating with a surface-treating agent (e.g. trimethylchlorosilane) and then dried in a supercritical state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、断熱性に優れ、かつ、疎水性を有するエア
ロゲルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an airgel having excellent heat insulation properties and hydrophobicity.

〔従来の技術〕[Conventional technology]

光透過性を有する無機多孔体の製造方法として、アルコ
キシシラン(シリコンアルコキシド、アルキルシリケー
トなどとも称される)を加水分解、縮重合して得られる
ゲル状化合物を超臨界状態で乾燥する方法がある(米国
特許第443’2956号、同第4610863号など
)。
One method for producing a light-transmitting inorganic porous material is to dry a gel-like compound obtained by hydrolyzing and polycondensing alkoxysilane (also called silicon alkoxide, alkyl silicate, etc.) in a supercritical state. (U.S. Pat. No. 443'2956, U.S. Pat. No. 4,610,863, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、このようにして得られた多孔体は、経時的に
水分等を吸着して、光透過性が低下したり、多孔質材料
としての機能(たとえば、断熱性)の低下を招いたりす
るものとなっていた。
However, the porous material obtained in this way adsorbs moisture etc. over time, resulting in a decrease in light transmittance and a decrease in the function as a porous material (for example, heat insulation). It became.

このような事情に鑑み、この発明は、水分等を吸着しに
<<、経時的な劣化の少ない、光透過性を有する多孔体
を得ることができる疎水性エアロゲルの製造方法を提供
することを課題とする。
In view of these circumstances, it is an object of the present invention to provide a method for producing a hydrophobic airgel that can adsorb moisture, etc., obtain a porous body that exhibits little deterioration over time and has optical transparency. Take it as a challenge.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明は、下記一般式(
I) S i R’n (OR”)a−n         
・・・(I)〔式中、R1およびR2は、互いに、独立
に炭素数1〜5のアルキル基またはフェニル基を表す。
In order to solve the above problems, this invention solves the following general formula (
I) S i R'n (OR”)a-n
...(I) [In the formula, R1 and R2 each independently represent an alkyl group having 1 to 5 carbon atoms or a phenyl group.

R1およびR8がそれぞれ2個以上ある場合、2個以上
のR1,2個以上のR2は、それぞれ、互いに同じであ
ってもよく、異なっていてもよい。
When there are two or more R1s and two or more R8s, the two or more R1s and the two or more R2s may be the same or different.

n=o、■または2〕 で表されるアルコキシシランを加水分解し、縮重合して
得られたゲル化物を表面処理剤によって疎水化処理した
ものを超臨界乾燥させて疎水性エアロゲルを得る疎水性
エアロゲルの製造方法を提供する。
n=o, ■ or 2] A hydrophobic aerogel is obtained by hydrolyzing an alkoxysilane represented by the formula and polycondensation to make the gelled product hydrophobically treated with a surface treatment agent, followed by supercritical drying. Provided is a method for producing a synthetic airgel.

この発明の製造方法により得られた疎水性エアロゲルは
、光透過性を有する多孔体である。ここで疎水性とは、
たとえば撥水性と同義であり、水分吸着などが起こらず
、このため、水分による性能劣化がないのである。エア
ロゲル(エーロゲル)は、一般には、湿潤アルコゲルな
ど乾燥前の溶剤を含んだ状態でのゲル体から溶剤などを
除去して得られる多孔質な材料を指し、超臨界抽出によ
り溶媒を除去して得られる乾燥多孔質ゲルも含まれる。
The hydrophobic airgel obtained by the production method of the present invention is a porous body having optical transparency. Here, hydrophobicity means
For example, it is synonymous with water repellency, and moisture adsorption does not occur, so there is no performance deterioration due to moisture. Airgel generally refers to a porous material obtained by removing solvent from a gel body containing a solvent before drying, such as a wet alcogel, and is obtained by removing the solvent by supercritical extraction. Also included are dry porous gels.

この発明で用いるアルコキシシランとは、上記一般式(
I)で表されるものであり、より具体的には、下記一般
式(II) 〔式中、R” 、R’およびR’は、互いに、独立に炭
素数1〜5のアルキル基またはフェニル基を表す。2個
のR%は互いに同じであってもよく、異なっていてもよ
い。〕 で表される2官能アルコキシシラン、 下記一般式(II[) R’  S i  (OR’)s        ・・
・(IIt)〔式中、R−およびR“は、互いに、独立
に炭素数1〜5のアルキル基またはフェニル基を表す。
The alkoxysilane used in this invention has the above general formula (
I), more specifically, the following general formula (II) [wherein R", R' and R' are each independently an alkyl group having 1 to 5 carbon atoms or phenyl represents a group. Two R%s may be the same or different. ] A bifunctional alkoxysilane represented by the following general formula (II[) R' S i (OR')s・・・
-(IIt) [In the formula, R- and R'' each independently represent an alkyl group having 1 to 5 carbon atoms or a phenyl group.

3個のR7は互いに同じであってもよく、異なっていで
もよい。〕 で表される3官能アルコキシシラン、 下記一般式(IV) S i  (OR”)4           ・・・
(rV)〔式中、R1は、炭素数1〜5のアルキル基ま
たはフェニル基を表す。4個のR@は互いに同じであっ
てもよく、異なっていてもよい。〕で表される4官能ア
ルコキシシラン、 を指し、これらのうちの少なくとも1種を加水分解し、
縮重合することによってゲル体(たとえば湿潤アルコゲ
ル)が得られる。
The three R7s may be the same or different. ] Trifunctional alkoxysilane represented by the following general formula (IV) S i (OR”)4...
(rV) [In the formula, R1 represents an alkyl group having 1 to 5 carbon atoms or a phenyl group. The four R@s may be the same or different. ] refers to a tetrafunctional alkoxysilane represented by, and at least one of these is hydrolyzed,
A gel body (for example, a wet alcogel) is obtained by condensation polymerization.

この発明で用いられる前記式(II)、(III)およ
び(IV)でそれぞれ表される2官能、3官能および4
官能の各アルコキシシランとしては、特に限定されない
。それらの具体例を挙げると、2官能アルコキシシラン
としては、たとえば、ジメチルジメトキシシラン、ジメ
チルジェトキシシラン、ジフェニルジェトキシシラン、
ジフェニルジメトキシシラン、メチルフエニルジエトキ
シシラン、メチルフエニルジメトキシシラン、ジエチル
ジメトキシシラン、ジエチルジェトキシシラン等が用い
られる。3官能アルコキシシランとしては、たとえば、
メチルトリメトキシシラン、メチルトリエトキシシラン
、エチルトリメトキシシラン、エチルトリエトキシシラ
ン、フェニルトリエトキシシラン、フェニルトリメトキ
シシラン等が用いられる。4官能アルコキシシランとし
ては、たとえば、テトラエトキシシラン、テトラメトキ
シシラン等が用いられる。
Bifunctional, trifunctional and tetrafunctional compounds represented by the formulas (II), (III) and (IV) used in this invention, respectively.
Each functional alkoxysilane is not particularly limited. To give specific examples thereof, examples of difunctional alkoxysilane include dimethyldimethoxysilane, dimethyljethoxysilane, diphenyljethoxysilane,
Diphenyldimethoxysilane, methylphenyldiethoxysilane, methylphenyldimethoxysilane, diethyldimethoxysilane, diethyljethoxysilane, etc. are used. Examples of trifunctional alkoxysilane include:
Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, etc. are used. As the tetrafunctional alkoxysilane, for example, tetraethoxysilane, tetramethoxysilane, etc. are used.

この発明で前記アルコキシシランを効率良く加水分解し
、縮重合を行うためには、同アルコキシシランを含む反
応系にあらかじめ触媒を添加しておくことが好ましい。
In order to efficiently hydrolyze the alkoxysilane and perform condensation polymerization in the present invention, it is preferable to add a catalyst in advance to the reaction system containing the alkoxysilane.

このような触媒としては、特に限定されないが、たとえ
ば、酸触媒、塩基触媒等が挙げられる。具体的に述べる
と、酸触媒としては、塩酸、クエン酸、硝酸、硫酸、フ
ン化アンモニウム等が用いられ、塩基触媒としては、ア
ンモニア、ピペリジン等が用いられるが、それらに限定
されるものではない。
Such catalysts include, but are not particularly limited to, acid catalysts, base catalysts, and the like. Specifically, as acid catalysts, hydrochloric acid, citric acid, nitric acid, sulfuric acid, ammonium fluoride, etc. are used, and as base catalysts, ammonia, piperidine, etc. are used, but are not limited to these. .

前記ゲル体の表面を処理するための表面処理剤としでは
、たとえば、ヘキ号メチルジシラザン、トリメチルクロ
ロシラン、トリメチルメトキシシラン、ジメチルジクロ
ロシラン、ジエチルジェトキシシラン、メチルトリクロ
ロシランなどのシラン化合物等が挙げられる。このよう
なシラン化合物は、シリカ粒子表面のシラノール基と容
易に反応し、結合する官能基(たとえば、−C1、−0
R1−NH−など)および炭素数が1〜5のアルキル基
を有するものであれば、上記に限定されるものではない
Examples of the surface treatment agent for treating the surface of the gel body include silane compounds such as methyldisilazane, trimethylchlorosilane, trimethylmethoxysilane, dimethyldichlorosilane, diethyljethoxysilane, and methyltrichlorosilane. It will be done. Such silane compounds easily react with and bond to the silanol groups on the surface of the silica particles (e.g., -C1, -0
R1-NH-, etc.) and an alkyl group having 1 to 5 carbon atoms, it is not limited to the above.

表面処理時に用いる溶媒としては、たとえば、トルエン
、ベンゼン、エタノール、メタノール等が挙げられるが
、前記表面処理剤が容易に溶解し、得られた湿潤ゲルと
溶媒置換が可能なものであれば上記に限定されるもので
はない。
Examples of the solvent used during surface treatment include toluene, benzene, ethanol, methanol, etc., but the above solvents may be used as long as the surface treatment agent is easily dissolved and the resulting wet gel can be replaced with the solvent. It is not limited.

また、後で超臨界乾燥を行うため、超臨界乾燥の容易な
溶媒、たとえば、アルコールとの置換が容易なものの方
が好ましい。
In addition, since supercritical drying will be performed later, a solvent that can be easily used for supercritical drying, such as a solvent that can be easily replaced with alcohol, is preferred.

前記表面処理剤の添加量としては、特に限定されないが
、シリカ粒子表面のシラノール基数に対し当量以上加え
ることが好ましい。たとえば、重量比で(シリカ)/(
表面処理剤)=0.5〜lO程度の範囲で行われる。前
記溶媒の使用量としては、特に限定されない。
The amount of the surface treatment agent added is not particularly limited, but it is preferably added in an amount equal to or more than the number of silanol groups on the surface of the silica particles. For example, the weight ratio is (silica)/(
surface treatment agent)=approximately 0.5 to 1O. The amount of the solvent used is not particularly limited.

最終的に置換する溶媒は、超臨界乾燥を行う際に用いら
れ、特に限定されないが、たとえば、二酸化炭素、エタ
ノール、メタノール、水、ジクロロジフルオロメタン等
の単独系または2種以上の混合系を挙げることができる
The solvent to be finally substituted is used when performing supercritical drying and is not particularly limited, but examples include carbon dioxide, ethanol, methanol, water, dichlorodifluoromethane, etc. alone or in combination of two or more. be able to.

この発明の疎水性エアロゲルの製造方法は、特に限定さ
れるわけではないが、たとえば、以下のようにして行わ
れる。
The method for producing the hydrophobic airgel of the present invention is not particularly limited, but may be carried out, for example, as follows.

まず、前記アルコキシシランにアルコール、水および前
記触媒を混合したものを加え、混合し、アルコキシシラ
ンを加水分解し、縮重合させる。
First, a mixture of alcohol, water, and the catalyst is added to the alkoxysilane, mixed, and the alkoxysilane is hydrolyzed and polycondensed.

なお、この際に用いられるアルコールは、たとえば、メ
タノール、エタノール、イソプロパツール、ブタノール
等でよく、特に限定されない。
Note that the alcohol used at this time may be, for example, methanol, ethanol, isopropanol, butanol, etc., and is not particularly limited.

縮重合反応が充分に進行すると、前記反応混合物がゲル
化する。
When the polycondensation reaction progresses sufficiently, the reaction mixture turns into a gel.

次に、このゲル化物にアルコールを添加し、加熱する、
いわゆる熟成を行う。なお、この際、必要に応しては、
熟成工程を省いてもよい。アルコールを添加した場合に
は、湿潤アルコゲルが得られる。
Next, alcohol is added to this gelled product and heated.
This is called maturing. In addition, at this time, if necessary,
The aging step may be omitted. If alcohol is added, a wet alcogel is obtained.

湿潤アルコゲルなどのゲル化物を表面処理剤によって疎
水化処理する。この疎水化処理のための表面処理反応は
、たとえば、表面処理剤を分散させた溶媒とゲル化物に
含まれるアルコールを置換し、加熱して行われる。反応
後、たとえば、再びアルコールで溶媒の置換を行ってか
ら、超臨界乾燥を行う。
A gelled product such as a wet alcogel is hydrophobized using a surface treatment agent. The surface treatment reaction for this hydrophobization treatment is carried out, for example, by replacing the alcohol contained in the gelled product with a solvent in which the surface treatment agent is dispersed, and heating the mixture. After the reaction, for example, the solvent is replaced with alcohol again, and then supercritical drying is performed.

超臨界乾燥を行う方法としては、特に限定されないが、
たとえば、前記のようにして得られたアルコキシシラン
のゲル化物を液化炭酸(50〜60気圧程度)中に浸漬
した後、二酸化炭素を超臨界状態にして乾燥する方法、
あるいは、溶媒として使用しているアルコールの超臨界
状態で乾燥する方法などが挙げられるが、特に限定され
ない。
The method of performing supercritical drying is not particularly limited, but
For example, a method in which the alkoxysilane gel obtained as described above is immersed in liquefied carbonic acid (approximately 50 to 60 atm) and then dried by bringing the carbon dioxide to a supercritical state;
Alternatively, a method of drying in a supercritical state of alcohol used as a solvent may be used, but is not particularly limited.

このような超臨界乾燥を行い、前記ゲル化物から含有す
る流体を除去することにより、優れた疎水性を付与され
た光透過性を有する多孔体が得られる。
By performing such supercritical drying and removing the fluid contained in the gelled product, a porous body having excellent hydrophobicity and light transmittance can be obtained.

〔作   用〕[For production]

アルコキシシランを加水分解し、縮重合して得られたゲ
ル化物を表面処理し、超臨界乾燥する。
The gelled product obtained by hydrolyzing and polycondensing alkoxysilane is surface-treated and supercritically dried.

超臨界乾燥とは、ゲル化物に含まれている溶媒の臨界点
または臨界点より高温かつ高圧の雰囲気中においてその
溶媒を除去することである。このような雰囲気中では溶
媒の相転移(気化、凝縮)が起こらないため、溶媒の表
面張力が弱くなるといったことがないので、ゲル化物の
構造体の破壊、凝集が妨げられる。このため、この発明
により得られた無機多孔体は、非常に多孔質なものとな
る。これに対し、通常の加熱乾燥では、溶媒が液体から
気体に変化するため、ゲル化物の構造体中から除去され
る際に溶媒の表面張力が弱くなり、前記構造体が破壊さ
れたり、凝集したりするのである。
Supercritical drying refers to removing a solvent contained in a gel in an atmosphere at a critical point or at a higher temperature and pressure than the critical point. In such an atmosphere, phase transition (vaporization, condensation) of the solvent does not occur, so the surface tension of the solvent does not become weaker, so that destruction and aggregation of the gelled product structure are prevented. Therefore, the inorganic porous body obtained by this invention is extremely porous. On the other hand, in normal heat drying, the solvent changes from a liquid to a gas, so the surface tension of the solvent weakens when it is removed from the gelled structure, causing the structure to be destroyed or aggregated. or

さらに、この発明の製造方法により得られた多孔体は、
非常に微細なシリカ粒子からなる構造体で、その粒子径
および粒子間空隙は光の波長よりもはるかに小さいため
に、多孔体であるにもかかわらず光透過性を有する。
Furthermore, the porous body obtained by the manufacturing method of the present invention is
It is a structure made of extremely fine silica particles, and its particle size and interparticle voids are much smaller than the wavelength of light, so it has light transparency even though it is porous.

また、ゲル化物(ゲル体)のシリカ粒子に対して、粒子
表面が撥水性を有するように表面処理を施すことによっ
て、得られたエアロゲルは優れた疎水性を示すため、水
分等による、断熱性、透明性等の性能劣化を防ぐことが
できる。ここで透明性とは、たとえば、可視光に対する
視覚的な透明性であるが、これに限定されない。
In addition, by surface-treating the silica particles of the gelled product (gel body) so that the particle surface has water repellency, the resulting aerogel exhibits excellent hydrophobicity, so it is possible to prevent heat insulating properties due to moisture etc. , it is possible to prevent performance deterioration such as transparency. Transparency here refers to, for example, visual transparency to visible light, but is not limited thereto.

〔実 施 例〕〔Example〕

以下に、この発明の具体的な実施例および比較例を示す
が、この発明は下記実施例に限定されない。
Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples.

一実施例1− テトラメトキシシラン(東しダウコーニングシリコーン
■製試薬)に、エタノール(半井化学薬品■製特級試薬
)と0.01 mol/ Itのアンモニア水溶液とを
混合したものを徐々に添加した。この際、反応は室温で
行い、混合比は、テトラメトキシシラン:エタノール:
アンモニア水=175:4(モル比)であった。2時間
程度攪拌後、静置し、ゲル化させた。ゲル化後、エタノ
ールを加え、50℃で加熱し、さらにエタノールの添加
を繰り返してゲルが乾燥しないように縮重合反応を加速
(熟成)した。
Example 1 - A mixture of ethanol (special grade reagent manufactured by Hanui Chemicals ■) and 0.01 mol/It ammonia aqueous solution was gradually added to tetramethoxysilane (reagent manufactured by Dow Corning Silicone ■). . At this time, the reaction was carried out at room temperature, and the mixing ratio was: tetramethoxysilane:ethanol:
Ammonia water = 175:4 (molar ratio). After stirring for about 2 hours, the mixture was allowed to stand still to form a gel. After gelation, ethanol was added and heated at 50° C., and the addition of ethanol was repeated to accelerate (ripen) the polycondensation reaction so as not to dry the gel.

次に、このゲル化物をゲルの5倍の体積の0.2@ol
/ l−トリメチルクロロシラン(東しダウコーニング
シリコーン@l製試薬)のトルエン溶液中に移し、−昼
夜この溶媒の交換を繰り返し、溶媒置換を行った。
Next, add this gel to 0.2@ol, which is 5 times the volume of the gel.
/ 1-trimethylchlorosilane (reagent manufactured by Dow Corning Silicone @ 1) in toluene solution, and this solvent exchange was repeated day and night to perform solvent replacement.

その後、110℃で2時間程度加熱し、表面処理反応を
行った後、再びアルコゲルをエタノール中に移して、−
昼夜、アルコールの交襖を繰り返し、溶媒置換を行った
After that, the alcogel was heated at 110°C for about 2 hours to perform a surface treatment reaction, and then the alcogel was transferred to ethanol again.
The solvent was replaced by exchanging alcohols day and night.

次に、このゲル化物を18℃、55気圧の二酸化炭素中
に入れ、ゲル化物内のエタノールを二酸化炭素に置換す
る操作を2〜3時間行った。その後、系内を二酸化炭素
の超臨界条件である40℃、80気圧にし、超臨界乾燥
を約24時間行って厚み5fl、試料直径50鶴の多孔
体を得た。
Next, this gelled product was placed in carbon dioxide at 18°C and 55 atmospheres, and an operation was performed for 2 to 3 hours to replace ethanol in the gelled product with carbon dioxide. Thereafter, the inside of the system was set to 40° C. and 80 atmospheres, which are supercritical conditions for carbon dioxide, and supercritical drying was performed for about 24 hours to obtain a porous body with a thickness of 5 fl and a sample diameter of 50 mm.

一実施例2一 実施例1において、トリメチルクロロシランを用いる代
わりにヘキ号メチルジシラザン(東しダウコーニングシ
リコーン■製試薬)を用いたこと以外は実施例1と同様
にして多孔体を得た。
Example 2 A porous body was obtained in the same manner as in Example 1, except that instead of using trimethylchlorosilane, Heki-No. methyldisilazane (reagent manufactured by Toshi Dow Corning Silicone ■) was used.

一実施例3一 実施例2において、二酸化炭素を媒体とする超臨界乾燥
を行う代わりにエタノールの超臨界条件(250℃、8
0気圧)下で超臨界乾燥を行うようにしたこと以外は実
施例2と同様にして多孔体を得た。
Example 3 In Example 2, instead of performing supercritical drying using carbon dioxide as a medium, ethanol was used under supercritical conditions (250°C, 8°C).
A porous body was obtained in the same manner as in Example 2, except that the supercritical drying was carried out under (0 atm).

一実施例4一 実施例3において、テトラメトキシシランを用いる代わ
りにテトラエトキシシラン(東しダウコーニングシリコ
ーン■製試薬)を用い、混合比をテトラエトキシシラン
:エタノール:アンモニア水=1:1112としたこと
以外は実施例3と同様にして多孔体を得た。
Example 4 In Example 3, tetraethoxysilane (reagent manufactured by Toshi Dow Corning Silicone ■) was used instead of tetramethoxysilane, and the mixing ratio was set to tetraethoxysilane: ethanol: aqueous ammonia = 1:1112. A porous body was obtained in the same manner as in Example 3 except for the above.

一実施例5一 実施例4において、0.01 mol/ IIのアンモ
ニア水溶液を用いる代わりに0.1 mol/ lの塩
酸を用いたこと以外は実施例4と同様にして多孔体を得
たー実施例6− 実施例1において、超臨界条件を40℃、80気圧にし
て超臨界乾燥を約24時間行う代わりに超臨界条件を8
0℃、160気圧にして超臨界乾燥を約48時間行った
こと以外は実施例1と同様にして多孔体を得た。
Example 5 A porous body was obtained in the same manner as in Example 4, except that 0.1 mol/L hydrochloric acid was used instead of 0.01 mol/II ammonia aqueous solution. Example 6 - In Example 1, instead of supercritical drying at 40° C. and 80 atm for about 24 hours, the supercritical conditions were changed to 80 atm.
A porous body was obtained in the same manner as in Example 1, except that supercritical drying was performed at 0° C. and 160 atm for about 48 hours.

一実施例7−一 実施例1において、テトラメトキシシランの代わりに2
官能アルコキシシランであるジメチルジメトキシシラン
とテトラメトキシシランの1:9の混合物を用いたこと
以外は、実施例1と同様にして多孔体を得た。
Example 7 - In Example 1, instead of tetramethoxysilane, 2
A porous body was obtained in the same manner as in Example 1, except that a 1:9 mixture of dimethyldimethoxysilane and tetramethoxysilane, which were functional alkoxysilanes, was used.

一実施例8一 実施例1において、テトラメトキシシランの代わりに3
官能アルコキシシランであるメチルトリメトキシシラン
を用いたこと以外は、実施例1と同様にして多孔体を得
た。
Example 8 In Example 1, instead of tetramethoxysilane, 3
A porous body was obtained in the same manner as in Example 1 except that methyltrimethoxysilane, which is a functional alkoxysilane, was used.

一比較例1一 実施例1において、ゲル化物の熟成後、トリメチルクロ
ロシランのトルエン溶液での溶媒置換をせずに超臨界乾
燥を行ったこと以外は、実施例1と同様に超臨界乾燥を
行って多孔体を得た。
Comparative Example 1 Supercritical drying was carried out in the same manner as in Example 1, except that after aging of the gelled product, supercritical drying was carried out without replacing the solvent with a toluene solution of trimethylchlorosilane. A porous body was obtained.

実施例1〜8および比較例1で得られた多孔体について
、比表面積、光透過率、および、湿度による経時劣化を
調べた。比表面積は窒素吸着法におけるBET法を利用
して求めた。光透過率は、可視光域の分光分布を測定し
、可視光透過率をJIS−R3106に基づいて求めた
。湿度による経時変化は、60℃、相対湿度90%の恒
温恒湿槽に48時間エアロゲル(多孔体)を放置して耐
湿試験を行い、その前後でエアロゲルの光透過率および
熱伝導率を測定した。それらの結果を第1表に示した。
The porous bodies obtained in Examples 1 to 8 and Comparative Example 1 were examined for specific surface area, light transmittance, and deterioration over time due to humidity. The specific surface area was determined using the BET method in the nitrogen adsorption method. The light transmittance was determined by measuring the spectral distribution in the visible light region and determining the visible light transmittance based on JIS-R3106. To determine changes over time due to humidity, we performed a humidity test by leaving the airgel (porous material) in a constant temperature and humidity chamber at 60°C and 90% relative humidity for 48 hours, and measured the light transmittance and thermal conductivity of the airgel before and after that. . The results are shown in Table 1.

第1表にみるように、実施例の微細多孔体は、比較例の
ものに比べて、明らかに光透過性に優れており、しかも
、水分等の吸着がなく、光透過性および断熱性の経時的
変化がなかった。
As shown in Table 1, the microporous material of the example clearly has superior light transmittance compared to that of the comparative example, does not absorb water, etc., and has excellent light transmittance and heat insulation properties. There were no changes over time.

〔発明の効果〕〔Effect of the invention〕

この発明の疎水性エアロゲルの製造方法によれば、断熱
性など多孔質材料に特有の機能や光透過性等に優れ、し
かも、水分等の吸着による上記性能の経時的劣化がない
微細多孔体を得ることができる。
According to the method for producing a hydrophobic airgel of the present invention, a microporous material is produced which has excellent functions unique to porous materials such as heat insulation, light transmittance, etc., and which does not deteriorate over time in the above-mentioned properties due to adsorption of moisture, etc. Obtainable.

この製造方法によって得られた疎水性エアロゲルは、た
とえば、断熱材、音響材料、チェレンコフ素子等の様々
な用途に用いることができる。
The hydrophobic airgel obtained by this production method can be used in various applications such as heat insulating materials, acoustic materials, Cerenkov elements, and the like.

代理人 弁理士  松 本 武 彦 弓Iぜ静甫正書泪発) 平成 3年 2月25日Agent: Patent Attorney Takehiko Matsumoto Bow Ize Seisho Seisho Tears) February 25, 1991

Claims (1)

【特許請求の範囲】 1 下記一般式( I ) SiR^1_n、(OR^2)_4_−_n・・・(
I )〔式中、R^1およびR^2は、互いに、独立に炭
素数1〜5のアルキル基またはフェニル基を表す。 R^1およびR^2がそれぞれ2個以上ある場合、2個
以上のR^1、2個以上のR^2は、それぞれ、互いに
同じであってもよく、異なっていてもよい。 n=0、1または2〕 で表されるアルコキシシランを加水分解し、縮重合して
得られたゲル化物を表面処理剤によって疎水化処理した
ものを超臨界乾燥させて疎水性エアロゲルを得る疎水性
エアロゲルの製造方法。 2 ゲル化物に含まれる溶媒を、表面処理剤を含む溶媒
と溶媒置換して表面処理反応を施した後、さらに溶媒置
換してから超臨界乾燥する請求項1記載の疎水性エアロ
ゲルの製造方法。
[Claims] 1 The following general formula (I) SiR^1_n, (OR^2)_4_-_n...(
I) [In the formula, R^1 and R^2 each independently represent an alkyl group having 1 to 5 carbon atoms or a phenyl group. When there are two or more R^1 and two or more R^2, the two or more R^1 and the two or more R^2 may be the same or different. n = 0, 1 or 2] A hydrophobic aerogel is obtained by hydrolyzing an alkoxysilane represented by the formula and polycondensation to make the gelled product hydrophobically treated with a surface treatment agent, followed by supercritical drying. Method for producing aerogel. 2. The method for producing a hydrophobic airgel according to claim 1, wherein the solvent contained in the gelled product is replaced with a solvent containing a surface treatment agent to perform a surface treatment reaction, and then the solvent is further replaced and then supercritically dried.
JP2327243A 1990-11-27 1990-11-27 Method for producing hydrophobic airgel Expired - Lifetime JP2756366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327243A JP2756366B2 (en) 1990-11-27 1990-11-27 Method for producing hydrophobic airgel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327243A JP2756366B2 (en) 1990-11-27 1990-11-27 Method for producing hydrophobic airgel

Publications (2)

Publication Number Publication Date
JPH04198238A true JPH04198238A (en) 1992-07-17
JP2756366B2 JP2756366B2 (en) 1998-05-25

Family

ID=18196929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327243A Expired - Lifetime JP2756366B2 (en) 1990-11-27 1990-11-27 Method for producing hydrophobic airgel

Country Status (1)

Country Link
JP (1) JP2756366B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585456A1 (en) * 1992-02-18 1994-03-09 Matsushita Electric Works Ltd Process for producing hydrophobic aerogel
JPH07501818A (en) * 1991-12-10 1995-02-23 スミスクライン・ビーチャム・コーポレイション Colorectal cancer treatment
EP0640564A1 (en) * 1993-08-19 1995-03-01 Siemens Aktiengesellschaft Process for the preparation of a hydrophobic aerogel
EP0653377A1 (en) * 1993-11-12 1995-05-17 Matsushita Electric Works, Ltd. Process of forming a hydrophobic aerogel
JPH07267756A (en) * 1994-03-18 1995-10-17 Basf Ag Molding containing silica aerosol particle
US5746992A (en) * 1993-12-23 1998-05-05 Ppg Industries, Inc. Silica aerogel produced under subcritical conditions
US6156223A (en) * 1993-04-26 2000-12-05 Armstrong World Industries, Inc. Xerogels and their preparation
JP2001509767A (en) * 1997-01-24 2001-07-24 カボット、コーポレーション Use of aerogels for body and / or impact sound attenuation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4938994B2 (en) 2005-04-22 2012-05-23 ペンタックスリコーイメージング株式会社 Silica airgel membrane and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501818A (en) * 1991-12-10 1995-02-23 スミスクライン・ビーチャム・コーポレイション Colorectal cancer treatment
EP0585456A1 (en) * 1992-02-18 1994-03-09 Matsushita Electric Works Ltd Process for producing hydrophobic aerogel
EP0585456A4 (en) * 1992-02-18 1994-08-17 Matsushita Electric Works Ltd Process for producing hydrophobic aerogel
US6156223A (en) * 1993-04-26 2000-12-05 Armstrong World Industries, Inc. Xerogels and their preparation
EP0640564A1 (en) * 1993-08-19 1995-03-01 Siemens Aktiengesellschaft Process for the preparation of a hydrophobic aerogel
EP0653377A1 (en) * 1993-11-12 1995-05-17 Matsushita Electric Works, Ltd. Process of forming a hydrophobic aerogel
US5746992A (en) * 1993-12-23 1998-05-05 Ppg Industries, Inc. Silica aerogel produced under subcritical conditions
JPH07267756A (en) * 1994-03-18 1995-10-17 Basf Ag Molding containing silica aerosol particle
JP2001509767A (en) * 1997-01-24 2001-07-24 カボット、コーポレーション Use of aerogels for body and / or impact sound attenuation
JP4776744B2 (en) * 1997-01-24 2011-09-21 カボット コーポレーション Use of airgel to attenuate object and / or impact sound

Also Published As

Publication number Publication date
JP2756366B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
JP2725573B2 (en) Manufacturing method of hydrophobic airgel
US5830387A (en) Process of forming a hydrophobic aerogel
JP2659155B2 (en) Method for producing hydrophobic airgel
EP0849220B1 (en) Process for producing aerogel
JP4041161B2 (en) Process for producing modified airgel and use thereof
EP2957340B1 (en) Xerogel production method
JPH11514628A (en) Method of producing organically modified airgel using alcohol
US20060178496A1 (en) Silica aerogels with high-temperature hydrophobation synthesized by using co-precursor solutions
JP2008208019A (en) Porous material and method for preparing the same
JP2000264620A (en) Production of hydrophobic aerogel
JPH04198238A (en) Preparation of hydrophobic aerogel
EP0585456B1 (en) Process for producing hydrophobic aerogel
JP2001072408A (en) Silica aerogel and its production
KR20180018401A (en) Aerogel precursor, preparation method of the same, aerogel prepared by using the same and methode for preparing aerogel using the same
JP2005154195A (en) Aerogel material and article formed of the aerogel material
JP3339393B2 (en) Manufacturing method of hydrophobic airgel
JPH10316414A (en) Production of aerogel
JP3579998B2 (en) Manufacturing method of density gradient airgel
JPWO2019171543A1 (en) Manufacturing method of airgel, airgel, airgel block and polysiloxane compound
Yoda et al. Effects of ethanolamines catalysts on properties and microstructures of silica aerogels
JP2005132641A (en) Manufacturing method of silica aerogel
JP3045411B2 (en) Method for producing inorganic microporous body
JPH03257027A (en) Production of transparent porous body
JPH05295117A (en) Production of aerogel
JPH08302192A (en) Production of aerogel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110306

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110306

Year of fee payment: 13