JP3520601B2 - Aerogel manufacturing method - Google Patents

Aerogel manufacturing method

Info

Publication number
JP3520601B2
JP3520601B2 JP10531695A JP10531695A JP3520601B2 JP 3520601 B2 JP3520601 B2 JP 3520601B2 JP 10531695 A JP10531695 A JP 10531695A JP 10531695 A JP10531695 A JP 10531695A JP 3520601 B2 JP3520601 B2 JP 3520601B2
Authority
JP
Japan
Prior art keywords
airgel
group
compound
gel
supercritical drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10531695A
Other languages
Japanese (ja)
Other versions
JPH08302192A (en
Inventor
弘 横川
勝 横山
健二 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10531695A priority Critical patent/JP3520601B2/en
Publication of JPH08302192A publication Critical patent/JPH08302192A/en
Application granted granted Critical
Publication of JP3520601B2 publication Critical patent/JP3520601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/56Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by means for preventing heat loss
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリカの多孔質骨格か
らなるエアロゲルの製法に関し、詳しくは、例えば、採
光性、光透過性、透明性及び高断熱性等を同時に要求さ
れる、太陽光集熱に有用な光透過性断熱材、住宅用開口
部断熱材、炉等に代表される高温装置用のぞき窓等の様
々な用途に用いることができるエアロゲルの製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an airgel having a porous skeleton of silica, and more specifically, for example, sunlight which is required to have daylighting property, light transmitting property, transparency and high heat insulating property at the same time. The present invention relates to a method for producing an airgel that can be used in various applications such as a light-transmitting heat insulating material useful for collecting heat, a heat insulating material for an opening in a house, and a peep window for a high temperature device typified by a furnace.

【0002】[0002]

【従来の技術】従来、熱伝導率が小さく、かつ、光透過
性を有する材料として、シリカからなるエアロゲルが知
られている。このエアロゲルは、USP4402927
号、同4432956号、同4610863号の各明細
書に開示されているように、アルコキシシラン(シリコ
ンアルコキシド、アルキルシリケート等とも称される)
を加水分解、重合して得られるシリカ骨格からなる湿潤
状態のゲル状化合物を、アルコ−ル、又は液化二酸化炭
素等の溶媒(分散媒)の存在下で、この溶媒の臨界点以
上の超臨界状態で乾燥し、必要に応じてはその後にさら
に500〜750℃程度もしくはそれ以上に加熱処理を
施すことにより製造することができる。また、USP5
137927号、同5124364号のように、ケイ酸
ナトリウムを原料として同様にゲル状化合物を得、この
ゲル状化合物を超臨界乾燥することによっても製造する
ことができる。このような製造方法により得られるエア
ロゲルは、例えば、光透過性を有する断熱材料等として
有用な素材である。
2. Description of the Related Art Conventionally, an airgel made of silica has been known as a material having a low thermal conductivity and a light transmitting property. This airgel is available from USP 4402927.
Alkoxysilanes (also referred to as silicon alkoxides, alkyl silicates, etc.), as disclosed in Japanese Patent Nos. 4,432,956 and 4,610,863.
The gelled compound in the wet state consisting of a silica skeleton obtained by hydrolyzing and polymerizing the above, in the presence of a solvent (dispersion medium) such as alcohol or liquefied carbon dioxide, is supercritical above the critical point of this solvent. It can be produced by drying in the state, and then, if necessary, further subjecting it to heat treatment at about 500 to 750 ° C. or higher. Also, USP5
As described in JP-A-137927 and JP-A-5124364, a gel-like compound is similarly obtained using sodium silicate as a raw material, and the gel-like compound can also be produced by supercritical drying. The airgel obtained by such a manufacturing method is a material useful as, for example, a heat insulating material having light transmittance.

【0003】しかし、この前記のようなエアロゲルは非
常に親水性に優れているため、実用条件では空気中の湿
気によって経時的に性能が劣化する。すなわち、透明性
の低下や、収縮、変形が起こるものであった。このた
め、エアロゲルの実用化には、フィルムなどによる完全
なパッキングや、ガラス板で挟んだ上に完全なシーリン
グを施す等の方法でエアロゲル自身が外気に触れないよ
うな工夫が必要不可欠であった。また、超臨界乾燥して
得られたエアロゲルはそのシリカ表面には超臨界乾燥中
の媒体、アルコールが反応したアルコキシル基が存在す
ることは知られており、得られたエアロゲルの透明性を
より向上させるために500〜750℃で加熱処理を施
し、アルコキシル基を除去している。しかし、この方法
によればアルコキシル基が有する些細な疎水性さえも消
滅させることになり、エアロゲルの親水性はより著しい
ものになっていた。
However, since the airgel as described above is very hydrophilic, its performance deteriorates with time due to moisture in the air under practical conditions. That is, the transparency was lowered, and the shrinkage and deformation occurred. For this reason, in order to put the airgel into practical use, it was essential to devise a method such that the airgel itself would not come into contact with the outside air by methods such as perfect packing with a film or sandwiching it with glass plates and then performing a complete sealing. . In addition, it is known that the airgel obtained by supercritical drying has a medium during supercritical drying on the surface of the silica, and an alkoxyl group reacted with alcohol is present, which further improves the transparency of the obtained airgel. For this purpose, a heat treatment is performed at 500 to 750 ° C. to remove the alkoxyl group. However, according to this method, even the trivial hydrophobicity of the alkoxyl group is eliminated, and the hydrophilicity of the airgel becomes more remarkable.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記の事実に
鑑みてなされたもので、その目的とするところは、透明
性、断熱性及び疎水性等に優れるエアロゲルの製法を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above facts, and an object thereof is to provide a method for producing an airgel which is excellent in transparency, heat insulation and hydrophobicity. .

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
エアロゲルの製法は、縮重合性を有するアルコキシシラ
ンを加水分解したゾルを縮重合反応によりゲル化させる
ことによってゲル状化合物とし、このゲル状化合物を疎
水化剤との反応による疎水化処理及び超臨界乾燥を施す
エアロゲルの製法において、前記疎水化処理及び超臨界
乾燥を施し、次いで、アルコキシル基の分解温度以上
で、かつ、疎水化処理により付与された疎水基の分解温
度未満で、加熱処理を施すことを特徴とする。
The method for producing an airgel according to claim 1 of the present invention comprises a step of forming a gel-like compound by gelling a sol obtained by hydrolyzing a polycondensable alkoxysilane by a polycondensation reaction. In a method of producing an airgel in which a gel compound is subjected to a hydrophobizing treatment and a supercritical drying by a reaction with a hydrophobizing agent, the hydrophobizing treatment and the supercritical drying are performed, and then, at a temperature equal to or higher than the decomposition temperature of the alkoxyl group, and hydrophobizing. It is characterized in that the heat treatment is carried out below the decomposition temperature of the hydrophobic group imparted by the treatment.

【0006】本発明の請求項2に係るエアロゲルの製法
は、前記疎水化剤が有機シラン化合物であることを特徴
とする。
The method for producing an airgel according to claim 2 of the present invention is characterized in that the hydrophobizing agent is an organic silane compound.

【0007】本発明の請求項3に係るエアロゲルの製法
は、前記超臨界乾燥後の加熱処理の温度が270〜40
0℃であることを特徴とする。
In the method for producing an airgel according to claim 3 of the present invention, the temperature of the heat treatment after the supercritical drying is 270 to 40.
It is characterized in that it is 0 ° C.

【0008】以下に本発明を詳細に説明する。本発明に
用いるアルコキシシランとは、下記の一般式で表され
るアルコキシシランであり、より具体的には、下記の一
般式で表される2官能のアルコキシシラン、下記の一
般式で表される3官能のアルコキシシラン、下記の一
般式で表される4官能のアルコキシシラン及び下記の
一般式で表されるアルコキシシランのオリゴマー等で
ある。
The present invention will be described in detail below. The alkoxysilane used in the present invention is an alkoxysilane represented by the following general formula, and more specifically, a bifunctional alkoxysilane represented by the following general formula, represented by the following general formula. A trifunctional alkoxysilane, a tetrafunctional alkoxysilane represented by the following general formula, and an alkoxysilane oligomer represented by the following general formula, and the like.

【0009】[0009]

【化1】 [Chemical 1]

【0010】[0010]

【化2】 [Chemical 2]

【0011】[0011]

【化3】 [Chemical 3]

【0012】[0012]

【化4】 [Chemical 4]

【0013】[0013]

【化5】 [Chemical 5]

【0014】本発明に係るゲル状化合物(湿潤アルコゲ
ル)は、前記の一般式〜一般式で表されるアルコキ
シシランからなる群から選択される少なくとも1種、又
は前記の一般式〜一般式で表されるアルコキシシラ
ンからなる群から選択される少なくとも1種と前記の一
般式で表されるアルコキシシランとを含有する混合物
を加水分解し、縮重合することによって得られる。
The gel-like compound (wet alcogel) according to the present invention is represented by at least one selected from the group consisting of the alkoxysilanes represented by the above general formulas to the general formulas, or the above general formulas to the general formulas. It is obtained by hydrolyzing and polycondensing a mixture containing at least one selected from the group consisting of alkoxysilanes represented by the formula and an alkoxysilane represented by the above general formula.

【0015】本発明で用いられる前記の一般式〜一般
式で表されるアルコキシシランの具体例を挙げると、
2官能アルコキシシランとしては、例えば、ジメチルジ
メトキシシラン、ジメチルジエトキシシラン、ジフェニ
ルジエトキシシラン、ジフェニルジメトキシシラン、メ
チルフェニルジエトキシシラン、メチルフェニルジメト
キシシラン、ジエチルジエトキシシラン、ジエチルジメ
トキシシラン等があり、3官能アルコキシシランとして
は、例えば、メチルトリメトキシシラン、メチルトリエ
トキシシラン、エチルトリメトキシシラン、エチルトリ
エトキシシラン、フェニルトリメトキシシラン、フェニ
ルトリエトキシシラン等があり、4官能アルコキシシラ
ンとしては、例えば、テトラメトキシシラン、テトラエ
トキシシラン等があるが特に、限定されない。
Specific examples of the alkoxysilanes represented by the above general formulas to general formulas used in the present invention are as follows:
Examples of the bifunctional alkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldiethoxysilane, diphenyldimethoxysilane, methylphenyldiethoxysilane, methylphenyldimethoxysilane, diethyldiethoxysilane, and diethyldimethoxysilane. Examples of trifunctional alkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane. Examples of tetrafunctional alkoxysilanes include: , Tetramethoxysilane, tetraethoxysilane, etc., but are not particularly limited.

【0016】前記の一般式で表されるアルコキシシラ
ンのオリゴマーとしては、重合度が10(以下重合度が
nのものはn量体と記す。)以下であることが好ましい
が、無色透明な液状であれば、これに限定されない。前
記アルコキシシランのオリゴマーは、この重合度が均一
な化合物である必要はなく、重合度の分布が存在したり
分子構造が鎖状、分岐状及び環状で混在していても構わ
ない。物質としての安定性や、ゲル状化合物を作製する
ための反応時間を考慮すれば、2〜6量体のものが好ま
しい。前記アルコキシシランのオリゴマー内のRはアル
キル基、フェニル基を表し、中でも、メチル基(−CH
3 )、エチル基(−C2 5 )が好ましい。具体的には
メトキシシランのオリゴマーの場合には平均分子量が2
50〜700、エトキシシランのオリゴマーの場合には
平均分子量が300〜900のオリゴマーが好ましい。
The alkoxysilane oligomer represented by the above general formula preferably has a degree of polymerization of 10 (hereinafter, a monomer having a degree of polymerization of n is referred to as an n-mer) or less, but is a colorless transparent liquid. If so, it is not limited to this. The above-mentioned alkoxysilane oligomer does not need to be a compound having a uniform degree of polymerization, and may have a distribution of the degree of polymerization or have a mixed molecular structure in the form of chain, branch or ring. Considering the stability as a substance and the reaction time for producing a gel-like compound, those having 2 to 6 mers are preferable. R in the alkoxysilane oligomer represents an alkyl group or a phenyl group, and among them, a methyl group (—CH
3), ethyl group (-C 2 H 5) are preferred. Specifically, in the case of an oligomer of methoxysilane, the average molecular weight is 2
In the case of an oligomer of ethoxysilane of 50 to 700, an oligomer having an average molecular weight of 300 to 900 is preferable.

【0017】本発明で前記アルコキシシランを効率よく
加水分解し、縮重合を行うためには、このアルコキシシ
ランを含む反応溶液に、予め触媒を添加しておくことが
好ましい。このような触媒としては、酸性触媒、塩基性
触媒等が挙げられる。具体的に述べると、酸性触媒とし
ては、塩酸、クエン酸、硝酸、硫酸、フッ化アンモニウ
ム等が用いられ、塩基性触媒としては、アンモニア、ピ
ペリジン等が用いられるが、これらに限定されるもので
はない。
In order to efficiently hydrolyze the alkoxysilane and perform polycondensation in the present invention, it is preferable to add a catalyst to the reaction solution containing the alkoxysilane in advance. Examples of such catalysts include acidic catalysts and basic catalysts. Specifically, as the acidic catalyst, hydrochloric acid, citric acid, nitric acid, sulfuric acid, ammonium fluoride or the like is used, and as the basic catalyst, ammonia, piperidine or the like is used, but is not limited to these. Absent.

【0018】アルコキシシランの加水分解、縮重合に用
いられる溶媒としては、通常、原料となるアルコキシシ
ランと水とを均一に溶解混合するために、アルコ−ル、
アセトン等が用いられるが、これらに限定されるわけで
はなく、アルコキシシランと水との両方が溶解しやすい
溶媒であればよい。しかし、ゲル状化合物の生成過程の
加水分解反応でアルコ−ルが生成すること、また、超臨
界乾燥のことを考慮すると、溶媒としては、アルコール
が好ましい。
The solvent used for the hydrolysis and polycondensation of the alkoxysilane is usually an alcohol, in order to uniformly dissolve and mix the starting alkoxysilane and water.
Acetone or the like is used, but the solvent is not limited to these and may be any solvent in which both alkoxysilane and water are easily dissolved. However, considering that alcohol is produced by the hydrolysis reaction in the production process of the gel-like compound and that supercritical drying is performed, alcohol is preferable as the solvent.

【0019】また、反応溶液の配合比は限定されず、透
明性、断熱性、比表面積、密度、光屈折率など要求され
る性能によって様々に変化させることが可能である。こ
のエアロゲルの密度は特に限定されないが、0.01〜
0.3g/cm3 であることが好ましく、さらには、
0.04〜0.2g/cm3 であることがより好まし
い。すなわち、このエアロゲルの密度が0.01g/c
3 未満の場合には、ゲル化させるのに多大の時間を要
し、あるいは、超臨界乾燥時の収縮が避けられず、あま
りに軽量な為、作業者の手や容器、部材など接触するも
のに付着して割れる等、現実的には取扱いが困難なもの
となるといった問題が生じ、0.3g/cm 3 を越える
場合には、エアロゲルの熱伝導率もやや大きくなり、断
熱性の点でさほど優れた素材ではなくなり、透光性等の
性能も低下し、さらにはエアロゲルの調製が困難とな
る。したがって、超臨界乾燥後の密度がこの範囲である
ように反応溶液の配合比が決定される。
The mixing ratio of the reaction solution is not limited,
Brightness, heat insulation, specific surface area, density, optical refractive index, etc. are required.
It can be changed in various ways depending on the performance. This
The density of the airgel is not particularly limited, but is 0.01 to
0.3 g / cm3Is preferable, and further,
0.04-0.2g / cm3Is more preferred to be
Yes. That is, the density of this airgel is 0.01 g / c
m3If less than, it takes a lot of time to gel.
Or shrinkage during supercritical drying is unavoidable and
It is so lightweight that it may come into contact with workers' hands, containers, members, etc.
Those that are difficult to handle in practice, such as sticking to and breaking
There is a problem that becomes 0.3g / cm 3Cross over
In some cases, the thermal conductivity of the airgel will increase slightly and the
It is no longer a very good material in terms of heat,
Performance also deteriorates, and it is difficult to prepare airgel.
It Therefore, the density after supercritical drying is in this range.
Thus, the compounding ratio of the reaction solution is determined.

【0020】得られたゲル状化合物に対しては疎水化処
理を行う。疎水化剤は、ゲル状化合物が有するシラノー
ル基に対して反応する官能基と疎水基とを有しているも
のを用いる。シラノール基に対して反応する官能基とし
ては、例えば、ハロゲン、アミノ基、イミノ基、カルボ
キシル基、アルコキシル基及び水酸基が挙げられる。疎
水基としては、例えば、アルキル基、フェニル基及びそ
れらのフッ化物等が挙げられる。疎水化剤は前記官能基
及び疎水基を、それぞれ1種のみを有してもよいし、2
種以上を有してもよい。具体的には、ヘキサメチルジシ
ラザン、ヘキサメチルジシロキサン、トリメチルクロロ
シラン、トリメチルメトキシシラン、トリメチルエトキ
シシラン、トリエチルエトキシシラン、トリエチルメト
キシシラン、ジメチルジメトキシシラン、ジメチルジク
ロロシラン、ジメチルジエトキシシラン、メチルトリメ
トキシシラン、メチルトリクロロシラン、エチルトリク
ロロシラン等の有機シラン化合物が挙げらる。
The resulting gel compound is subjected to a hydrophobizing treatment. As the hydrophobizing agent, one having a functional group that reacts with the silanol group of the gel-like compound and a hydrophobic group is used. Examples of the functional group that reacts with the silanol group include halogen, amino group, imino group, carboxyl group, alkoxyl group and hydroxyl group. Examples of the hydrophobic group include an alkyl group, a phenyl group and their fluorides. The hydrophobizing agent may have only one kind of each of the functional group and the hydrophobic group, or 2
It may have more than one species. Specifically, hexamethyldisilazane, hexamethyldisiloxane, trimethylchlorosilane, trimethylmethoxysilane, trimethylethoxysilane, triethylethoxysilane, triethylmethoxysilane, dimethyldimethoxysilane, dimethyldichlorosilane, dimethyldiethoxysilane, methyltrimethoxy. Examples thereof include organic silane compounds such as silane, methyltrichlorosilane, and ethyltrichlorosilane.

【0021】ここで、疎水化処理は、超臨界乾燥を行う
前に予め、液体を媒体として行うか、後述する超臨界乾
燥中に超臨界流体を媒体として行う。これらの媒体とし
ては、疎水化剤との反応性が低く、かつ、疎水化剤を溶
解するものであればよく、特に限定されない。液体で疎
水化処理を行う場合はアルコールなどの溶媒に前記疎水
化剤を溶解させたものを疎水化溶液として調製し、この
疎水化溶液中にゲル状化合物を浸漬することで行う。ま
た、反応については必要に応じて加熱を行う。
Here, the hydrophobizing treatment is performed by using a liquid as a medium in advance before performing supercritical drying, or by using a supercritical fluid as a medium during supercritical drying which will be described later. The medium is not particularly limited as long as it has low reactivity with the hydrophobizing agent and dissolves the hydrophobizing agent. When the liquid is subjected to the hydrophobizing treatment, a solution obtained by dissolving the hydrophobizing agent in a solvent such as alcohol is prepared as a hydrophobizing solution, and the gel compound is immersed in the hydrophobizing solution. Further, the reaction is heated if necessary.

【0022】超臨界乾燥を行う際に用いられる溶媒とし
ては、特に限定されないが、例えば、エタノ−ル、メタ
ノ−ル、イソプロパノール、ジクロロジフルオロメタ
ン、二酸化炭素、水等の単独系または2種以上の混合系
を挙げることができる。混合系ではなく単一の溶媒で超
臨界乾燥を行う場合は、一般的にはオ−トクレ−ブ中に
溶媒と、同一の溶媒に溶媒置換を行ったゲル状化合物を
一緒に入れ、その溶媒の臨界点以上の温度、圧力まで上
昇させた後に溶媒を徐々に除き、最終的に常温常圧の状
態に戻すことによって乾燥を終了する。また、2種以上
の混合系で超臨界乾燥を行う場合は、乾燥容器内でその
混合系での超臨界状態になるよう設定した温度、圧力ま
で上昇させる方法、乾燥容器内でゲル状化合物の第1の
溶媒から超臨界状態にしたい第2の溶媒に置換し、ほぼ
溶媒置換を完結させてから、第2の溶媒の超臨界状態で
溶媒を除去する方法等がなされている。
The solvent used for the supercritical drying is not particularly limited, but for example, ethanol, methanol, isopropanol, dichlorodifluoromethane, carbon dioxide, water or the like alone or in combination of two or more. Mention may be made of mixed systems. When supercritical drying is performed using a single solvent instead of a mixed system, generally, the solvent and the gel compound obtained by solvent substitution in the same solvent are put together in an autoclave, and the solvent is used. After the temperature and pressure are raised to the critical point or higher, the solvent is gradually removed, and finally the temperature and temperature are returned to the normal temperature and normal pressure to complete the drying. When supercritical drying is carried out in a mixed system of two or more kinds, a method of raising the temperature and pressure set in the drying container to a supercritical state in the mixed system, There is a method in which the first solvent is replaced with a second solvent desired to be in a supercritical state, the solvent replacement is almost completed, and then the solvent is removed in a supercritical state of the second solvent.

【0023】超臨界乾燥中に疎水化処理を行う場合は、
前記乾燥容器内の媒体が超臨界状態を形成した中へその
溶解度に応じた量の疎水化剤を注入し、その温度圧力を
保持することで行う。
When the hydrophobic treatment is carried out during supercritical drying,
This is performed by injecting a hydrophobizing agent in an amount corresponding to the solubility into the medium in the drying container forming a supercritical state and maintaining the temperature and pressure.

【0024】前記のように疎水化処理、超臨界乾燥を施
して得られたエアロゲルは均質なシリカの多孔質骨格か
らなり、高断熱性や高表面積など多孔体の性能を有しな
がら、かつ透明性を有する材料である。本発明に係るエ
アロゲルの製法は、本発明ではこうして得られたエアロ
ゲルをさらに加熱処理する。一般に、超臨界乾燥して得
られたエアロゲルをより透明性に優れたものにするため
に、USP4432956やUSP4327065に述
べられているような1200〜1300℃または500
〜750℃のような高い温度で加熱処理を施す。これ
は、加熱処理によってエアロゲルが含有するアルコキシ
ル基(≡Si―OR、Rはアルキル基)を分解除去し、
純度の高いシリカエアロゲルにすることで透明度を向上
させようとするものである。ところが、この方法による
エアロゲルは別の問題点を有する。すなわち、エアロゲ
ルを構成するシリカはそのシリカ表面にシラノール基
(≡Si―OH)を有するため、親水性を有しており湿
度雰囲気下では性能的に著しい経時劣化を示す。しか
し、特にアルコールの超臨界状態において超臨界乾燥し
て得られたもので前記の加熱処理を施さないものは、シ
リカ表面に多くのアルコキシル基も有しているため疎水
性を示し、この経時劣化程度を和らげる効果がある。に
もかかわらず、前記加熱処理を施してアルコキシル基を
除去してしまうと、エアロゲルの若干の疎水性も全くな
くなり、湿度条件下では激しく経時劣化してしまい、い
くら透明性が優れていても実用的には利用が困難な材料
であった。
The airgel obtained by subjecting it to hydrophobic treatment and supercritical drying as described above is composed of a homogeneous porous silica skeleton, and has the properties of a porous body such as high heat insulation and high surface area, and is transparent. It is a material with properties. In the method of producing an airgel according to the present invention, the airgel thus obtained is further heat-treated in the present invention. In general, in order to make an airgel obtained by supercritical drying more excellent in transparency, 1200 to 1300 ° C. or 500 as described in USP 432956 or USP 4327065 is used.
Heat treatment is performed at a high temperature such as ˜750 ° C. The heat treatment decomposes and removes the alkoxyl group (≡Si—OR, R is an alkyl group) contained in the airgel,
It is intended to improve the transparency by using high-purity silica airgel. However, the airgel produced by this method has another problem. That is, since silica constituting the airgel has a silanol group (≡Si—OH) on the surface of the silica, it has hydrophilicity and shows remarkable deterioration with time in performance in a humidity atmosphere. However, especially those obtained by supercritical drying in the supercritical state of alcohol and not subjected to the above-mentioned heat treatment show a hydrophobic property because they also have many alkoxyl groups on the silica surface, and this deterioration with time It has the effect of softening the degree. Nevertheless, if the above-mentioned heat treatment is carried out to remove the alkoxyl group, some of the airgel's hydrophobicity will also disappear, and it will deteriorate severely over time under humidity conditions, no matter how excellent the transparency is. It was a material that was difficult to use.

【0025】本発明では、加熱処理においてその処理温
度を選択することで、優れた疎水性を損なわずに透明性
を高め、透明性に優れた疎水性のエアロゲルを作製する
ことができる。この処理温度としては、アルコキシル基
を熱分解除去し、かつ前記疎水化剤によって付与された
アルキルシリル基(≡Si―R)は分解されずに残存す
るような温度を選択する。具体的には270〜400℃
程度であることが好ましい。すなわち、図1に示した代
表的な超臨界乾燥後のエアロゲル試料の示差熱分析曲線
から明らかなように、アルコキシル基が分解される発熱
ピーク1は、271℃で、疎水基であるアルキルシリル
基の分解による発熱ピーク2は、478℃である。した
がって、270〜400℃程度であれば、アルコキシル
基を熱分解除去し、かつ前記疎水化剤によって付与され
たアルキルシリル基(≡Si―R)は分解されずに残存
することが分かる。
In the present invention, by selecting the treatment temperature in the heat treatment, the transparency can be enhanced without impairing the excellent hydrophobicity, and a hydrophobic aerogel having excellent transparency can be produced. The treatment temperature is selected such that the alkoxyl group is thermally decomposed and removed, and the alkylsilyl group (≡Si—R) provided by the hydrophobizing agent remains without being decomposed. Specifically, 270-400 ℃
It is preferably about the same. That is, as is clear from the differential thermal analysis curve of the typical airgel sample after supercritical drying shown in FIG. 1, the exothermic peak 1 at which the alkoxyl group is decomposed is 271 ° C. and the alkylsilyl group which is a hydrophobic group. Exothermic peak 2 due to decomposition of is 478 ° C. Therefore, it can be seen that at about 270 to 400 ° C., the alkoxyl group is thermally decomposed and removed, and the alkylsilyl group (≡Si—R) provided by the hydrophobizing agent remains without being decomposed.

【0026】この発明のエアロゲルは、非常に微細なシ
リカ粒子からなる構造体で、その粒子径は光の波長より
もはるかに小さく空隙構造も非常に均質であることか
ら、多孔体であるにもかかわらず透明性を有する。ここ
で光透過性とは、例えば、可視光波長領域等に対する視
覚的な透明性や、赤外領域に対する透過性であるが、こ
れに限定されない。しかも疎水性を有するため耐湿性に
優れ、性能や寸法が経時的に安定な材料である。
The airgel of the present invention is a structure composed of very fine silica particles, and its particle size is much smaller than the wavelength of light, and the void structure is also very homogeneous, so it is also a porous body. Regardless, it has transparency. Here, the light transmissivity is, for example, visual transparency in the visible light wavelength region or the like, or transmissivity in the infrared region, but is not limited thereto. Moreover, since it is hydrophobic, it has excellent moisture resistance, and its performance and dimensions are stable over time.

【0027】[0027]

【作用】本発明の請求項1に係るエアロゲルの製法は、
縮重合性を有するアルコキシシランを加水分解したゾル
を縮重合反応によりゲル化させることによってゲル状化
合物とし、このゲル状化合物を疎水化剤との反応による
疎水化処理及び超臨界乾燥を施すエアロゲルの製法にお
いて、前記疎水化処理後に超臨界乾燥を施し、次いで、
アルコキシル基の分解温度以上で、かつ、疎水化処理に
より付与された疎水基の分解温度未満で、加熱処理を施
すので、透明性、断熱性及び疎水性に優れる。
The manufacturing method of the airgel according to claim 1 of the present invention is as follows.
A sol obtained by hydrolyzing a polycondensable alkoxysilane is gelated by a polycondensation reaction to form a gel-like compound, and the gel-like compound is hydrophobized by reaction with a hydrophobizing agent and subjected to supercritical drying. In the manufacturing method, supercritical drying is performed after the hydrophobic treatment, and then,
Since the heat treatment is performed at the decomposition temperature of the alkoxyl group or higher and lower than the decomposition temperature of the hydrophobic group imparted by the hydrophobizing treatment, the transparency, heat insulation and hydrophobicity are excellent.

【0028】本発明の請求項2に係るエアロゲルの製法
は、前記疎水化剤が有機シラン化合物であるので、疎水
性に優れる。ことを特徴とする。
The method for producing an airgel according to claim 2 of the present invention is excellent in hydrophobicity because the hydrophobizing agent is an organic silane compound. It is characterized by

【0029】本発明の請求項3に係るエアロゲルの製法
は、前記超臨界乾燥後の加熱処理の温度が270〜40
0℃であるので、透明性、断熱性及び疎水性に優れる。
In the method for producing an airgel according to claim 3 of the present invention, the temperature of the heat treatment after the supercritical drying is 270 to 40.
Since it is 0 ° C, it is excellent in transparency, heat insulation and hydrophobicity.

【0030】[0030]

【実施例】以下、本発明を実施例により具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0031】以下に、この発明の具体的な実施例及び比
較例を示すが、この発明は、下記実施例に限定されるも
のではない。
Specific examples and comparative examples of the present invention will be shown below, but the present invention is not limited to the following examples.

【0032】(実施例1)平均分子量470のテトラメ
トキシシランのオリゴマー〔コルコート株式会社製;商
品名メチルシリケート51〕に、エタノール〔ナカライ
テスク株式会社製;特級試薬〕と水と28重量%のアン
モニア水溶液とを混合したものを室温で徐々に添加する
ことにより、モル比がテトラメトキシシランのオリゴマ
ー:エタノール:水:アンモニア=1:70:20:
0. 6の混合比の反応溶液(以下、ゾルと称する)を得
た。容器内に前記ゾルを流し込んだ後、室温で約10分
静置させて、ゾルがゲル化するのを待った。その後、こ
のゲル状化合物を容器から取り出して、大きさが直径5
1mmで厚み10mmのゲル状化合物を得た。
Example 1 An oligomer of tetramethoxysilane having an average molecular weight of 470 (manufactured by Colcoat Co., Ltd .; trade name: methyl silicate 51), ethanol (manufactured by Nacalai Tesque, Inc .; special grade reagent), water and 28% by weight of ammonia. By gradually adding a mixture with an aqueous solution at room temperature, the molar ratio of the tetramethoxysilane oligomer: ethanol: water: ammonia = 1: 70: 20:
A reaction solution (hereinafter referred to as a sol) having a mixing ratio of 0.6 was obtained. After the sol was poured into the container, the sol was allowed to stand at room temperature for about 10 minutes to wait for the sol to gel. After that, the gel-like compound was taken out of the container and the size was 5 mm or less.
A gel compound having a thickness of 1 mm and a thickness of 10 mm was obtained.

【0033】次に、高圧容器内にこのゲル状化合物を入
れ、さらにエタノールを満たした。この容器内に18
℃、55kg/cm2 の二酸化炭素を添加し、ゲル内お
よび容器内のエタノ−ルを二酸化炭素に置換する操作を
行った後、容器内を二酸化炭素の超臨界条件である、8
0℃、160kg/cm2 にし、超臨界乾燥(溶媒除
去) を行った。次に、この超臨界状態の雰囲気に、疎水
化剤として高圧容器内での濃度が0.6モル/リットル
になるようにジメチルジメトキシシラン〔トーレダウコ
ーニングシリコーン株式会社製;AY43−004〕を
添加し、1時間かけて疎水化処理剤を超臨界流体中に拡
散させ、この超臨界流体中にゲル状化合物を放置し、疎
水化処理を施した。その後、超臨界状態の二酸化炭素を
流通した後に減圧し、ゲル状化合物に含まれるエタノー
ルと疎水化剤を除去した。その後、高圧容器から試料を
取り出し、エアロゲル試料を得た。最後にこのエアロゲ
ル試料を電気炉に入れ、6時間かけて300℃まで上昇
させ300℃で6時間保持した。放冷後、エアロゲル試
料を取り出した。試料の大きさは、直径51mm、厚み
10mmであった。
Next, the gel-like compound was placed in a high-pressure container and further filled with ethanol. 18 in this container
After adding carbon dioxide at 55 ° C. and 55 kg / cm 2 to replace ethanol in the gel and in the container with carbon dioxide, the inside of the container is in a supercritical condition of carbon dioxide, 8
Supercritical drying (solvent removal) was performed at 0 ° C and 160 kg / cm 2 . Next, dimethyldimethoxysilane [Toray Dow Corning Silicone Co., Ltd .; AY43-004] was added as a hydrophobizing agent to the atmosphere in the supercritical state so that the concentration in the high-pressure container was 0.6 mol / liter. Then, the hydrophobizing agent was diffused into the supercritical fluid over 1 hour, and the gel-like compound was left in the supercritical fluid to perform the hydrophobizing treatment. After that, carbon dioxide in a supercritical state was circulated and then depressurized to remove ethanol and the hydrophobizing agent contained in the gel compound. Then, the sample was taken out from the high-pressure container to obtain an airgel sample. Finally, this airgel sample was placed in an electric furnace, heated to 300 ° C over 6 hours, and kept at 300 ° C for 6 hours. After cooling, the airgel sample was taken out. The size of the sample was 51 mm in diameter and 10 mm in thickness.

【0034】(実施例2)実施例1と同様にして得たゲ
ル状化合物を、予め調合しておいたヘキサメチルジシラ
ザン〔トーレダウコーニングシリコーン株式会社製;S
Z6079〕の1.2モル/リットルのエタノール溶液
中に浸漬した。このまま室温(20℃)にて1昼夜放置
した後、ゲル状化合物を取り出し、さらにエタノールで
洗浄した。
(Example 2) A gel-like compound obtained in the same manner as in Example 1 was mixed with hexamethyldisilazane (manufactured by Toray Dow Corning Silicone Co., Ltd .; S).
Z6079] was immersed in a 1.2 mol / liter ethanol solution. After leaving it as such at room temperature (20 ° C.) for one day, the gel compound was taken out and further washed with ethanol.

【0035】次に、高圧容器内にこのゲル状化合物を入
れ、さらにエタノールを満たした。この容器内を80
℃、160kg/cm2 にした後、容器内を80℃、1
60kg/cm2 の二酸化炭素に置換し、さらに減圧を
行い、超臨界乾燥(溶媒除去)を行った。その後、高圧
容器から試料を取り出し、エアロゲル試料を得た。最後
にこのエアロゲル試料を電気炉に入れ、6時間かけて3
00℃まで上昇させ300℃で6時間保持した。放冷
後、エアロゲル試料を取り出した。試料の大きさは、直
径51mm、厚み10mmであった。
Next, this gel-like compound was placed in a high-pressure container and further filled with ethanol. 80 in this container
° C., after the 160 kg / cm 2, the vessel 80 ° C., 1
It was replaced with carbon dioxide of 60 kg / cm 2 , further depressurized, and supercritical drying (solvent removal) was performed. Then, the sample was taken out from the high-pressure container to obtain an airgel sample. Finally, the airgel sample was placed in an electric furnace for 3 hours for 3 hours.
The temperature was raised to 00 ° C and kept at 300 ° C for 6 hours. After cooling, the airgel sample was taken out. The size of the sample was 51 mm in diameter and 10 mm in thickness.

【0036】(実施例3)実施例2において、疎水化剤
をヘキサメチルジシラザンに代えて、ジメチルジメトキ
シシランジメチルジメトキシシラン〔トーレダウコーニ
ングシリコーン株式会社製;AY43−004〕とした
以外は、実施例2と同様にしてエアロゲル試料を得た。
試料の大きさは同じく、直径51mm、厚み10mmで
あった。
Example 3 Example 3 was repeated except that the hydrophobizing agent was replaced with hexamethyldisilazane and dimethyldimethoxysilane dimethyldimethoxysilane [Toray Dow Corning Silicone Co., Ltd .; AY43-004] was used. An airgel sample was obtained in the same manner as in Example 2.
Similarly, the size of the sample was 51 mm in diameter and 10 mm in thickness.

【0037】(実施例4)実施例2において超臨界乾燥
後の加熱処理を350℃で行った以外は、実施例2と同
様にしてエアロゲル試料を得た。試料の大きさは同じ
く、直径51mm、厚み10mmであった。
Example 4 An airgel sample was obtained in the same manner as in Example 2 except that the heat treatment after supercritical drying was carried out at 350 ° C. Similarly, the size of the sample was 51 mm in diameter and 10 mm in thickness.

【0038】(比較例1)実施例2と同様にしてゲル状
化合物を得た後に、実施例1と同様の疎水化、超臨界乾
燥を行いエアロゲル試料を得た。その後の加熱処理は施
さなかった。
(Comparative Example 1) After obtaining a gel compound in the same manner as in Example 2, the same hydrophobization and supercritical drying as in Example 1 were carried out to obtain an airgel sample. The subsequent heat treatment was not performed.

【0039】(比較例2)実施例2と同様にしてゲル状
化合物を得た後に、疎水化は施さずに実施例2と同様に
して超臨界乾燥を行い、エアロゲル試料を得た。試料の
大きさは直径49.5mm、厚み9.5mmであった。
(Comparative Example 2) A gel-like compound was obtained in the same manner as in Example 2, and then supercritical drying was carried out in the same manner as in Example 2 without hydrophobizing to obtain an airgel sample. The size of the sample was 49.5 mm in diameter and 9.5 mm in thickness.

【0040】(比較例3)比較例2で得たエアロゲル試
料を電気炉内に入れ、8時間かけて500℃に加熱し、
さらに6時間500℃を保持した後、放冷し、エアロゲ
ル試料を得た。試料の大きさは直径48mm、厚み9m
mであった。
(Comparative Example 3) The airgel sample obtained in Comparative Example 2 was placed in an electric furnace and heated to 500 ° C for 8 hours,
The temperature was kept at 500 ° C. for 6 hours and then allowed to cool to obtain an airgel sample. The sample size is 48 mm in diameter and 9 m in thickness
It was m.

【0041】実施例1〜実施例4及び比較例1〜比較例
3で得たエアロゲルの密度、可視光透過率及び熱伝導率
を測定した。また、エアロゲルの湿度条件下での性能の
劣化を確認するため、耐湿性試験後の密度と可視光透過
率を測定した。
The density, visible light transmittance and thermal conductivity of the airgel obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were measured. Further, in order to confirm the deterioration of the performance of the airgel under the humidity condition, the density and the visible light transmittance after the humidity resistance test were measured.

【0042】ここで、熱伝導率は、英弘精機(株) 製の
定常法による熱伝導率測定装置を使用して、ASTM−
C518に準拠した方法で測定した。30℃での熱伝導
率は、設定温度20℃と40℃の条件で測定した。可視
光透過率は、可視光域の光透過率分布を測定し、可視光
透過率をJIS−R3106に基づいて求めた。すべて
厚みを10.0mmに換算し直したものである。耐湿試
験条件は、温度60℃、相対湿度90%とし、試験時間
は48時間とした。試料の主な内容、及び、初期物性の
結果を表1に示した。また、耐湿試験前後の物性の変化
を表2に示した。なお、アルコキシル基、疎水基である
アルキルシリル基の有無の確認については、NMRを用
いて行った。すなわち、実施例1〜実施例4のエアロゲ
ルには、アルコキシル基がなく、疎水基が存在してい
た。比較例3については、アルコキシル基及び疎水基が
ともに存在しなかった。
Here, the thermal conductivity was measured by ASTM- using a thermal conductivity measuring device manufactured by Eihiro Seiki Co., Ltd. according to a stationary method.
It measured by the method based on C518. The thermal conductivity at 30 ° C. was measured under the conditions of set temperatures of 20 ° C. and 40 ° C. The visible light transmittance was obtained by measuring the light transmittance distribution in the visible light region and determining the visible light transmittance based on JIS-R3106. All the thicknesses are converted back to 10.0 mm. The humidity resistance test conditions were a temperature of 60 ° C. and a relative humidity of 90%, and the test time was 48 hours. The main contents of the sample and the results of the initial physical properties are shown in Table 1. Table 2 shows changes in physical properties before and after the moisture resistance test. The presence or absence of the alkoxyl group and the alkylsilyl group, which is a hydrophobic group, was confirmed by using NMR. That is, in the airgel of Examples 1 to 4, there was no alkoxyl group but a hydrophobic group. For Comparative Example 3, neither the alkoxyl group nor the hydrophobic group was present.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】表1及び表2の結果、実施例のエアロゲル
は、比較例に比べて、透明性に優れており、かつ疎水性
にも優れているため、寸法や光透過性において経時的に
安定な材料であった。
The results shown in Tables 1 and 2 show that the airgel of the example is superior in transparency and hydrophobicity as compared with the comparative example, so that it is stable with respect to size and light transmittance over time. It was a good material.

【0046】本発明によって得られたエアロゲルは、断
熱性等、多孔質材料に特有の機能に優れ、かつ光透過性
に優れている。しかも本発明による製法により得られる
エアロゲルは、疎水性にも優れているため、高湿度条件
下でも性能が経時的に安定なものである。本発明によっ
て作製されるエアロゲルは、例えば、太陽光集熱に有用
な光透過性断熱材、または、音響材料、触媒担体、チェ
レンコフカウンター媒体等の様々な用途に用いることが
できる。
The airgel obtained according to the present invention is excellent in the functions peculiar to the porous material such as the heat insulating property and the light transmittance. Moreover, since the airgel obtained by the production method of the present invention is also excellent in hydrophobicity, its performance is stable over time even under high humidity conditions. The airgel produced by the present invention can be used in various applications such as a light-transmissive heat insulating material useful for solar heat collection, an acoustic material, a catalyst carrier, and a Cherenkov counter medium.

【0047】[0047]

【発明の効果】本発明の請求項1に係るエアロゲルの製
法によると、疎水化処理後に超臨界乾燥を施し、次い
で、アルコキシル基の分解温度以上で、かつ、疎水化処
理により付与された疎水基の分解温度未満で、加熱処理
を施すので、透明性、断熱性及び疎水性に優れるため、
高湿度条件下でも性能が経時的に安定なものである。
According to the method for producing an airgel according to claim 1 of the present invention, a hydrophobic group is formed by subjecting to supercritical drying after the hydrophobizing treatment and then at or above the decomposition temperature of the alkoxyl group and by the hydrophobizing treatment. Since it is heated below the decomposition temperature of, it is excellent in transparency, heat insulation and hydrophobicity.
Performance is stable over time even under high humidity conditions.

【0048】本発明の請求項2に係るエアロゲルの製法
によると、疎水化剤が有機シラン化合物であるので、疎
水性に優れるため、高湿度条件下でも性能が経時的に安
定なものである。
According to the method for producing an airgel according to claim 2 of the present invention, since the hydrophobizing agent is an organic silane compound, the hydrophobicity is excellent, and therefore the performance is stable over time even under high humidity conditions.

【0049】本発明の請求項3に係るエアロゲルの製法
によると、前記超臨界乾燥後の加熱処理の温度が270
〜400℃であるので、透明性、断熱性及び疎水性に優
れるため、高湿度条件下でも性能が経時的に安定なもの
である。
According to the method for producing an airgel according to claim 3 of the present invention, the temperature of the heat treatment after the supercritical drying is 270.
Since the temperature is up to 400 ° C., it is excellent in transparency, heat insulation and hydrophobicity, so that the performance is stable with time even under high humidity conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】疎水化及び超臨界乾燥を施したエアロゲルで加
熱処理を施す前の試料についての示差熱分析曲線。
FIG. 1 is a differential thermal analysis curve for a sample before heat treatment with hydrogel and supercritically dried airgel.

【符号の説明】[Explanation of symbols]

1 アルコキシル基の分解による発熱ピーク 2 疎水基であるアルキルシリル基の分解による発熱
ピーク
1 Exothermic peak due to decomposition of alkoxyl group 2 Exothermic peak due to decomposition of alkylsilyl group which is a hydrophobic group

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特表 平11−505499(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 83/00 - 83/16 C08G 77/00 - 77/62 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References Tokuhyo HEI 11-505499 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C08L 83/00-83/16 C08G 77 / 00-77/62

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 縮重合性を有するアルコキシシランを加
水分解したゾルを縮重合反応によりゲル化させることに
よってゲル状化合物とし、このゲル状化合物を疎水化剤
との反応による疎水化処理及び超臨界乾燥を施すエアロ
ゲルの製法において、前記疎水化処理及び超臨界乾燥を
施し、次いで、アルコキシル基の分解温度以上で、か
つ、疎水化処理により付与された疎水基の分解温度未満
で、加熱処理を施すことを特徴とするエアロゲルの製
法。
1. A gel compound is formed by gelling a sol obtained by hydrolyzing a polycondensable alkoxysilane by a polycondensation reaction, and the gel compound is hydrophobized by a reaction with a hydrophobizing agent and supercritical. In the method for producing an airgel to be dried, the hydrophobic treatment and supercritical drying are performed, and then a heat treatment is performed at a decomposition temperature of the alkoxyl group or higher and below the decomposition temperature of the hydrophobic group imparted by the hydrophobic treatment. An airgel manufacturing method characterized by the above.
【請求項2】 前記疎水化剤が有機シラン化合物である
ことを特徴とする請求項1記載のエアロゲルの製法。
2. The method for producing an airgel according to claim 1, wherein the hydrophobizing agent is an organic silane compound.
【請求項3】 前記超臨界乾燥後の加熱処理の温度が2
70〜400℃であることを特徴とする請求項1又は請
求項2記載の疎水性エアロゲルの製法。
3. The temperature of the heat treatment after the supercritical drying is 2
70-400 degreeC, The manufacturing method of the hydrophobic airgel of Claim 1 or Claim 2 characterized by the above-mentioned.
JP10531695A 1995-04-28 1995-04-28 Aerogel manufacturing method Expired - Fee Related JP3520601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10531695A JP3520601B2 (en) 1995-04-28 1995-04-28 Aerogel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10531695A JP3520601B2 (en) 1995-04-28 1995-04-28 Aerogel manufacturing method

Publications (2)

Publication Number Publication Date
JPH08302192A JPH08302192A (en) 1996-11-19
JP3520601B2 true JP3520601B2 (en) 2004-04-19

Family

ID=14404312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10531695A Expired - Fee Related JP3520601B2 (en) 1995-04-28 1995-04-28 Aerogel manufacturing method

Country Status (1)

Country Link
JP (1) JP3520601B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515556A (en) * 2002-12-18 2006-06-01 デグサ アクチエンゲゼルシャフト Surface-modified airgel structured silica
BR112017006480B1 (en) * 2014-10-03 2022-10-11 Aspen Aerogels, Inc. REINFORCED AEROGEL COMPOUND AND METHOD TO PREPARE A REINFORCED AEROGEL COMPOUND

Also Published As

Publication number Publication date
JPH08302192A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
JP2725573B2 (en) Manufacturing method of hydrophobic airgel
EP0849220B1 (en) Process for producing aerogel
JP2659155B2 (en) Method for producing hydrophobic airgel
JP4041161B2 (en) Process for producing modified airgel and use thereof
US5830387A (en) Process of forming a hydrophobic aerogel
JP3339394B2 (en) Manufacturing method of hydrophobic airgel
JPH0834678A (en) Aerogel panel
JP2000264620A (en) Production of hydrophobic aerogel
JP2001072408A (en) Silica aerogel and its production
JPH08300567A (en) Manufacture of aerogel panel
JP2005154195A (en) Aerogel material and article formed of the aerogel material
EP0585456B1 (en) Process for producing hydrophobic aerogel
JP3339393B2 (en) Manufacturing method of hydrophobic airgel
KR100840603B1 (en) Method for preparing permanently hydrophobic aerogel and aerogel therefrom
JP3520601B2 (en) Aerogel manufacturing method
JP2756366B2 (en) Method for producing hydrophobic airgel
JP3579998B2 (en) Manufacturing method of density gradient airgel
JP3520600B2 (en) Aerogel manufacturing method
JP2912718B2 (en) Method for producing transparent inorganic porous material
JP2005132641A (en) Manufacturing method of silica aerogel
JP3045411B2 (en) Method for producing inorganic microporous body
JP2907667B2 (en) Method for producing transparent airgel
JPH0881280A (en) Aerogel panel and its production
JPH08151210A (en) Production of aerogel filler
JPH0859361A (en) Aerogel panel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees