JPH0621968B2 - Control circuit of reactive power compensator - Google Patents

Control circuit of reactive power compensator

Info

Publication number
JPH0621968B2
JPH0621968B2 JP62014417A JP1441787A JPH0621968B2 JP H0621968 B2 JPH0621968 B2 JP H0621968B2 JP 62014417 A JP62014417 A JP 62014417A JP 1441787 A JP1441787 A JP 1441787A JP H0621968 B2 JPH0621968 B2 JP H0621968B2
Authority
JP
Japan
Prior art keywords
signal
reactive power
load
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62014417A
Other languages
Japanese (ja)
Other versions
JPS62241015A (en
Inventor
惇 西台
信一郎 西村
隆 増田
信 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62014417A priority Critical patent/JPH0621968B2/en
Publication of JPS62241015A publication Critical patent/JPS62241015A/en
Publication of JPH0621968B2 publication Critical patent/JPH0621968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、無効電力補償装置の制御回路に関する。The present invention relates to a control circuit for a reactive power compensator.

[従来の技術] アーク炉等の運転により生じる電力変動を抑制するに
は、その無効電力変動の補償をする必要があり、このよ
うな目的に副うものとしてサイリスタ形無効電力補償装
置の適用が考えられる。
[Prior Art] In order to suppress the power fluctuation caused by the operation of an arc furnace or the like, it is necessary to compensate the fluctuation of the reactive power, and as a side effect of such a purpose, application of a thyristor type reactive power compensator is required. Conceivable.

第2図はサイリスタ形無効電力補償装置の構成を説明す
るための概略図である。
FIG. 2 is a schematic diagram for explaining the configuration of a thyristor type reactive power compensator.

系統に変圧器T1、T2を介してアーク炉F1、F2が
接続され、これと並列に変圧器T3を介してリアクトル
Reと双方向に通電可能にサイリスタThを組合せた通
電制御素子とを直列接続した遅相無効電力調整回路と、
コンデンサCおよびインダクタンスLよりなる進相コン
デンサ兼フィルタ回路が接続される。
The arc furnaces F1 and F2 are connected to the system via transformers T1 and T2, and a reactor Re and a conduction control element in which a thyristor Th is combined so as to be capable of bidirectionally conducting electricity are connected in series with the arc furnaces F1 and F2. And the delayed reactive power adjustment circuit
A phase advancing capacitor / filter circuit including a capacitor C and an inductance L is connected.

そして、アーク炉F1、F2の負荷電流を検出する変流
器CT1、CT2と電圧変成器PTとにより無効電力検
出器DDにおいて、時々刻々の無効電力信号が演算さ
れ、変動する無効電力信号は基準値と比較され、基準値
より正又は負の大きさに従ってサイリスタの点弧制御端
子に加えられるパルス位相を制御するような制御パルス
発生装置PGに加えられ、この制御パルス発生装置PG
の出力端はサイリスタThの点弧制御端子に接続され、
無効電力の制御が行われる。
Then, the reactive power signal DD is calculated every moment in the reactive power detector DD by the current transformers CT1 and CT2 that detect the load current of the arc furnaces F1 and F2, and the voltage transformer PT, and the fluctuating reactive power signal is the reference. A control pulse generator PG which controls the phase of the pulse which is compared to the value and which is applied to the firing control terminal of the thyristor according to a magnitude which is more positive or negative than the reference value.
The output end of is connected to the ignition control terminal of thyristor Th,
Reactive power is controlled.

[発明が解決しようとする課題] ところで、上記無効電力信号Qを演算するには、母線電
圧の90度遅相電圧vと負荷電流iとの乗算により次の
通り求められる。
[Problems to be Solved by the Invention] By the way, in order to calculate the reactive power signal Q, it is obtained as follows by multiplying the 90-degree lag voltage v of the bus voltage and the load current i.

Q=VI{sinφ−sin(2ωt−φ)}……(1) ここで、Vは母線電圧を電圧変成器に通して得られる電
圧信号の実効値、Iは負荷電流を変流器を通して得られ
る電流信号の実効値、φは位相角である。
Q = VI {sin φ-sin (2ωt-φ)} (1) where V is the effective value of the voltage signal obtained by passing the bus voltage through the voltage transformer, and I is the load current obtained through the current transformer. The effective value of the applied current signal, φ is the phase angle.

上式から無効電力信号Qは直流成分と基本波の2倍周波
のリップルの合成で現され、無効電力値には第2高調波
(2倍周波成分)が含まれる。
From the above equation, the reactive power signal Q is expressed by a combination of the DC component and the double frequency ripple of the fundamental wave, and the reactive power value includes the second harmonic (double frequency component).

また、負荷電流信号Iには、無効電力信号Qに対応する
無効電流信号Iqのほか、有効電力信号Pに対応する有
効電流信号Ipを含んでいる。
The load current signal I includes a reactive current signal Iq corresponding to the reactive power signal Q and an active current signal Ip corresponding to the active power signal P.

有効電力信号Pは次式で現される。The active power signal P is expressed by the following equation.

P=VI{cosφ−cos(2ωt−φ)}……(2) この有効電力信号Pに対応する有効電流信号Ipは無効
電力信号Q検出において全く不要である上、負荷電流信
号Iが大きくなればなるほど(1)、(2)式より明ら
かなように、2倍周波のリップルを増大させる。
P = VI {cosφ−cos (2ωt−φ)} (2) The active current signal Ip corresponding to this active power signal P is completely unnecessary in the reactive power signal Q detection, and the load current signal I becomes large. As it becomes clearer, the ripple of the double frequency is increased as is clear from the equations (1) and (2).

更に、上記無効電流信号Iqにはゆるやかな動きを呈す
る準定常的無効電力信号に対応する無効電流成分信号
(Iqav)と急激な変動を呈する無効電流成分信号、
有効電流信号Ipにもゆるやかな動きを呈する準定常的
有効電力信号に対応する有効電流成分信号(Ipav)
と急激な変動を呈する有効電流成分信号が含まれる。
Further, the reactive current signal Iq includes a reactive current component signal (Iqav) corresponding to a quasi-stationary reactive power signal exhibiting a gentle movement, and a reactive current component signal exhibiting a sudden change,
An active current component signal (Ipav) corresponding to a quasi-stationary active power signal that also exhibits a gentle movement to the active current signal Ip.
And an active current component signal exhibiting abrupt changes.

このように、従来は無効電力信号の検出においては、無
効電流信号Iq中の準定常的無効電力信号に対応する無
効電流成分信号Ipav並びに有効電流信号Ip中の準
定常的有効電力信号に対応する有効電流成分信号Ipa
vを含む負荷電流信号をそのまま用いていたので、変動
する無効電力信号を乗算する際、必要となる乗算器のダ
イナミックレンジを広く取ることができず、無効電力信
号検出精度の向上を図ることができなかった。
As described above, conventionally, in the detection of the reactive power signal, the reactive current component signal Ipav corresponding to the quasi-stationary reactive power signal in the reactive current signal Iq and the quasi-stationary active power signal in the active current signal Ip are supported. Active current component signal Ipa
Since the load current signal including v is used as it is, when the variable reactive power signal is multiplied, the dynamic range of the necessary multiplier cannot be widened, and the reactive power signal detection accuracy can be improved. could not.

この発明は、無効電力信号Q検出において、有効電力信
号Pに対応する有効電流信号Ipはできるだけ小さいほ
ど好ましく、無効電力信号Qに対応する無効電流信号I
qについても電圧変動に関与するだけの電流成分があれ
ば急速に無効電力変動に対応できとともに、無効電力信
号Qを乗算する乗算器へ入力する負荷電流も少なくな
り、該乗算器のダイナミックレンジを広く取ることがで
き検出精度の向上が図れることに着目して成したもので
ある。
In the present invention, in detecting the reactive power signal Q, the active current signal Ip corresponding to the active power signal P is preferably as small as possible, and the reactive current signal Ip corresponding to the reactive power signal Q is preferable.
With respect to q as well, if there is a current component that is involved in voltage fluctuations, it is possible to rapidly respond to reactive power fluctuations, and the load current that is input to the multiplier that multiplies the reactive power signal Q is also reduced, thus increasing the dynamic range of the multiplier. It was made paying attention to the fact that it can be widely used and the detection accuracy can be improved.

[課題を解決するための手段] 本発明は変動無効電力信号を検出するために、無効電力
信号を乗算する乗算器へ入力する負荷電流信号の振幅を
少なくするとともに急速変動分は残して極力小さくする
ようにしたもので、有効電流信号Ip中の準定常的有効
電力信号に対応する有効電流成分信号Ipavと無効電
流成分Iq中の準定常的無効電力信号に対応する無効電
流成分信号Ieavの両電流成分信号を負荷電流信号I
から差し引いて無効電力信号を演算する乗算器へ入力す
る電流信号をしぼり込んだことを特徴とするものであ
る。
[Means for Solving the Problems] In order to detect a variable reactive power signal, the present invention reduces the amplitude of a load current signal input to a multiplier that multiplies a reactive power signal, and leaves a rapid fluctuation as small as possible. Both the active current component signal Ipav corresponding to the quasi-stationary active power signal in the active current signal Ip and the reactive current component signal Ieav corresponding to the quasi-stationary reactive power signal in the reactive current component Iq. The current component signal is the load current signal I
It is characterized in that the current signal to be input to the multiplier for subtracting from the above to calculate the reactive power signal is narrowed down.

[実施例] 以下図面に示す実施例に基づき本発明を説明する。[Examples] The present invention will be described below based on examples shown in the drawings.

第1図に示すように、母線に電圧変成器PTおよび変動
負荷LV、リアクトルReと双方向に通電する逆並列接
続のサイリスタThの直列回路、進相兼フィルタ用のコ
ンデンサCが並列に接続される。なを、L1は電源線路
のインダクタンスを示す。
As shown in FIG. 1, a voltage transformer PT, a variable load LV, a series circuit of antiparallel-connected thyristors Th that bidirectionally conduct electricity to a reactor Re, and a capacitor C for phase advancing and filtering are connected in parallel to the bus bar. It Note that L1 represents the inductance of the power supply line.

電圧変成器PTの2次側は90度移相器PSに接続さ
れ、90度移相器PSの出力側の乗算器X1に接続され
る。
The secondary side of the voltage transformer PT is connected to the 90-degree phase shifter PS, and is connected to the multiplier X1 on the output side of the 90-degree phase shifter PS.

変動負荷LVの電流Iを検出する変流器CTが変動負荷
LVに結合され、変流器CTの2次側は減算器Sおよび
乗算器X2と接続され、乗算器X2は電圧変成器PTの
2次側に接続される。
A current transformer CT for detecting the current I of the variable load LV is coupled to the variable load LV, the secondary side of the current transformer CT is connected to the subtractor S and the multiplier X2, and the multiplier X2 is connected to the voltage transformer PT. It is connected to the secondary side.

乗算器X2の出力側は低域ろ波器LPF1を介して乗算
器X3に接続され、乗算器X3電圧変成器PTの2次側
と接続される。
The output side of the multiplier X2 is connected to the multiplier X3 via the low pass filter LPF1, and is connected to the secondary side of the multiplier X3 voltage transformer PT.

一方、乗算器X4は前記交流器CTの2次側並びに90
度移相器PSの出力側に接続され、乗算器X4の出力側
は低域ろ波器LPF2を介して乗算器X5に接続され、
乗算器X5は90度移相器PSの出力側と接続される。
On the other hand, the multiplier X4 is connected to the secondary side of the AC device CT and 90
Is connected to the output side of the phase shifter PS, the output side of the multiplier X4 is connected to the multiplier X5 via the low-pass filter LPF2,
The multiplier X5 is connected to the output side of the 90-degree phase shifter PS.

そして、乗算器X3と乗算器X5の出力側は加算器A2
を介して乗算器Sに接続され、減算器Sの出力側は乗算
器X1に接続される。
The output sides of the multipliers X3 and X5 are the adder A2.
To the multiplier S, and the output side of the subtractor S is connected to the multiplier X1.

ここで、乗算器X2の出力側において、前記(2)式に
より有効電力信号Pを出力させるが、これには第2高調
波が含有されているので、低域ろ波器LPF1にてこれ
を除去、平滑化して緩やかな動きの有効電力信号P′を
得る。このP′を準定常的有効電力信号という。
Here, on the output side of the multiplier X2, the active power signal P is output by the equation (2), but since it contains the second harmonic, it is converted by the low-pass filter LPF1. It is removed and smoothed to obtain a slow-moving active power signal P '. This P'is called a quasi-stationary active power signal.

負荷電圧波形と同相で準定常的有効電力信号P′に比例
した波形が準定常的有効電力信号に対応する負荷電流信
号Iの中の有効電流成分信号であるので、乗算器X3に
おいて負荷電圧波形信号と準定常的有効電力信号P′と
の乗算によって発生させる。
Since the waveform in phase with the load voltage waveform and proportional to the quasi-stationary active power signal P'is the active current component signal in the load current signal I corresponding to the quasi-stationary active power signal, the load voltage waveform in the multiplier X3 It is generated by multiplication of the signal and the quasi-stationary active power signal P '.

前記準定常的有効電力信号P′に対応する有効電流信号
I′pとすれば、 I′psinωt∝P′×Vsinωt 有効電力信号Pは上述のように低域ろ波器LPF1を通
されるので、準定常的有効電力信号P′の変化に従って
有効電流信号I′pはなだらかな変化を有する波形のI
pavとして現れる。
Assuming that the active current signal I′p corresponds to the quasi-stationary active power signal P ′, I′psinωt∝P ′ × Vsinωt active power signal P is passed through the low-pass filter LPF1 as described above. , The active current signal I'p has a gradual change I in accordance with the change of the quasi-steady active power signal P '.
Appears as pav.

一方、準定常的無効電力信号に対応する負荷電流Iの中
の無効電流成分は次のようにして得る。
On the other hand, the reactive current component in the load current I corresponding to the quasi-stationary reactive power signal is obtained as follows.

90度遅相電圧信号と負荷電流信号とを乗算器X4で乗
算し無効電力信号Qを出力させ、これに含まれる第2高
調波は低域ろ波器LPF2によって除去、平滑化され
る。この場合、低域ろ波器LPF2の特性を1ないし数
秒程度の長い時定数を有するものに選ぶことによって無
効電力信号Qの急速変動成分は平均化されて現れず、緩
やかな動きの無効電力信号Q′を得ることができる。こ
のQ′を準定常的無効電力信号という。
The 90 degree delayed phase voltage signal and the load current signal are multiplied by the multiplier X4 to output the reactive power signal Q, and the second harmonic wave contained therein is removed and smoothed by the low pass filter LPF2. In this case, by selecting the characteristic of the low-pass filter LPF2 to have a long time constant of about 1 to several seconds, the rapid fluctuation component of the reactive power signal Q does not appear as an average, and the reactive power signal of gentle movement is not displayed. Q'can be obtained. This Q'is called a quasi-stationary reactive power signal.

負荷電圧波形から90度遅相し、振幅が上記準定常的無
効電力信号Q′に比例する波形が準定常的無効電力信号
に対応する無効電流信号I′qであるので、これを前記
90度遅相負荷電圧波形と前記準定常的無効電力信号と
を乗算器X5に入力し、緩やかな動きで、負荷電流信号
中に含まれる平均的な無効電流成分信号Iqavが、 I′qsinωt∝Q′×Vsin(ωt−90゜) で求められる。
Since the waveform that is delayed by 90 degrees from the load voltage waveform and whose amplitude is proportional to the quasi-stationary reactive power signal Q'is the reactive current signal I'q corresponding to the quasi-stationary reactive power signal, The lagging load voltage waveform and the quasi-stationary reactive power signal are input to the multiplier X5, and the average reactive current component signal Iqav contained in the load current signal is I'qsinωt∝Q 'with a gentle movement. × Vsin (ωt−90 °)

そして、前記乗算器X3と乗算器X5の両出力を加算器
A2に入力し、加算器A2の出力を減算器Sに入力して
負荷電流信号Iより前記有効電流成分信号Ipav並び
に無効電流成分信号Iqavを差引いて乗算器X1に入
力する。
Then, both outputs of the multiplier X3 and the multiplier X5 are input to the adder A2, the output of the adder A2 is input to the subtractor S, and the active current component signal Ipav and the reactive current component signal are calculated from the load current signal I. Iqav is subtracted and input to the multiplier X1.

図示例では、最終的な無効電力信号検出器である乗算器
X1の出力側に1/4サイクル遅延回路TCを用いてい
るが、第2高調波を除去するフィルタを用いてもよい。
In the illustrated example, the quarter-cycle delay circuit TC is used on the output side of the multiplier X1 which is the final reactive power signal detector, but a filter for removing the second harmonic may be used.

無効電力に瞬発的な変動が生じた場合、前述のように準
定常的有効電力信号に対応する有効電流成分信号を求め
る回路並びに準定常的無効電力信号に対応する無効電流
成分信号を求める回路には時定数の大きい低域ろ波器L
PFが用いられており、このような急激な変動は平滑化
され、平均的な有効電流成分信号Ipav、無効電流成
分信号Iqavの波形はなだらかな変動としてのみ現れ
る。
In the event of a sudden change in the reactive power, the circuit for obtaining the active current component signal corresponding to the quasi-stationary active power signal and the circuit for obtaining the reactive current component signal corresponding to the quasi-stationary reactive power signal as described above Is a low-pass filter L with a large time constant
PF is used, and such abrupt fluctuation is smoothed, and the waveforms of the average active current component signal Ipav and reactive current component signal Iqav appear only as gentle fluctuations.

負荷電流信号Iより前記有効電流成分信号Ipav並び
に無効電流成分信号Iqavが差引かれるとI−(Ip
av+Iqav)によって残る無効電力信号△qは殆ん
ど急激な変動に基づいて生じるものとすることができ
る。
When the active current component signal Ipav and the reactive current component signal Iqav are subtracted from the load current signal I, I- (Ip
The remaining reactive power signal Δq due to av + Iqav) can be caused by almost abrupt changes.

この無効電力信号△qを無効電力位相変換回路QPSを
経て制御パルス発生装置PGに入力し、その出力により
リアクトルReに接続されたサイリスタThの点弧位相
の制御により無効電力を制御する。
This reactive power signal Δq is input to the control pulse generator PG via the reactive power phase conversion circuit QPS, and its output controls the reactive power by controlling the firing phase of the thyristor Th connected to the reactor Re.

[発明の効果] 以上説明の通り本発明においては、無効電力を求める乗
算器に、負荷電流信号より準定常的有効電力信号に対応
する有効電流成分信号並びに準定常的無効電力信号に対
応する無効電流成分信号の両電流成分信号を差引いて入
力しているので、負荷電流信号の振幅を小さくし、無香
電力を演算する乗算器に入力する電流信号を無効電力変
動分に対応する電流信号に近づけることができ、単に直
接乗算器に負荷電流信号を入力するものに比べ、その乗
算出力に生じる第2高調波リップルも小さくすることが
でき、無効電力を求める乗算器のダイナミックレンジを
広くとることができ、無効電力検出の検出精度を向上さ
せることができる。
[Effects of the Invention] As described above, in the present invention, in the multiplier for determining the reactive power, the active current component signal corresponding to the quasi-stationary active power signal from the load current signal and the reactive power corresponding to the quasi-stationary reactive power signal Since both current component signals of the current component signal are subtracted and input, the amplitude of the load current signal is reduced and the current signal input to the multiplier that calculates unscented power is converted to the current signal corresponding to the reactive power fluctuation. The second harmonic ripple generated in the multiplication output can be made smaller than that in which the load current signal is directly input to the multiplier, and the dynamic range of the multiplier for obtaining the reactive power can be widened. Therefore, the detection accuracy of reactive power detection can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示すブロック線図、第2図は
従来の無効電力補償装置を示すブロック線図。 PT……電圧変成器、CT……変流器、LV……変動負
荷、PS……移相器、X1,X2,X3,X4,X5…
…乗算器、LPF1,LPF2……低域ろ波器、A1,
A2……加算器、S…減算器、TC……遅延回路、QP
S……無効電力位相変換回路、PG……制御パルス発生
装置、Re……リアクトル、Th……サイリスタ。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional reactive power compensator. PT ... voltage transformer, CT ... current transformer, LV ... fluctuating load, PS ... phase shifter, X1, X2, X3, X4, X5 ...
... Multiplier, LPF1, LPF2 ... Low-pass filter, A1,
A2 ... Adder, S ... Subtractor, TC ... Delay circuit, QP
S ... Reactive power phase conversion circuit, PG ... Control pulse generator, Re ... Reactor, Th ... Thyristor.

───────────────────────────────────────────────────── フロントページの続き 審判の合議体 審判長 宇山 紘一 審判官 飯尾 良司 審判官 原 光明 (56)参考文献 特開 昭53−66550(JP,A) 特開 昭54−7978(JP,A) 特開 昭52−5452(JP,A) ─────────────────────────────────────────────────── --Continued from the front page Judgment panel for referee Judge Koichi Uyama Judge Ryoji Iio Judge Mitsuaki Hara (56) References JP53-66550 (JP, A) JP54-7978 (JP, A) JP-A-52-5452 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】母線に接続された変動負荷に対し、前記変
動負荷と並列に、逆並列接続した通電制御素子とリアク
トルを直列に接続してなる遅相無効電力調整回路と、進
相兼フィルタ回路を接続した無効電力補償装置の制御回
路において、負荷電圧信号を検出する電圧変成器と、負
荷電流信号を検出する変流器と、前記負荷電圧の90度
電圧移相器を具備し、検出される負荷電流信号と負荷電
圧信号を乗算して低域ろ波器を通して準定常的有効電力
信号を得る回路と、前記準定常的有効電力信号と負荷電
圧波形信号を乗算して前記準定常的有効電力信号に対応
する負荷電流信号中の有効電流成分信号を求める回路
と、前記検出される負荷電流信号と負荷電圧の90度遅
相負荷電圧信号を乗算して低域ろ波器を通して準定常的
無効電力信号を得る回路と、前記準定常的無効電力信号
と前記90度遅相負荷電圧波形信号を乗算して前記準定
常的無効電力信号に対応する負荷電流信号中の無効電流
成分信号を求める回路と、前記求められた有効電流成分
信号並びに無効電流成分信号の両電流成分信号を前記負
荷電流信号より差し引く減算器回路と、該減算器回路よ
りの出力電流信号と90度遅相負荷電圧信号を乗算する
回路を備えることを特徴とする無効電力補償装置の制御
回路。
1. A lagging reactive power adjusting circuit in which an energization control element and a reactor connected in anti-parallel are connected in series in parallel with a fluctuating load connected to a bus, and a phase advancing filter. In a control circuit of a reactive power compensator to which a circuit is connected, a voltage transformer for detecting a load voltage signal, a current transformer for detecting a load current signal, and a 90-degree voltage phase shifter for the load voltage are provided. A circuit for multiplying a load current signal and a load voltage signal to obtain a quasi-stationary active power signal through a low pass filter; and a circuit for multiplying the quasi-stationary active power signal and a load voltage waveform signal by the quasi-stationary A circuit for obtaining an active current component signal in a load current signal corresponding to an active power signal, and a quasi-steady state through a low-pass filter by multiplying the detected load current signal and a load voltage 90 ° delayed phase load voltage signal. A static reactive power signal A circuit for calculating a reactive current component signal in a load current signal corresponding to the quasi-stationary reactive power signal by multiplying the quasi-stationary reactive power signal and the 90-degree lag load voltage waveform signal. A subtractor circuit for subtracting both the current component signals of the effective current component signal and the reactive current component signal from the load current signal, and a circuit for multiplying the output current signal from the subtractor circuit by the 90-degree delayed phase load voltage signal. A control circuit for a reactive power compensator, comprising:
JP62014417A 1979-10-27 1987-01-23 Control circuit of reactive power compensator Expired - Lifetime JPH0621968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62014417A JPH0621968B2 (en) 1979-10-27 1987-01-23 Control circuit of reactive power compensator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13899779A JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power
JP62014417A JPH0621968B2 (en) 1979-10-27 1987-01-23 Control circuit of reactive power compensator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13899779A Division JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power

Publications (2)

Publication Number Publication Date
JPS62241015A JPS62241015A (en) 1987-10-21
JPH0621968B2 true JPH0621968B2 (en) 1994-03-23

Family

ID=15235058

Family Applications (2)

Application Number Title Priority Date Filing Date
JP13899779A Granted JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power
JP62014417A Expired - Lifetime JPH0621968B2 (en) 1979-10-27 1987-01-23 Control circuit of reactive power compensator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP13899779A Granted JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power

Country Status (1)

Country Link
JP (2) JPS5663622A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322659B2 (en) * 1973-03-27 1978-07-10
JPS5513050B2 (en) * 1974-08-22 1980-04-05
JPS525452A (en) * 1975-07-01 1977-01-17 Fuji Electric Co Ltd Control process of reactive power readjusting system
JPS5366550A (en) * 1976-11-26 1978-06-14 Mitsubishi Electric Corp Control circuit for reactive power compensator
JPS547978A (en) * 1977-06-20 1979-01-20 Torio Kk Audio wattmeter

Also Published As

Publication number Publication date
JPS6321207B2 (en) 1988-05-06
JPS5663622A (en) 1981-05-30
JPS62241015A (en) 1987-10-21

Similar Documents

Publication Publication Date Title
US3963978A (en) Reactive power compensator
EP0519635B1 (en) Method and apparatus for controlling the output voltage of an AC electrical system
JP2793327B2 (en) Reactive power compensator
US5065304A (en) Controller for AC power converter
JPH0621968B2 (en) Control circuit of reactive power compensator
JP3570913B2 (en) Control device for semiconductor switch
Montero-Hernandez et al. A fast detection algorithm suitable for mitigation of numerous power quality disturbances
JP2781602B2 (en) Power converter control device and system thereof
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus
JP5629613B2 (en) Control device for self-excited reactive power compensator
US4255700A (en) Control circuit of reactive power compensation apparatus
JPH08140268A (en) Controller of reactive power compensator
JPH0432621B2 (en)
JP2701663B2 (en) Limiter device
JPS6357739B2 (en)
JPH07236230A (en) Controller for voltage fluctuation suppresser
JPS62222166A (en) Ac signal detector
JPS5854845Y2 (en) 3-phase load compensation device
JPH07222362A (en) Reactive current detection circuit
JPH05181552A (en) Controller for reactive power compensation device
JPH07212976A (en) Controller of voltage fluctuation handling equipment
JPH0117169B2 (en)
JPH04344128A (en) Unbalance compensator
JPH01194870A (en) Parallel connection device for power supply including inverter
JPH02287808A (en) Control system for reactive power compensating device