JP3048276B2 - Airgel production method - Google Patents

Airgel production method

Info

Publication number
JP3048276B2
JP3048276B2 JP4104997A JP10499792A JP3048276B2 JP 3048276 B2 JP3048276 B2 JP 3048276B2 JP 4104997 A JP4104997 A JP 4104997A JP 10499792 A JP10499792 A JP 10499792A JP 3048276 B2 JP3048276 B2 JP 3048276B2
Authority
JP
Japan
Prior art keywords
solvent
airgel
drying
supercritical
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4104997A
Other languages
Japanese (ja)
Other versions
JPH05295117A (en
Inventor
弘 横川
勝 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4104997A priority Critical patent/JP3048276B2/en
Publication of JPH05295117A publication Critical patent/JPH05295117A/en
Application granted granted Critical
Publication of JP3048276B2 publication Critical patent/JP3048276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Colloid Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、断熱性、光透過性に
優れたエアロゲルを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an airgel having excellent heat insulation and light transmission.

【0002】[0002]

【従来の技術】光透過性を有する無機多孔体の製造方法
として、アルコキシシラン(シリコンアルコキシド、ア
ルキルシリケート等とも称される)を加水分解、縮重合
して得られるゲル状化合物を溶媒の超臨界状態で乾燥す
る方法がある(米国特許第4402927号、同443
2956号、同4610863号等)。
2. Description of the Related Art As a method for producing a light-transmitting inorganic porous material, a gel-like compound obtained by hydrolyzing and polycondensing an alkoxysilane (also referred to as silicon alkoxide, alkyl silicate, or the like) is treated with a supercritical solvent. There is a method of drying in a state (US Pat. Nos. 4,402,927 and 443).
Nos. 2956 and 4610863).

【0003】[0003]

【発明が解決しようとする課題】このような多孔体を得
るためには、ゲル状化合物の構造を破壊することなくそ
の中の溶媒を除去する必要があり、溶媒の超臨界状態で
これを除去する、いわゆる超臨界乾燥法が用いられてい
る。ところが、この方法では、溶媒、もしくは、溶媒と
抽出溶媒(二酸化炭素等)の混合溶媒の超臨界状態まで
圧力、温度を上げる工程、その圧力温度から常温常圧ま
で下げる工程など種々の工程を有するため、乾燥工程で
非常に長時間を要していた。
In order to obtain such a porous body, it is necessary to remove the solvent therein without destroying the structure of the gel-like compound, and to remove the solvent in a supercritical state of the solvent. That is, a so-called supercritical drying method is used. However, this method has various steps such as a step of increasing the pressure and temperature to a supercritical state of a solvent or a mixed solvent of a solvent and an extraction solvent (such as carbon dioxide), and a step of lowering the pressure to normal temperature and normal pressure. Therefore, it took a very long time in the drying process.

【0004】このような事情に鑑み、この発明は、短時
間の超臨界乾燥によって、光透過性を有する多孔体(エ
アロゲル)を得る製造方法を提供することを課題とす
る。
[0004] In view of such circumstances, an object of the present invention is to provide a method for producing a porous body (aerogel) having light transmittance by short-time supercritical drying.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、下記一般式(I) SiR1 n (OR2)4-n …(I) 〔式中、R1 およびR2 は、互いに独立に、炭素数1〜
5のアルキル基またはフェニル基を表す。R1 およびR
2 がそれぞれ2個以上ある場合、2個以上のR1、2個
以上のR2 は、それぞれ、互いに同じであってもよく、
異なっていてもよい。n=0〜2〕で表されるアルコキ
シシランを加水分解し、縮重合して得られたゲル化物
(ゲル状化合物)を超臨界乾燥させてエアロゲルを製造
する方法において、超臨界状態で溶媒を除去してから超
臨界乾燥に用いた高圧容器よりエアロゲルを取り出すま
での間、前記容器内の温度を前記溶媒の沸点以上の温度
に保持することを特徴とするエアロゲルの製造方法を提
供する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a compound represented by the following general formula (I): SiR 1 n (OR 2 ) 4-n (I) wherein R 1 and R 2 Are independently of each other
5 represents an alkyl group or a phenyl group. R 1 and R
When there are two or more 2 each, two or more R 1 and two or more R 2 may be the same as each other,
It may be different. n = 0 to 2] in a method for producing an airgel by hydrolyzing an alkoxysilane represented by the following formula and subjecting a gelled product (gelled compound) obtained by condensation polymerization to supercritical drying. Provided is a method for producing an airgel, wherein the temperature in the container is maintained at a temperature equal to or higher than the boiling point of the solvent before removing the airgel from the high-pressure container used for supercritical drying after the removal.

【0006】この発明の製造方法により得られたエアロ
ゲルは、光透過性を有する多孔体である。エアロゲル
(エーロゲル)は、一般には、湿潤アルコゲル等、乾燥
前の溶媒を含んだ状態でのゲル状化合物から溶媒などを
除去して得られる多孔質な材料を指し、超臨界抽出によ
り溶媒を除去して得られる乾燥多孔質ゲルを含む。
[0006] The aerogel obtained by the production method of the present invention is a light-permeable porous body. Aerogel (aerogel) generally refers to a porous material obtained by removing a solvent or the like from a gel-like compound containing a solvent before drying, such as a wet alcogel, and removing the solvent by supercritical extraction. And the resulting dried porous gel.

【0007】この発明で用いるアルコキシシランとは、
上記一般式(I)で表されるものであり、より具体的に
は、下記一般式(II) 〔式中、R3 、R4 およびR5 は、互いに独立に、炭素
数1〜5のアルキル基またはフェニル基を表す。2個の
5 は互いに同じであってもよく、異なっていてもよ
い。〕で表される2官能アルコキシシラン、下記一般式
(III) R6 −Si (OR7)3 …(III) 〔式中、R6 およびR7 は、互いに独立に、炭素数1〜
5のアルキル基またはフェニル基を表す。3個のR7
互いに同じであってもよく、異なっていてもよい。〕で
表される3官能アルコキシシラン、下記一般式(IV) Si (OR8)4 …(IV) 〔式中、R8 は、炭素数1〜5のアルキル基またはフェ
ニル基を表す。4個のR 8 は互いに同じであってもよ
く、異なっていてもよい。〕で表される4官能アルコキ
シシラン、を指し、一般式(III)および(IV)でそれぞ
れ表されるアルコキシシランのうちの少なくとも1種、
もしくは、一般式(III)および(IV)でそれぞれ表され
るアルコキシシランのうちの少なくとも1種と一般式
(II)で表されるアルコキシシランの混合物を加水分解
し、縮重合することによってゲル体(たとえば、湿潤ア
ルコゲル)が得られる。
The alkoxysilane used in the present invention is:
Represented by the above general formula (I), and more specifically
Is represented by the following general formula (II)[Wherein, RThree, RFourAnd RFiveAre, independently of each other, carbon
Represents an alkyl group of the formulas 1 to 5 or a phenyl group. Two
RFiveMay be the same or different from each other
No. A bifunctional alkoxysilane represented by the following general formula:
(III) R6−Si (OR7)Three … (III) [wherein, R6And R7Are independently of each other
5 represents an alkyl group or a phenyl group. Three R7Is
They may be the same or different. 〕so
A trifunctional alkoxysilane represented by the following general formula (IV): Si (OR8)Four … (IV) [wherein, R8Is an alkyl group having 1 to 5 carbon atoms or
Represents a nyl group. Four R 8May be the same as each other
And may be different. ] 4-functional alkoxy
Silan, which is represented by the general formulas (III) and (IV)
At least one of the alkoxysilanes represented by
Or represented by the general formulas (III) and (IV), respectively
At least one of the alkoxysilanes represented by the general formula
Hydrolysis of a mixture of alkoxysilanes represented by (II)
Then, a gel body (for example, wet
Lucogel) is obtained.

【0008】この発明で用いられる前記式(II)、(II
I)および(IV)でそれぞれ表される2官能、3官能およ
び4官能の各アルコキシシランとしては、特に限定され
ない。それらの具体例を挙げると、2官能アルコキシシ
ランとしては、たとえば、ジメチルジメトキシシラン、
ジメチルジエトキシシラン、ジフェニルジエトキシシラ
ン、ジフェニルジメトキシシラン、メチルフェニルジエ
トキシシラン、メチルフェニルジメトキシシラン、ジエ
チルジエトキシシラン、ジエチルジメトキシシラン等が
用いられる。3官能アルコキシシランとしては、たとえ
ば、メチルトリメトキシシラン、メチルトリエトキシシ
ラン、エチルトリメトキシシラン、エチルトリエトキシ
シラン、フェニルトリメトキシシラン、フェニルトリエ
トキシシラン等が用いられる。4官能アルコキシシラン
としては、たとえば、テトラメトキシシラン、テトラエ
トキシシラン等が用いられる。
The formulas (II) and (II) used in the present invention
The bifunctional, trifunctional and tetrafunctional alkoxysilanes represented by I) and (IV), respectively, are not particularly limited. Specific examples thereof include bifunctional alkoxysilanes such as dimethyldimethoxysilane,
Dimethyldiethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, methylphenyldiethoxysilane, methylphenyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane and the like are used. As the trifunctional alkoxysilane, for example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane and the like are used. As the tetrafunctional alkoxysilane, for example, tetramethoxysilane, tetraethoxysilane, or the like is used.

【0009】この発明で前記アルコキシシランを効率良
く加水分解し、縮重合を行うためには、同アルコキシシ
ランを含む反応系に予め触媒を添加しておくことが好ま
しい。このような触媒としては、酸性触媒、塩基性触媒
等が挙げられる。具体的に述べると、酸性触媒として
は、塩酸、クエン酸、硝酸、硫酸、フッ化アンモニウム
等が用いられ、塩基性触媒としては、アンモニア、ピペ
リジン等が用いられるが、これらに限定されるものでは
ない。
In order to efficiently hydrolyze the above-mentioned alkoxysilane and carry out polycondensation in the present invention, it is preferable to add a catalyst in advance to a reaction system containing the alkoxysilane. Examples of such a catalyst include an acidic catalyst and a basic catalyst. Specifically, as the acidic catalyst, hydrochloric acid, citric acid, nitric acid, sulfuric acid, ammonium fluoride and the like are used, and as the basic catalyst, ammonia, piperidine and the like are used, but not limited thereto. Absent.

【0010】アルコキシシランの加水分解、縮重合に用
いられる溶媒としては、通常、原料となるアルコキシシ
ランと水とを均一に溶解混合するために、アルコール、
アセトン等が用いられるが、これらに限定されるわけで
はなく、アルコキシシランと水の両方が溶解しやすい物
であればかまわない。しかし、ゲル状化合物生成過程の
加水分解反応でアルコールが生成すること、また、後で
述べる超臨界乾燥のことを考慮するとアルコールが最も
好ましい。
The solvent used for the hydrolysis and condensation polymerization of alkoxysilane is usually alcohol, in order to uniformly dissolve and mix the raw material alkoxysilane and water.
Acetone or the like is used, but is not limited thereto, and any substance can be used as long as both alkoxysilane and water are easily dissolved. However, alcohol is most preferable in consideration of the fact that alcohol is generated by a hydrolysis reaction in the process of forming a gel-like compound, and in consideration of supercritical drying described later.

【0011】超臨界乾燥を行う際に用いられる溶媒とし
ては、特に限定されないが、たとえば、エタノール、メ
タノール、ジクロロジフルオロメタン、二酸化炭素、水
等の単独系または2種以上の混合系を挙げることができ
る。混合系ではなく単一の溶媒で超臨界乾燥を行う場合
は、一般的にはオートクレーブなどの高圧容器(または
耐圧容器、乾燥容器とも言う)中に溶媒、および、これ
と同一の溶媒に溶媒置換を行ったゲル状化合物を一緒に
入れ、その溶液の臨界点以上の温度、圧力まで上昇させ
た後に溶媒を徐々に除き、最終的に常温常圧の状態に戻
すことによって乾燥を終了する。
The solvent used for supercritical drying is not particularly limited, and examples thereof include a single system of ethanol, methanol, dichlorodifluoromethane, carbon dioxide, water and the like or a mixture of two or more thereof. it can. When supercritical drying is performed using a single solvent instead of a mixed system, the solvent is generally replaced in a high-pressure vessel (or pressure vessel, also called a drying vessel) such as an autoclave, and the solvent is replaced with the same solvent. The gelled compound subjected to the above is put together, and the temperature and pressure are raised to a temperature not lower than the critical point of the solution. Then, the solvent is gradually removed, and finally the state is returned to the normal temperature and normal pressure state, thereby completing the drying.

【0012】2種以上の混合系で超臨界乾燥を行う場合
は、乾燥容器内でその混合系での超臨界状態になるよう
設定した温度、圧力まで上昇させる方法、乾燥容器内で
ゲル状化合物が含有している溶媒(第1の溶媒)から超
臨界状態にしたい溶媒(第2の溶媒)に置換し、ほぼ溶
媒置換を完結させてから、第2の溶媒の超臨界状態で溶
媒を除去する方法等がなされている。
When supercritical drying is carried out in a mixed system of two or more kinds, a method of raising the temperature and pressure set to a supercritical state in the mixed system in a drying vessel, a method of forming a gel-like compound in the drying vessel Is replaced with the solvent (second solvent) that is to be brought into a supercritical state from the solvent contained therein, and after substantially completing the solvent replacement, the solvent is removed in the supercritical state of the second solvent There is a method to do so.

【0013】超臨界乾燥では、下記のことは単独系およ
び混合系のいずれを採る方法にも共通している。高温高
圧にすることで、乾燥したいゲル状化合物中の溶媒を超
臨界状態にし、超臨界状態の温度圧力を保持したまま、
必要に応じて不活性ガスを利用する等して、溶媒を除去
する。ほぼ溶媒が除去できたら、圧力、温度を徐々に落
として常温常圧にした後、エアロゲル(試料である場合
もある)を取り出す。この時、圧力や温度の上昇、降下
の速度が速いほど、溶媒自身やゲル状化合物にかかる応
力が大きくなり、ゲルにクラックが入る等の問題が起こ
りやすくなる。超臨界状態での溶媒の除去が不十分なま
まに降圧、降温を行うと、その過程で溶媒の液化、結露
が起こり、これもゲルのクラックや収縮の原因となる。
In the supercritical drying, the following is common to both single and mixed systems. By making high temperature and high pressure, the solvent in the gel compound to be dried is brought into a supercritical state, and while maintaining the temperature and pressure in the supercritical state,
The solvent is removed by using an inert gas as necessary. When the solvent is almost completely removed, the pressure and temperature are gradually lowered to normal temperature and normal pressure, and then the airgel (which may be a sample) is taken out. At this time, as the rate of increase or decrease in pressure or temperature increases, the stress applied to the solvent itself or the gel-like compound increases, and problems such as cracks in the gel tend to occur. If the pressure and temperature are reduced while the solvent is not sufficiently removed in the supercritical state, liquefaction and dew condensation of the solvent occur in the process, which also causes cracking and shrinkage of the gel.

【0014】以上のことから超臨界乾燥を行うにはある
程度穏やかな昇温、昇圧、そして充分な溶媒抽出時間が
必要とされるため非常に長時間(たとえば数十時間)を
要していたのが実状であった。このような問題を解決す
るために、この発明のエアロゲルの製造方法は、特に限
定されるわけではないが、たとえば、以下のようにして
行われる。
From the above, supercritical drying requires an extremely long time (for example, several tens of hours) due to the need for a somewhat moderate temperature increase, pressure increase, and sufficient solvent extraction time. Was the actual situation. In order to solve such a problem, the method for producing the airgel of the present invention is not particularly limited, but is carried out, for example, as follows.

【0015】まず、前記アルコキシシランにアルコー
ル、水、および、前記触媒を添加混合し、アルコキシシ
ランを加水分解し、縮重合させる。なお、この際に用い
られるアルコールは、たとえば、メタノール、エタノー
ル、イソプロパノール、ブタノール等でよく特に限定さ
れない。縮重合反応が充分に進行すると、前記反応混合
物(ゾル)がゲル化し、ゲル状化合物が得られる。
First, an alcohol, water, and the above-mentioned catalyst are added to and mixed with the above-mentioned alkoxysilane, and the alkoxysilane is hydrolyzed and polycondensed. The alcohol used at this time is, for example, methanol, ethanol, isopropanol, butanol, etc., and is not particularly limited. When the polycondensation reaction proceeds sufficiently, the reaction mixture (sol) gels, and a gel compound is obtained.

【0016】次に、このゲル状化合物にアルコールを添
加し、加熱する、いわゆる熟成を行う。なお、この際必
要に応じては、熟成工程を省いても良い。このゲル状化
合物は、水や未反応物が除去され、溶媒部分は完全にア
ルコールに置換されたもの(アルコゲルともいう)とな
っていることが好ましい。次に、この状態のゲル状化合
物を超臨界乾燥し、溶媒(おもにアルコール)を除去す
る。
Next, an alcohol is added to the gel-like compound and heated, that is, so-called ripening is performed. In this case, if necessary, the aging step may be omitted. This gel-like compound is preferably one in which water and unreacted substances have been removed, and the solvent portion has been completely replaced with alcohol (also referred to as an alcogel). Next, the gel compound in this state is supercritically dried to remove the solvent (mainly alcohol).

【0017】超臨界乾燥を行う方法としては、たとえば
次のような方法が挙げられる。すなわち、前記のように
して得られたアルコキシシランのゲル状化合物をアルコ
ールの臨界点以上の温度圧力まで昇温昇圧し、その状態
でアルコールを乾燥する方法、また、ゲル状化合物を液
化炭酸(50〜60気圧程度)中に浸漬した後、二酸化
炭素を超臨界状態にして乾燥する方法が挙げられる。
As a method of performing supercritical drying, for example, the following method can be mentioned. That is, a method in which the gel compound of alkoxysilane obtained as described above is heated and pressurized to a temperature and pressure higher than the critical point of alcohol, and the alcohol is dried in that state. (Approximately 60 atm) and then drying the carbon dioxide in a supercritical state.

【0018】いずれの場合においても、この発明では超
臨界状態で溶媒を乾燥した後、圧力は常圧まで戻すが温
度は最終的にエアロゲルを取り出すまでその溶媒の沸点
以上の温度で保持しておくことが特徴である。前述した
とおり、溶媒を完全に除去するには非常に長時間を要す
る。溶媒除去を不十分なままで常温常圧まで温度圧力を
下げると、その際に溶媒の液化、結露等によってゲルは
破壊する可能性がある。しかし、この発明の方法によれ
ば、溶媒除去が適当なところで圧力を下げてエアロゲル
を取り出してもかまわない。その適当なところとは、溶
媒の種類とその超臨界状態での乾燥時の温度条件によっ
て決まるもので、高圧容器中の溶媒残存率で決定され
る。
In any case, in the present invention, after drying the solvent in a supercritical state, the pressure is returned to normal pressure, but the temperature is kept at a temperature higher than the boiling point of the solvent until the airgel is finally removed. It is characteristic. As described above, it takes a very long time to completely remove the solvent. If the temperature and pressure are lowered to room temperature and normal pressure while the solvent is not sufficiently removed, the gel may be broken due to liquefaction or dew condensation of the solvent. However, according to the method of the present invention, the airgel may be taken out by lowering the pressure where solvent removal is appropriate. The appropriate location is determined by the type of the solvent and the temperature conditions during drying in the supercritical state, and is determined by the residual ratio of the solvent in the high-pressure vessel.

【0019】このような超臨界乾燥を行い、前記ゲル状
化合物物から含有する溶媒を除去することにより、光透
過性を有する多孔体が得られる。上記のような方法で超
臨界乾燥を行うと、超臨界乾燥工程の中での抽出工程は
ほんの1〜2時間で達成でき、全乾燥工程時間も数時間
(実際には約3〜5時間)で行えるようになる。
By performing such supercritical drying and removing the contained solvent from the gelled compound, a porous body having light transmittance can be obtained. When the supercritical drying is performed by the above method, the extraction step in the supercritical drying step can be achieved in only 1 to 2 hours, and the total drying step time is several hours (actually, about 3 to 5 hours). Will be able to do it.

【0020】[0020]

【作用】アルコキシシランを加水分解し、縮重合して得
られたゲル状化合物を超臨界乾燥する。超臨界乾燥と
は、ゲル状化合物に含まれている溶媒の臨界点または臨
界点よりも高温高圧の雰囲気中においてその溶媒を除去
することである。このような雰囲気中では溶媒の相転移
(気化、凝縮)が起こらないため、溶媒除去時のゲル状
化合物の構造体の破壊、凝集を抑制することができる。
このため、超臨界乾燥によって得られたエアロゲルは、
多孔質なものとなる。これに対し、通常の加熱乾燥を行
った場合には、溶媒が液体から気体に変化するため、ゲ
ル状化合物の構造体中から除去される際に、溶媒の表面
エネルギーによって前記構造体が破壊されたり、凝集し
たりする。
The gel-like compound obtained by hydrolysis and condensation polymerization of alkoxysilane is supercritically dried. The supercritical drying is to remove the solvent contained in the gel compound in a critical point of the solvent contained in the gel-like compound or in an atmosphere at a higher temperature and a higher pressure than the critical point. In such an atmosphere, phase transition (evaporation, condensation) of the solvent does not occur, so that the destruction and aggregation of the structure of the gel compound at the time of solvent removal can be suppressed.
For this reason, airgel obtained by supercritical drying,
It becomes porous. On the other hand, when normal heating and drying are performed, the solvent changes from a liquid to a gas, and when the gel is removed from the structure of the gel compound, the structure is destroyed by the surface energy of the solvent. Or agglomerate.

【0021】超臨界乾燥による溶媒抽出工程から、該工
程を終えて圧力を下げた後、エアロゲルを容器から取り
出すまでの間、温度を溶媒の沸点以上に保持する(温度
を溶媒の沸点を下回らないように保持する)ことによ
り、容器内にある程度の溶媒が残存していても、超臨界
状態の流体から気体へと相転移しただけで液体にはなら
ず完全な気体で存在するため、その溶媒の存在によって
エアロゲルの構造を破壊することはない。従って、溶媒
を完全に除去してしまう必要性はなく、非常に短い抽出
時間で超臨界乾燥を終え、収縮、クラック等の構造破壊
のないエアロゲルを得ることができる。
From the solvent extraction step by supercritical drying, the temperature is maintained at or above the boiling point of the solvent until the airgel is removed from the container after the pressure is reduced after the completion of the step (the temperature does not fall below the boiling point of the solvent). Even if a certain amount of solvent remains in the container, only a phase transition from a supercritical fluid to a gas occurs and the solvent does not become a liquid but exists as a complete gas. Does not destroy the structure of the airgel. Accordingly, there is no need to completely remove the solvent, and supercritical drying can be completed in a very short extraction time, and an aerogel free from structural destruction such as shrinkage and cracks can be obtained.

【0022】この発明の製造方法により得られたエアロ
ゲルは、非常に微細なシリカ粒子からなる構造体で、そ
の粒子径および粒子間空隙は光の波長よりもはるかに小
さいために、多孔体であるにもかかわらず透明性を有す
る。ここで透明性とは、たとえば、可視光波長領域等に
対する視覚的な透明性であるが、これに限定されない。
The aerogel obtained by the production method of the present invention is a structure composed of very fine silica particles, and is porous because its particle diameter and interparticle space are much smaller than the wavelength of light. Nevertheless, it has transparency. Here, the transparency is, for example, visual transparency in a visible light wavelength region or the like, but is not limited thereto.

【0023】[0023]

【実施例】以下に、この発明の具体的な実施例および比
較例を示すが、この発明は下記実施例に限定されない。 −実施例1− テトラメトキシシラン(東レダウコーニングシリコーン
(株)製試薬)に、エタノール(ナカライテスク(株)
製特級試薬)と0.01mol/l のアンモニア水溶液とを
混合したものを徐々に添加した。この際、反応は室温で
行い、混合比は、テトラメトキシシラン:エタノール:
アンモニア水=1:5:4(モル比)であった。2時間
程度攪拌後静置し、ゲル化させた。ゲル化後、エタノー
ルを加え、50℃で加熱し、さらにエタノールの添加を
繰り返してゲルが乾燥しないように縮重合反応を加速
(熟成)した。
EXAMPLES Specific examples and comparative examples of the present invention will be shown below, but the present invention is not limited to the following examples. -Example 1-Tetramethoxysilane (a reagent manufactured by Toray Dow Corning Silicone Co., Ltd.) was added to ethanol (Nacalai Tesque, Inc.).
(Special grade reagent) and a 0.01 mol / l aqueous ammonia solution were gradually added. At this time, the reaction was performed at room temperature, and the mixing ratio was tetramethoxysilane: ethanol:
Aqueous ammonia = 1: 5: 4 (molar ratio). After stirring for about 2 hours, the mixture was allowed to stand to gel. After gelation, ethanol was added, the mixture was heated at 50 ° C., and the addition of ethanol was repeated to accelerate (age) the polycondensation reaction so that the gel was not dried.

【0024】次に、このゲルを18℃、55kg/cm2
二酸化炭素中に入れ、ゲル内のエタノールを二酸化炭素
に置換する操作を2〜3時間行った。その後、容器内を
二酸化炭素の超臨界条件である、80℃、160kg/cm
2 にし、超臨界乾燥(溶媒除去)を2時間行った。その
後、容器内を80℃のままで圧力だけを常圧まで下げ、
容器からエアロゲル試料を取り出した。試料の大きさ
は、厚み5mm、直径50mmであった。
Next, the gel was placed in carbon dioxide at 18 ° C. and 55 kg / cm 2 , and the operation of replacing the ethanol in the gel with carbon dioxide was performed for 2 to 3 hours. Thereafter, the inside of the container is set at 80 ° C., 160 kg / cm, which is a supercritical condition of carbon dioxide.
Then , supercritical drying (solvent removal) was performed for 2 hours. After that, only the pressure is reduced to normal pressure while keeping the inside of the container at 80 ° C,
An airgel sample was removed from the container. The sample had a thickness of 5 mm and a diameter of 50 mm.

【0025】−実施例2− 実施例1において、二酸化炭素を抽出溶媒とする超臨界
乾燥を行う代わりに、エタノールをエタノールの超臨界
条件下(250℃、80kg/cm2 )で2時間超臨界乾燥
を行うようにし、その後圧力を常圧まで、温度を80℃
まで下げた後、エアロゲル試料を取り出したこと以外は
実施例1と同様にしてエアロゲル試料を得た。
Example 2 Instead of supercritical drying using carbon dioxide as an extraction solvent in Example 1, ethanol was replaced with ethanol under supercritical conditions (250 ° C., 80 kg / cm 2 ) for 2 hours. Drying is performed, and then the pressure is increased to normal pressure and the temperature is increased to 80 ° C.
After that, the airgel sample was obtained in the same manner as in Example 1 except that the airgel sample was taken out.

【0026】−実施例3− 実施例1において、テトラメトキシシランを用いる代わ
りにテトラエトキシシラン(東レダウコーニングシリコ
ーン(株)製試薬)を用い、0.01N−アンモニア水
の代わりに0.04mol/l フッ化アンモニウム水溶液を
用い、さらに混合比をテトラエトキシシラン:エタノー
ル:フッ化アンモニウム水溶液=1:5.5:5とした
こと以外は、実施例1と同様にしてエアロゲル試料を得
た。
Example 3 In Example 1, tetraethoxysilane (a reagent manufactured by Toray Dow Corning Silicone Co., Ltd.) was used instead of tetramethoxysilane, and 0.04 mol / mol of 0.01N ammonia water was used. l An airgel sample was obtained in the same manner as in Example 1 except that an aqueous solution of ammonium fluoride was used, and the mixing ratio was set to tetraethoxysilane: ethanol: aqueous solution of ammonium fluoride = 1: 5.5: 5.

【0027】−実施例4− 実施例1において、超臨界乾燥を80℃、160kg/cm
2 の条件の代わりに100℃、160kg/cm2 の条件で
約1時間行い、その後、圧力を常圧まで下げ、温度は1
00℃のままでエアロゲル試料を取り出したこと以外
は、実施例1と同様にしてエアロゲル試料を得た。
Example 4 In Example 1, supercritical drying was carried out at 80 ° C. and 160 kg / cm.
2 hours at 100 ° C. and 160 kg / cm 2 instead of condition 2. Then, the pressure is reduced to normal pressure,
An airgel sample was obtained in the same manner as in Example 1, except that the airgel sample was taken out at 00 ° C.

【0028】−実施例5− 実施例2において、エタノールの代わりにメタノールを
用い、その超臨界条件(275℃、90kg/cm2 )で超
臨界乾燥を行い、その後、圧力を常圧まで、温度を70
℃まで下げた後、エアロゲル試料を取り出したこと以外
は、実施例2と同様にしてエアロゲル試料を得た。
Example 5 In Example 2, supercritical drying was performed under supercritical conditions (275 ° C., 90 kg / cm 2 ) using methanol instead of ethanol. 70
An airgel sample was obtained in the same manner as in Example 2, except that the airgel sample was taken out after the temperature was lowered to ° C.

【0029】−実施例6− 実施例1において、テトラメトキシシランの代わりに2
官能アルコキシシランであるジメチルジメトキシシラン
とテトラメトキシシランの1:9(モル比)の混合物を
用いたこと以外は、実施例1と同様にしてエアロゲル試
料を得た。 −実施例7− 実施例1において、テトラメトキシシランの代わりに3
官能アルコキシシランであるメチルトリメトキシシラン
とテトラメトキシシランの5:5(モル比)の混合物を
用いたこと以外は、実施例1と同様にしてエアロゲル試
料を得た。
Example 6 In Example 1, 2 was replaced by tetramethoxysilane.
An airgel sample was obtained in the same manner as in Example 1, except that a mixture of dimethyldimethoxysilane and tetramethoxysilane, which were functional alkoxysilanes, in a ratio of 1: 9 (molar ratio) was used. -Example 7-In Example 1, 3 was used instead of tetramethoxysilane.
An airgel sample was obtained in the same manner as in Example 1, except that a mixture of 5: 5 (molar ratio) of methyltrimethoxysilane and tetramethoxysilane, which were functional alkoxysilanes, was used.

【0030】−比較例1− 実施例1の乾燥工程において、80℃、160kg/cm2
の超臨界条件で約2時間の超臨界乾燥を行い80℃のま
までエアロゲル試料を取り出す代わりに、40℃、80
kg/cm2 の超臨界条件で乾燥を2時間行い温度圧力を常
温常圧まで下げた後、エアロゲル試料を取り出したこと
以外は、実施例1と同様にして試料を得た。
Comparative Example 1 In the drying step of Example 1, 80 ° C., 160 kg / cm 2
Instead of performing supercritical drying for about 2 hours under the supercritical condition and taking out the airgel sample at 80 ° C.,
A sample was obtained in the same manner as in Example 1 except that drying was performed under supercritical conditions of kg / cm 2 for 2 hours to lower the temperature and pressure to room temperature and normal pressure, and then the airgel sample was taken out.

【0031】−比較例2− 実施例1の乾燥工程において、超臨界乾燥を行った後8
0℃のままでエアロゲル試料を取り出す代わりに、超臨
界乾燥を行った後温度圧力を常温常圧まで下げた後、エ
アロゲル試料を取り出したこと以外は、実施例1と同様
にして試料を得た。
Comparative Example 2 In the drying step of Example 1, after performing supercritical drying, 8
Instead of taking out the airgel sample at 0 ° C., a sample was obtained in the same manner as in Example 1 except that after supercritical drying, the temperature and pressure were lowered to room temperature and normal pressure, and the airgel sample was taken out. .

【0032】−比較例3− 比較例1の乾燥工程において、乾燥を2時間行う代わり
に24時間行ったこと以外は、比較例1と同様にして試
料を得た。 −比較例4− 実施例1において、ゲル化物を熟成した後、そのまま常
圧で80〜100℃に加熱して乾燥を行って、乾燥物試
料を得た。
Comparative Example 3 A sample was obtained in the same manner as in Comparative Example 1 except that in the drying step of Comparative Example 1, drying was performed for 24 hours instead of 2 hours. Comparative Example 4 In Example 1, the gelled product was aged, and then heated to 80 to 100 ° C. at normal pressure and dried to obtain a dried product sample.

【0033】実施例1〜7および比較例1〜4で得られ
た試料の主な内容やそれを得るための操作条件について
の項目を表1に示した。
Table 1 shows the main contents of the samples obtained in Examples 1 to 7 and Comparative Examples 1 to 4 and the items concerning the operating conditions for obtaining them.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例1〜7および比較例1〜4で得られ
た試料について、かさ密度、比表面積、熱伝導率、光透
過率、乾燥試料の状態を調べた。比表面積は窒素吸着法
によるBET法を利用して求めた。熱伝導率は、英弘精
機(株)製の定常法による熱伝導率測定装置を使用し
て、ASTM−C518に準拠した方法で、設定温度2
0℃と40℃の条件で測定した。
With respect to the samples obtained in Examples 1 to 7 and Comparative Examples 1 to 4, the bulk density, the specific surface area, the thermal conductivity, the light transmittance, and the state of the dried sample were examined. The specific surface area was determined using a BET method based on a nitrogen adsorption method. The thermal conductivity was measured by a method based on ASTM-C518 using a thermal conductivity measuring device based on a steady method manufactured by Eiko Seiki Co., Ltd.
The measurement was performed under the conditions of 0 ° C and 40 ° C.

【0036】光透過率は、試料の透過光について、可視
光域の分光分布を測定し、可視光透過率をJIS−R3
106に基づいて求めた。乾燥試料の状態は、肉眼観察
により、試料にクラックがない(クラックフリーと表示
した)か、収縮がないか、などを調べた。結果を表2に
示した。
The light transmittance is measured by measuring the spectral distribution of the transmitted light of the sample in the visible light range, and measuring the visible light transmittance according to JIS-R3.
106. The state of the dried sample was examined by visual observation to see if the sample had no cracks (indicated as crack-free) or no shrinkage. The results are shown in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】表にみるように、実施例のエアロゲルは、
保持する多孔性が優れているため、断熱性、光透過性に
優れている。これに比べ、比較例のものは次のような欠
点を持っていた。比較例4では、乾燥時に著しい収縮を
起こした。比較例1および2では超臨界乾燥を施してい
るが、溶媒の除去が不十分なため、降温時に微量の溶媒
が液化し、試料は収縮を起こし、多孔体としての性能が
落ちたり、また、クラック発生等の構造破壊が起こって
いた。比較例3では実施例と同様のエアロゲルが得られ
ているが、超臨界乾燥に長時間を要した。
As can be seen from the table, the airgel of the embodiment is
Since it has excellent porosity, it has excellent heat insulation and light transmittance. In contrast, the comparative example had the following disadvantages. In Comparative Example 4, remarkable shrinkage occurred during drying. In Comparative Examples 1 and 2, supercritical drying was performed. However, since the removal of the solvent was insufficient, a small amount of the solvent liquefied at the time of temperature decrease, the sample shrinked, and the performance as a porous body was reduced. Structural destruction such as crack generation occurred. In Comparative Example 3, the same aerogel as that of Example was obtained, but it took a long time for supercritical drying.

【0039】[0039]

【発明の効果】この発明のエアロゲルの製造方法によれ
ば、短時間の超臨界乾燥によってエアロゲルを得ること
ができ、かつ、その乾燥時に収縮、クラック等による破
壊が起こることがない。この発明によって得られたエア
ロゲルは、断熱性等、多孔質材料に特有の機能と光透過
性に優れている。
According to the aerogel production method of the present invention, an aerogel can be obtained by short-time supercritical drying, and no destruction due to shrinkage, cracks or the like occurs during the drying. The aerogel obtained by the present invention is excellent in functions such as heat insulation and the like, which are unique to porous materials, and in light transmittance.

【0040】この製造方法によって得られたエアロゲル
は、たとえば、断熱材、音響材料、チェレンコフ素子、
触媒担体等の様々な用途に用いることができる。
The aerogel obtained by this manufacturing method is, for example, a heat insulating material, an acoustic material, a Cherenkov element,
It can be used for various uses such as a catalyst carrier.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08G 77/32 C08G 77/06 C08G 77/02 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C08G 77/32 C08G 77/06 C08G 77/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式(I) SiR1 n (OR2)4-n …(I) 〔式中、R1 およびR2 は、互いに独立に、炭素数1〜
5のアルキル基またはフェニル基を表す。R1 およびR
2 がそれぞれ2個以上ある場合、2個以上のR1、2個
以上のR2 は、それぞれ、互いに同じであってもよく、
異なっていてもよい。n=0〜2〕で表されるアルコキ
シシランを加水分解し、縮重合して得られたゲル化物を
超臨界乾燥させてエアロゲルを製造する方法において、
超臨界状態で溶媒を除去してから超臨界乾燥に用いた高
圧容器よりエアロゲルを取り出すまでの間、前記容器内
の温度を前記溶媒の沸点以上の温度に保持することを特
徴とするエアロゲルの製造方法。
1. A compound represented by the following general formula (I): SiR 1 n (OR 2 ) 4-n (I) wherein R 1 and R 2 independently of one another have 1 to 1 carbon atoms.
5 represents an alkyl group or a phenyl group. R 1 and R
When there are two or more 2 each, two or more R 1 and two or more R 2 may be the same as each other,
It may be different. n = 0 to 2] in a method of hydrolyzing an alkoxysilane represented by the formula, and supercritically drying a gelled product obtained by condensation polymerization to produce an airgel,
Manufacturing the airgel, wherein the temperature in the container is maintained at a temperature equal to or higher than the boiling point of the solvent, until the airgel is removed from the high-pressure container used for supercritical drying after removing the solvent in the supercritical state. Method.
JP4104997A 1992-04-23 1992-04-23 Airgel production method Expired - Lifetime JP3048276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104997A JP3048276B2 (en) 1992-04-23 1992-04-23 Airgel production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104997A JP3048276B2 (en) 1992-04-23 1992-04-23 Airgel production method

Publications (2)

Publication Number Publication Date
JPH05295117A JPH05295117A (en) 1993-11-09
JP3048276B2 true JP3048276B2 (en) 2000-06-05

Family

ID=14395742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104997A Expired - Lifetime JP3048276B2 (en) 1992-04-23 1992-04-23 Airgel production method

Country Status (1)

Country Link
JP (1) JP3048276B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060309A (en) * 2011-09-12 2013-04-04 Achilles Corp Nanostructured porous body excellent in hydrophobicity
JP6079023B2 (en) * 2012-07-19 2017-02-15 Dic株式会社 Active energy ray-curable composition and method for producing film
JP7293583B2 (en) * 2018-07-11 2023-06-20 株式会社レゾナック airgel block

Also Published As

Publication number Publication date
JPH05295117A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JP2725573B2 (en) Manufacturing method of hydrophobic airgel
JP2659155B2 (en) Method for producing hydrophobic airgel
US5830387A (en) Process of forming a hydrophobic aerogel
JPH0834678A (en) Aerogel panel
JPH10236817A (en) Production of hydrophobic aerogel
JP2000264620A (en) Production of hydrophobic aerogel
JPH08300567A (en) Manufacture of aerogel panel
JP3048276B2 (en) Airgel production method
JP2005154195A (en) Aerogel material and article formed of the aerogel material
JP3339393B2 (en) Manufacturing method of hydrophobic airgel
JP3431197B2 (en) Method for producing porous silica body by sol-gel method
EP0585456A1 (en) Process for producing hydrophobic aerogel
JPH04198238A (en) Preparation of hydrophobic aerogel
JP3273957B2 (en) Method for producing airgel
JPH06191822A (en) Production of aerogel composite material
JP2907667B2 (en) Method for producing transparent airgel
JPH09169515A (en) Production of gradient density aerogel
JP2912718B2 (en) Method for producing transparent inorganic porous material
Yoda et al. Effects of ethanolamines catalysts on properties and microstructures of silica aerogels
JPH08151210A (en) Production of aerogel filler
JP3100856B2 (en) Manufacturing method of bulk airgel
JP2912719B2 (en) Transparent inorganic porous material
JP3520601B2 (en) Aerogel manufacturing method
JPH0859361A (en) Aerogel panel
JP3045411B2 (en) Method for producing inorganic microporous body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13