JPH06217660A - Method for culturing seedling of tissue culture of plant and culture device therefor - Google Patents

Method for culturing seedling of tissue culture of plant and culture device therefor

Info

Publication number
JPH06217660A
JPH06217660A JP3447693A JP3447693A JPH06217660A JP H06217660 A JPH06217660 A JP H06217660A JP 3447693 A JP3447693 A JP 3447693A JP 3447693 A JP3447693 A JP 3447693A JP H06217660 A JPH06217660 A JP H06217660A
Authority
JP
Japan
Prior art keywords
culture
container
humidity
carbon dioxide
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3447693A
Other languages
Japanese (ja)
Other versions
JP2732184B2 (en
Inventor
Hideo Tanimoto
秀夫 谷本
Kenji Nakamura
謙治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP5034476A priority Critical patent/JP2732184B2/en
Publication of JPH06217660A publication Critical patent/JPH06217660A/en
Application granted granted Critical
Publication of JP2732184B2 publication Critical patent/JP2732184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

PURPOSE:To inexpensively obtain a strong, normal seedling of tissue culture of plant in reduced days of growth of seedling by supplying a carbon dioxide gas from a time of starting reduction in a reduced amount of medium concentration in a culture container, lowering humidity in the container, gradually increasing light intensity. CONSTITUTION:Plant materials 10 such as petiole pieces of leagous begonia as plant tissue are laid on substrates 9 shaped into cells put in culture containers 8, the substrates 9 are packed with vermiculite containing a medium and the plant materials are cultured in a culture chamber 1 at 40mumol/m<2>/second light intensity from a light source 2 such as fluorescent light of day color light at 25 deg.C at 70% humidity for 24 hours. At a point of time when the reduced amount of a saccharide concentration in the medium in the culture containers 8 starts to decrease, a carbon dioxide gas is supplied from a carbon dioxide feed source 6 through a solenoid valve 4 to the culture containers 8 and the humidity in the culture containers 8 is lowered by adjusting a humidifier 7. The culture is further carried out by gradually increasing the light intensity of the light source 2 so that the number of days for growing seedlings is reduced and strong, normal seedlings of tissue culture of plant are obtained at a reduced manufacturing cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は植物組織培養苗の培養方
法及び培養装置に関する。更に詳しくは、植物組織培養
技術を利用した種苗の培養方法、及びそれに用いる種苗
の大量生産に使用しうる培養装置、培養容器に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for cultivating plant tissue culture seedlings. More specifically, the present invention relates to a method for cultivating seedlings using a plant tissue culturing technique, and a culturing device and a culturing container that can be used for mass production of seedlings used therein.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】従来より
植物の種苗生産は、種子や球根あるいはさし木などによ
って増殖が行われている。これらの方法は、多くの植物
において今日的にも重要な種苗生産の技術である。しか
し、これらの方法では、生産を繰り返していくうちに、
病気や害虫に冒されるなどして生育が阻害されたり枯死
するなどの問題点が指摘されており、安定的な方法とは
いえない。
2. Description of the Related Art Conventionally, seedling production of plants has been carried out by using seeds, bulbs or cuttings. These methods are still important seed production techniques for many plants today. However, with these methods, during repeated production,
Problems such as growth inhibition and death due to illness or pests have been pointed out, and it cannot be said to be a stable method.

【0003】そこでバイオテクノロジーにより植物体を
細胞から再生する技術が開発され、品種改良や種苗生産
にも活用されるようになってきた。その方法の一例とし
ては無菌下で頂芽組織を摘出し、それを試験管などの培
地に置床し、培養を行い、植物体に再生させる。その再
生した植物体に多くの腋芽を出芽させ、それを幾つかに
分け、それらの工程を繰り返すことで大量にクローン苗
を増殖させる。そしてそれを一ヵ月程度かけて屋外環境
にならす順化の過程を経て幼苗とすることが一般に行わ
れている。
Therefore, a technique for regenerating plants from cells has been developed by biotechnology and has come to be used for breed improvement and seedling production. As an example of such a method, the apical bud tissue is removed under aseptic condition, placed in a medium such as a test tube, cultured, and regenerated into a plant body. A large number of axillary buds are germinated in the regenerated plant, divided into several pieces, and these steps are repeated to multiply clone seedlings. It is generally practiced to make seedlings through the process of acclimatizing it to the outdoor environment for about one month.

【0004】このような従来の植物組織培養を利用した
種苗生産方法は、腋芽のついた植物体を1つ1つ切り離
し、それを繰り返すため、その繰り返し数が多くなけれ
ば大量の苗を得ることができず、そのための作業の手間
が大であるうえ、増殖効率などは高くない。さらに試験
管などに1株ずつ置床するため経済的にコストが高くつ
き、かつ成苗化までの培養時間が長く、順化についても
経験的な方法のため強い苗が生産できるとはいい難い。
[0004] In such a conventional seedling production method using plant tissue culture, individual axillary bud plants are cut off one by one and repeated, so a large number of seedlings can be obtained unless the number of repetitions is large. It is not possible to do so, the work for it is troublesome, and the proliferation efficiency is not high. Furthermore, since each strain is placed in a test tube or the like, it is economically expensive, and it takes a long time to culture the seedlings, and it is difficult to say that strong seedlings can be produced because of an empirical method for acclimatization.

【0005】また、従来の植物組織培養などに用いる培
養装置は、1台の装置では温度、湿度、光強度、炭酸ガ
ス濃度等は1つのパターンしか設定できない。温度のみ
についてみれば、1台の装置でその室内を複数に区切
り、それぞれを異なった温度に設定・制御するものは一
部にみられるが、光強度、湿度、炭酸ガス濃度まで同時
に制御しうるものはない。
Further, in the conventional culture device used for plant tissue culture and the like, one device can set only one pattern of temperature, humidity, light intensity, carbon dioxide concentration and the like. In terms of temperature only, there are some devices that divide the room into multiple parts with one device and set and control different temperatures, but it is possible to control light intensity, humidity, and carbon dioxide concentration at the same time. There is nothing.

【0006】最近、植物組織培養技術において、培養植
物体の生長促進、健苗化などのために培養容器内のガス
濃度、温度、湿度、養液などを個別に配管を行い制御す
る技術が開発されている。しかし、この方法は、培養容
器内を無菌状態に保つための滅菌処理が必要で、また配
管などの手間がかかるため実用的でない。このような従
来の培養装置には以上のような問題点があり、植物組織
培養技術を利用した種苗生産の研究や実生産を行おうと
する場合、培養から順化の過程では、その植物体の種類
や培養・順化パターンにより異なった環境制御が必要と
なり、そのためには何台もの装置が必要となり効率的で
ない。また培養容器ごとに環境制御することは容器を大
型化することになり、多くの容器を必要とする研究や生
産の場合は効率的でない。
Recently, in plant tissue culture technology, a technology has been developed for controlling gas concentration, temperature, humidity, nutrient solution, etc. in a culture container by individually piping to promote the growth of cultured plants and to make seedlings healthy. Has been done. However, this method is not practical because it requires a sterilization process to keep the inside of the culture container in a sterile state and requires time and effort such as piping. Such conventional culture devices have the above problems, and when conducting seedling production research or actual production using plant tissue culture technology, in the process of acclimation to culturing, the plant Different environmental controls are required depending on the type and culture / acclimation pattern, which requires many devices and is not efficient. In addition, controlling the environment for each culture container increases the size of the container, which is not efficient for research and production that require many containers.

【0007】さらに、従来の植物組織培養装置では、光
源として主に蛍光灯が用いられており、この光源と培養
容器との距離は20〜30cmであって、近接照明とな
る場合が多く、かつ、培養容器内は密封状態であるた
め、その光源からの熱伝達により培養容器内の温度は容
器外よりも2〜5℃も高くなり、培養植物体の生長を阻
害するなどの現象がみられる。
Further, in the conventional plant tissue culture apparatus, a fluorescent lamp is mainly used as a light source, and the distance between the light source and the culture container is 20 to 30 cm, and in many cases close-up illumination is involved, and Since the inside of the culture container is hermetically sealed, the temperature inside the culture container becomes 2 to 5 ° C. higher than that outside the container due to heat transfer from the light source, and phenomena such as inhibition of growth of cultured plants are observed. .

【0008】また、従来の植物組織培養において、不定
胚や不定芽系からの植物体再生においては、試験管やせ
いぜい直径10cm程度までの培養容器を用い、その支
持体としては培地に寒天を添加してゲル化させた寒天培
地を利用することが多い。この方法は小規模な育種目的
などの研究に適している。またこれらの容器において綿
栓などを用いて容器内外の通気を可能としているものも
みられる。
[0008] In conventional plant tissue culture, when regenerating a plant from an adventitious embryo or adventitious bud system, a test tube or a culture container having a diameter of at most about 10 cm is used, and agar is added to the medium as a support. In many cases, an agar medium that has been gelled by the above method is used. This method is suitable for studies such as small-scale breeding purposes. In addition, some of these containers use a cotton plug or the like to allow ventilation inside and outside the container.

【0009】しかし、これらの培養容器を使用して種苗
生産を行おうとする場合、容器が小さいため大量の種苗
生産には向かない。特に培養作業などに手間がかかり、
支持体としている寒天培地などは、順化時には一旦完全
に洗い流したうえで再度別の支持体に植えつける必要が
あるなど効率が悪い。
[0009] However, when trying to produce seedlings using these culture vessels, since the vessels are small, they are not suitable for mass production of seedlings. Especially, it takes time and effort for culturing,
The agar medium used as the support is inefficient because it needs to be completely washed off once during acclimation and then re-planted on another support.

【0010】また、培養容器で行っている容器内外の通
気は、単に容器内の温度やガス環境を密封状態よりも良
い状態に保とうとするものであり、積極的な容器内環境
の制御を狙ったものではない。一方、これらの点を考慮
して培養容器を大型化し、その1つ1つに配管などを行
い、温度、湿度やガス環境を制御する装置も考えられて
いるが、これらは取り扱いが面倒であり、コストも高く
つくなど種苗生産の現場で実際に使用しうるものとはい
い難い。
Further, the ventilation inside and outside the container, which is carried out in the culture container, merely aims to keep the temperature and gas environment inside the container better than the sealed state, and aims at the active control of the inside environment of the container. Not a thing. On the other hand, in consideration of these points, an apparatus for controlling the temperature, humidity, and gas environment by enlarging the culture vessel and providing a pipe or the like for each one has been considered, but these are cumbersome to handle. However, it is difficult to say that it can be actually used at the seedling production site due to the high cost.

【0011】[0011]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため鋭意検討した結果、植物組織培養におい
て、炭酸ガス施肥の時期の制御、培養容器内の湿度の制
御及び光強度の制御等を最適に行うことにより、培養日
数の短縮及び強い苗の生産を達成し得ることを見出し本
発明を完成した。さらにかかる培養を容易に実施するた
めの新規な植物組織培養装置、該培養装置に用いる培養
容器を考案した。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that in plant tissue culture, control of the time of carbon dioxide fertilization, control of humidity in the culture vessel, and control of light intensity. The inventors have completed the present invention by finding that it is possible to shorten the number of culturing days and produce strong seedlings by optimally performing control and the like. Further, a novel plant tissue culture device and a culture container used for the culture device have been devised to facilitate such culture.

【0012】即ち、本発明の要旨は、(1)培養容器中
の培地糖濃度の減少量が低下し始める時期より該培養容
器内に炭酸ガス施肥を行うと共に該培養容器内の湿度を
低下させ、さらに光強度を漸次増加させることを特徴と
する植物組織培養苗の培養方法、(2)培養容器の収納
が可能な複数の区分けされた室を有し、各室への炭酸ガ
ス供給手段、および各室の温度及び湿度の制御手段を備
えたことを特徴とする植物組織培養苗の培養装置、
(3)セル成形した支持体の収納が可能な培養容器であ
って、配置される培養装置の室内の環境により該培養容
器内の温度、湿度、ガス等の制御が可能な無菌通気膜を
介した開口部を有することを特徴とする培養容器、並び
に(4)セル成形した支持体を収納した前記(3)記載
の培養容器を前記(2)記載の培養装置の室内に設置し
て、培養容器内を密封状態で培養する時期、無菌通気膜
を通じて通気培養を行う時期、及び培養容器を開放状態
にして順化を行う時期を順次行うことを特徴とする植物
組織培養苗の培養方法に関する。
That is, the gist of the present invention is (1) carbon dioxide fertilization is performed in the culture container and the humidity in the culture container is reduced from the time when the decrease amount of the sugar concentration in the culture medium in the culture container starts to decrease. A method for cultivating plant tissue culture seedlings, characterized by gradually increasing the light intensity, (2) having a plurality of compartments capable of accommodating culture vessels, and supplying carbon dioxide gas to each compartment, And a plant tissue culture seedling culturing device, characterized by comprising temperature and humidity control means for each room,
(3) A culture container capable of accommodating a cell-molded support, with a sterile aeration membrane capable of controlling the temperature, humidity, gas, etc. in the culture container depending on the environment of the room of the culture device in which it is placed. The culture container having the above-mentioned opening, and (4) the culture container according to (3) containing the cell-molded support is installed in the chamber of the culture device according to (2) to perform culture. The present invention relates to a method for cultivating plant tissue culture seedlings, which comprises sequentially performing a period of culturing in a container in a sealed state, aeration culture through a sterile aeration membrane, and a period of acclimation with the culture container in an open state.

【0013】本発明の植物組織培養苗の培養方法は、炭
酸ガス施肥、湿度の低下及び光強度を増加させる時期が
特に重要となることを見出したことに基づくものであ
る。即ち、通常の培養条件、例えばMS培地にシュクロ
ース(3%)、ナフタレン酢酸(1mg/リットル)及
びカイネチン(1mg/リットル)を添加したものを培
地とし、温度25℃、湿度70%RH、光強度40μm
ol/m2 /secで24時間照明の下で植物組織培養
を行うと、当初は培地の栄養を摂取し従属栄養生長を行
い不定芽を形成し始める。ついで一定期間経過後、従属
栄養生長から混合栄養生長に移行する。この場合、培養
条件を変更せずに培養を継続すると生長は鈍化し、形成
する苗も弱々しいものとなる。
The method for cultivating plant tissue culture seedlings of the present invention is based on the finding that the time when carbon dioxide fertilization, the decrease in humidity and the increase in light intensity are particularly important. That is, a normal culture condition, for example, MS medium supplemented with sucrose (3%), naphthalene acetic acid (1 mg / liter) and kinetin (1 mg / liter) was used as a medium at a temperature of 25 ° C., a humidity of 70% RH, and a light. Strength 40 μm
When plant tissue culture is performed under illumination of ol / m 2 / sec for 24 hours, the nutrients in the medium are initially ingested to cause heterotrophic growth and start adventitious bud formation. Then, after a certain period of time, the heterotrophic growth is changed to the mixed vegetative growth. In this case, if the culture is continued without changing the culture conditions, the growth becomes slow and the seedlings formed become weak.

【0014】しかし、従属栄養生長から混合栄養生長に
移行する時期に炭酸ガス施肥を行うと光合成が活発化し
不定芽の生育が促進され、幼苗化が進行する。また混合
栄養生長期に湿度を90%RH程度に制御すると不定芽
の健苗化、順化が容易となる。さらに、混合栄養生長期
に光強度を漸次増加すると光合成を一層活発化し植物体
の生長を促進する。一方、従属栄養生長期に炭酸ガス施
肥を行うと、かえって不定芽の生育が抑制される。
However, when carbon dioxide fertilization is carried out at the time of transition from heterotrophic growth to mixed vegetative growth, photosynthesis is activated, adventitious bud growth is promoted, and seedling formation proceeds. Further, if the humidity is controlled to about 90% RH during the mixed vegetative growth period, the adventitious shoots can be easily transformed into healthy seedlings and acclimatized. Furthermore, when the light intensity was gradually increased during the mixed vegetative growth period, photosynthesis was further activated and the growth of plants was promoted. On the other hand, when carbon dioxide is applied during the heterotrophic growth period, the growth of adventitious shoots is rather suppressed.

【0015】したがって、従属栄養生長から混合栄養生
長に移行する時期を判定することが効果的な炭酸ガス施
肥等のために不可欠となるが、本発明においては、培養
中における培地の糖濃度及び培養容器中の炭酸ガス濃度
を追跡することにより、該時期を判定するものである。
即ち、培地中の糖濃度の減少量が低下し始める時期を従
属栄養生長から混合栄養生長への移行期と判定するもの
である。この移行期前に炭酸ガス施肥を行うと不定芽の
生育が抑制されることから、該時期の判定は慎重を要す
る。
Therefore, it is indispensable to determine the time of transition from heterotrophic growth to mixed vegetative growth for effective carbon dioxide fertilization and the like. In the present invention, however, the sugar concentration of the medium during the culture and the culture The time is determined by tracking the carbon dioxide concentration in the container.
That is, the time when the decrease in the sugar concentration in the medium begins to decrease is determined as the transitional period from heterotrophic growth to mixed vegetative growth. If carbon dioxide fertilization is performed before this transition period, the growth of adventitious buds will be suppressed, and thus the determination of the period is required carefully.

【0016】培養容器中の培地糖濃度の減少量が低下し
始める時期を判定するには、特に限定されることはない
が、通常培地中の糖濃度を糖度計により測定し判定す
る。従属栄養生長から混合栄養生長への移行期を判定し
て、炭酸ガス施肥等の所定の処理を行う。
Although there is no particular limitation for determining the time when the decrease amount of the medium sugar concentration in the culture container begins to decrease, usually, the sugar concentration in the medium is measured by a saccharimeter to make a determination. The transitional period from heterotrophic growth to mixed vegetative growth is determined, and a predetermined treatment such as carbon dioxide fertilization is performed.

【0017】培養容器内への炭酸ガス施肥は、培養容器
を収納する培養装置内に無菌通気膜を介して炭酸ガスを
通気することにより行う。培養容器内の炭酸ガス濃度と
しては500〜1000ppmになるよう調整される。
また、培養容器内の湿度制御も無菌通気膜を介して行
い、通常、制御される湿度は90〜95%RHである。
Fertilization of carbon dioxide gas into the culture vessel is carried out by aerating carbon dioxide gas through a sterile gas permeable membrane into the culture device accommodating the culture vessel. The carbon dioxide concentration in the culture vessel is adjusted to be 500 to 1000 ppm.
Further, the humidity control in the culture vessel is also carried out via a sterile air permeable membrane, and the controlled humidity is usually 90 to 95% RH.

【0018】炭酸ガス施肥の期間は、長くなればなるほ
どそれだけ植物体の生長も進むが、成苗化日数を短縮す
るためには、炭酸ガス施肥期間を10〜15日間に制限
し、この後の工程である順化を5〜10日間行う方法
が、鉢上げ後の苗の活着率が高く本発明の目的に合致す
る。
The longer the period of carbon dioxide fertilization, the more the plants grow. However, in order to shorten the number of days for growing seedlings, the period of carbon dioxide fertilization is limited to 10 to 15 days. A method in which acclimation, which is a step, is performed for 5 to 10 days has a high survival rate of seedlings after being potted and meets the purpose of the present invention.

【0019】また、本発明者らは混合栄養生長期には光
合成を活発化するため光強度を漸次増強する方法が培養
植物体の急激な生長・成苗化に効果的であることを発見
した。光強度の増強方法としては、従属栄養生長期は3
0μmol/m2 /sec程度とし、混合栄養生長期に
は、その倍の60〜70μmol/m2 /sec、順化
時期にはさらにその倍の120〜140μmol/m2
/sec程度に段階的に増強させる。
Further, the present inventors have discovered that a method of gradually increasing the light intensity in order to activate photosynthesis during the mixed nutritional growth period is effective for the rapid growth and seedling formation of cultured plants. . As a method of enhancing the light intensity, the heterotrophic growth period is 3
It is about 0 μmol / m 2 / sec, which is doubled to 60 to 70 μmol / m 2 / sec during the mixed nutritional growth period, and doubled to 120 to 140 μmol / m 2 during the acclimation period.
/ Sec is gradually increased.

【0020】本発明の植物組織培養苗の培養方法は、上
述の如く、植物体が従属栄養生長から混合栄養生長への
移行期を決定し、この移行期以後において炭酸ガス施
肥、培養容器内の湿度制御、照明の光強度の制御を行う
ことにより、これらの操作の相乗効果として不定芽の生
育促進及び健苗化を達成する手段を提供するものであ
る。また、これらの効果をもたらす本培養方法によって
成苗化日数の短縮をも図ることができる。
In the method for cultivating plant tissue culture seedlings of the present invention, as described above, the plant determines the transitional period from heterotrophic growth to mixed vegetative growth, and after this transitional period, carbon dioxide fertilization and culture container By controlling humidity and controlling the light intensity of illumination, a means for achieving growth promotion of adventitious shoots and establishment of healthy seedlings as a synergistic effect of these operations is provided. In addition, the number of days for adult seedling formation can be shortened by the main culture method that brings about these effects.

【0021】本発明の植物組織培養苗の培養方法は、上
記の不定芽形成の培養以外にも、不定胚形成、ランなど
の無菌播種による増殖、ユリなどのりん片培養による苗
生産にも利用することができる。
The method for cultivating plant tissue culture seedlings of the present invention is also used for adventitious embryo formation, growth by aseptic seeding of orchids, and seedling production by flake culture of lilies and the like, in addition to the above-mentioned culture of adventitious bud formation. can do.

【0022】本発明の培養方法を実施するには、培養容
器内の温度制御のみでなく、炭酸ガス施肥、湿度の制御
が必要であり、また、光強度を増強させた場合に培養容
器内の温度上昇を抑制する必要があるため、従来の植物
組織培養装置を使用するのは適当ではない。
In order to carry out the culture method of the present invention, not only temperature control in the culture container but also carbon dioxide fertilization and humidity control are required, and when the light intensity is increased, It is not appropriate to use the conventional plant tissue culture device because it is necessary to suppress the temperature rise.

【0023】従って、本発明においては、培養容器の収
納が可能な複数の区分けされた室を有し、各室への炭酸
ガス供給手段、および各室の温度及び湿度の制御手段を
備えた植物組織培養苗の培養装置を使用するのが好まし
い。炭酸ガス供給手段としては、特に限定されるもので
はなく、例えば炭酸ガスボンベを使用する。温度及び湿
度の制御手段としては、特に限定されるものではない
が、例えば湿度は超音波加湿器よりの送気量により制御
し、温度は冷気発生器よりの冷気送気量調節をダンパー
開閉により行うものが好適に使用される。さらに、人工
光源からの熱を遮断する赤外線遮蔽フィルターを備える
ことにより、光強度を増強させた場合に培養容器内の温
度上昇を抑制することができる。
Therefore, in the present invention, a plant having a plurality of compartments capable of accommodating a culture vessel, provided with a carbon dioxide gas supply means for each compartment and a temperature and humidity control means for each compartment. It is preferable to use a tissue culture seedling culture device. The carbon dioxide gas supply means is not particularly limited and, for example, a carbon dioxide gas cylinder is used. The temperature and humidity control means is not particularly limited, for example, the humidity is controlled by the amount of air supplied from the ultrasonic humidifier, and the temperature is adjusted by controlling the amount of cold air supplied from the cool air generator by opening and closing the damper. What is done is preferably used. Furthermore, by providing an infrared shielding filter that shields heat from the artificial light source, it is possible to suppress the temperature rise in the culture container when the light intensity is increased.

【0024】本発明で用いる培養装置の好適な例につい
て、図1により説明する。図1は本発明の培養装置の概
略構成図を示す。1は培養容器の収納が可能な区分けさ
れた室であり、本装置では3つの室(培養A室、培養B
室、培養C室)よりなる例を示す。2は光源(昼色光蛍
光灯)であり、各室においてそれぞれ独立に強度調節が
可能な照明設備である。3は赤外線遮蔽フィルターであ
り、例えば光源と各室の間に取り付けることにより人工
光源からの光照明の強度を上げることによる温度上昇を
防止することができ、温度制御が可能となる。ここで用
いられる赤外線遮蔽フィルターとしては特公平2−12
535号公報又は特公平4−48404号公報が使用可
能である。4は電磁開閉弁であり、炭酸ガス供給量の制
御及び通気量の制御がなされる。炭酸ガスの供給は、炭
酸ガス供給源6より行われ、通気は加湿器7により10
0%RHの空気を供給することが可能である。5は温度
及び湿度制御用ダンパーであり、各室の温度、湿度の制
御をダンパー開閉により自動調節で行い、独立して温
度、湿度の制御が可能である。8は培養容器であり、各
室に収納されている。9は培養容器内に設けられた支持
体、10は培養対象となる植物体を示す。
A preferred example of the culture device used in the present invention will be described with reference to FIG. FIG. 1 shows a schematic configuration diagram of the culture apparatus of the present invention. Numeral 1 is a divided chamber capable of accommodating a culture container. In this device, three chambers (culture A chamber, culture B)
Chamber, culture C chamber). Reference numeral 2 denotes a light source (daylight fluorescent lamp), which is an illumination facility whose intensity can be adjusted independently in each room. Reference numeral 3 denotes an infrared shielding filter, which can be mounted between the light source and each room, for example, to prevent a temperature rise due to an increase in the intensity of the light illumination from the artificial light source, and to control the temperature. Japanese Patent Publication No. 2-12
Japanese Patent Publication No. 535 or Japanese Patent Publication No. 4-48404 can be used. Reference numeral 4 denotes an electromagnetic on-off valve, which controls the supply amount of carbon dioxide and the ventilation amount. The carbon dioxide gas is supplied from the carbon dioxide gas supply source 6, and the aeration is performed by the humidifier 10
It is possible to supply 0% RH air. A temperature and humidity control damper 5 controls the temperature and humidity of each room by automatically opening and closing the damper to independently control the temperature and humidity. Reference numeral 8 denotes a culture container, which is housed in each room. 9 is a support provided in the culture container, and 10 is a plant to be cultured.

【0025】このように本発明の培養装置は、複数の室
に区分けされた培養室を有し、そのこの各室はウォーク
インタイプとすると作業上便宜である。本培養装置を使
用することにより、照明強度の調節、炭酸ガスの供給及
びその制御、通気及びその制御、一定範囲における温度
制御等を伴う植物組織培養苗の培養が可能である。
As described above, the culture apparatus of the present invention has a culture chamber divided into a plurality of chambers, and each of these chambers is a walk-in type, which is convenient in terms of work. By using the main culturing apparatus, it is possible to cultivate plant tissue culture seedlings with adjustment of illumination intensity, supply and control of carbon dioxide, aeration and control thereof, temperature control in a certain range, and the like.

【0026】本発明の培養装置の各室には植物体の培養
を行うための培養容器が配置される。培養される植物体
の培養環境は、培養容器内の環境であるから、無菌状態
の維持、通気及び炭酸ガスの供給、湿度の制御が可能で
あることを要し、また簡易に大規模な種苗生産を可能と
するものであることが望ましい。本発明の培養容器はこ
のような観点から、セル成形した支持体の収納が可能な
培養容器であって、配置される培養装置内の環境により
該培養容器内の温度、湿度、ガス等の制御が可能な無菌
通気膜を介した開口部を有する容器が使用される。
A culture vessel for culturing a plant is arranged in each chamber of the culture apparatus of the present invention. Since the culture environment of the plant to be cultured is the environment inside the culture vessel, it is necessary to maintain the sterility, supply aeration and supply of carbon dioxide gas, and control the humidity. It is desirable that it can be produced. From such a viewpoint, the culture container of the present invention is a culture container capable of accommodating a cell-molded support, and controls the temperature, humidity, gas and the like in the culture container depending on the environment in the culture device in which it is placed. A container having an opening through a sterile gas-permeable membrane is used.

【0027】本発明で用いる培養容器の好適な例につい
て、図2により説明する。図2は本発明の培養容器の概
略構成図を示す。11は培養容器の本体であり、無菌状
態を作り、無菌状態を保持するために、オートクレーブ
滅菌が可能な容器、例えばポリカーボネート等のプラス
チック製とし、容量は特に限定されるものではないがク
リーンベンチ内での無菌操作が容易となる程度のものが
好ましい。12は蓋であり、これを開閉して支持体の出
し入れを行う。蓋は密封性を高め培養中の汚染を防ぐた
めシール用パッキン13を取り付け、更に錠などを用
い、好ましくは、パッチン錠14などを用いて施錠可能
とする。容器本体にはセル成形した支持体17を複数個
収納できるようにする。この支持体17としては、例え
ばウレタンキューブやロックウールキューブ、プラグト
レイなどを使用する。また、容器内の湿度や炭酸ガスの
制御は、容器本体11の側面に無菌通気膜15を取り付
けた開口部により間接的に行う。開口部の開閉度は無菌
通気膜15を被覆するように移動可能に設置した無菌通
気膜カバー16を移動させて行う。これにより容器内の
湿度や炭酸ガスが制御される。即ち、例えば無菌通気膜
15の開閉度に応じて湿度が調整されるよう湿度の目盛
りが付されており、無菌通気膜カバー16を所望の目盛
りまで移動させることにより所望の湿度に制御すること
ができる。無菌通気膜15としては例えば、フロロカー
ボン製のメンブランフィルターが用いられる。
A preferred example of the culture container used in the present invention will be described with reference to FIG. FIG. 2 shows a schematic configuration diagram of the culture container of the present invention. Reference numeral 11 denotes a main body of a culture container, which is made of a container that can be sterilized by autoclave, for example, made of plastic such as polycarbonate in order to maintain an aseptic condition, and the capacity is not particularly limited, but in a clean bench. It is preferably such that the aseptic operation in 1. becomes easy. Reference numeral 12 is a lid, which is opened and closed to insert and remove the support. The lid is provided with a sealing packing 13 in order to enhance the hermeticity and prevent contamination during culture, and can be locked by using a lock or the like, preferably a patchon tablet 14 or the like. A plurality of cell-molded supports 17 can be housed in the container body. As the support 17, for example, a urethane cube, a rock wool cube, a plug tray, or the like is used. Further, the humidity and carbon dioxide gas in the container are controlled indirectly by the opening portion provided with the sterile gas permeable membrane 15 on the side surface of the container body 11. The degree of opening / closing of the opening is performed by moving the sterile gas-permeable membrane cover 16 that is movably installed so as to cover the sterile gas-permeable membrane 15. This controls the humidity and carbon dioxide in the container. That is, for example, a humidity scale is provided so that the humidity is adjusted in accordance with the degree of opening / closing of the sterile gas-permeable membrane 15, and the humidity can be controlled to a desired humidity by moving the sterile gas-permeable membrane cover 16 to a desired scale. it can. As the sterile gas permeable membrane 15, for example, a membrane filter made of fluorocarbon is used.

【0028】本発明の植物組織培養苗の培養方法は、前
記のような本発明の培養装置及び培養容器を用いて効果
的に実施することができる。以下に、本発明の培養装置
及び培養容器を用いて本発明の方法を実施する態様につ
いて説明する。即ち、本発明の方法は、(1)培養容器
内を密封状態で培養する時期、(2)無菌通気膜を通じ
て通気培養を行う時期、及び(3)培養容器を開放状態
にして順化を行う時期に分けられるが、これらの三工程
をすべて本発明の装置で行うことが可能である。
The method for cultivating plant tissue culture seedlings of the present invention can be effectively carried out using the above-described culture apparatus and culture container of the present invention. Below, the aspect which implements the method of this invention using the culture apparatus and culture container of this invention is demonstrated. That is, in the method of the present invention, (1) the time of culturing in a sealed state in the culture container, (2) the time of performing aeration culture through a sterile aeration membrane, and (3) the acclimation with the culture container in an open state. It is possible to perform all of these three steps with the apparatus of the present invention, depending on the time.

【0029】(1)の時期では、温度は一定とし、湿
度、炭酸ガスの制御は不要である。光強度は未だ植物組
織が光合成を行うまでに至っていないため30μmol
/m2/sec程度の弱光で十分である。照明は24時
間連続して行うものとする。この期間は条件によって異
なるが約55日間である。
At the time of (1), the temperature is kept constant and the control of humidity and carbon dioxide gas is unnecessary. The light intensity is 30 μmol because the plant tissue has not yet reached photosynthesis.
A weak light of about / m 2 / sec is sufficient. Lighting shall be performed continuously for 24 hours. This period is about 55 days although it depends on the conditions.

【0030】(2)の時期では、温度は一定とするが培
養容器内の炭酸ガス濃度及び湿度の制御が必要である。
本発明の培養容器の換気回数は毎時3回程度であるの
で、培養装置の各室の湿度を70%RH、炭酸ガス濃度
を1000ppmとすると、照明下で培養容器内の湿度
を90%RH程度に制御することができる。照射光の強
度は、植物体が光合成を開始しているので(1)の時期
の場合よりも強く60〜70μmol/m2 /sec程
度にする。照射時間は12〜16時間とし、1日のうち
光を照射しない時間をつくり、自然の条件と同様のリズ
ムをつくる。このリズムづくりは強い苗の生産に有効で
ある。この時期は10〜15日である。
At the time of (2), the temperature is kept constant, but it is necessary to control the carbon dioxide concentration and humidity in the culture vessel.
Since the culture container of the present invention has a ventilation frequency of about 3 times per hour, assuming that the humidity of each chamber of the culture device is 70% RH and the carbon dioxide concentration is 1000 ppm, the humidity in the culture container under illumination is about 90% RH. Can be controlled. The intensity of the irradiation light is stronger than in the case of (1) because the plant has started photosynthesis, and is set to about 60 to 70 μmol / m 2 / sec. The irradiation time is 12 to 16 hours, and the time during which the light is not irradiated is made during the day to create a rhythm similar to the natural condition. This rhythm creation is effective for the production of strong seedlings. This period is 10 to 15 days.

【0031】(3)順化を行う時期では、湿度を90%
RHの高湿から60%RH程度まで低下させることが特
に重要となる。培養容器は蓋を開放にし、一旦支持体を
洗浄し、糖を洗い流す作業を行い、再び蓋を開放した培
養容器に設置する。培養装置の各室内の環境は照射灯の
点灯時と消灯時で温度、湿度、炭酸ガス濃度を異なった
条件に任意に制御する。湿度は、徐々に低下させ、屋外
環境での育苗に移行できるようにする必要がある。その
低下の態様は適宜選択できるが、好ましくは90%R
H、90〜80%RH、80〜70%RH、70〜60
%RHというように少しずつ下げる方式をとり、植物体
の適応を容易にする。光強度は、(2)の時期の場合よ
りも更に強め、120〜140μmol/m2 /sec
程度にすると順化効率は一段と向上する。この時期は、
5〜10日である。
(3) Humidity is 90% at the time of acclimation.
It is particularly important to reduce the high humidity of RH to about 60% RH. With respect to the culture container, the lid is opened, the support is once washed, the sugar is washed away, and the culture container is installed again in the culture container with the lid opened. The environment in each room of the incubator is arbitrarily controlled under different conditions of temperature, humidity and carbon dioxide concentration when the irradiation lamp is turned on and off. Humidity needs to be gradually reduced to allow for transfer to seedlings in an outdoor environment. The mode of the reduction can be appropriately selected, but preferably 90% R
H, 90-80% RH, 80-70% RH, 70-60
The method of gradually lowering such as% RH is adopted to facilitate the adaptation of plants. The light intensity is 120 to 140 μmol / m 2 / sec, which is stronger than in the case of (2).
The degree of acclimation further improves the acclimation efficiency. At this time,
5 to 10 days.

【0032】[0032]

【実施例】以下、実施例および試験例により本発明をさ
らに詳しく説明するが、本発明はこれらの実施例等によ
りなんら限定されるものではない。 実施例1 植物体として、リーガスベゴニアの無菌植物の葉柄片
(3mm径、2mm厚)を材料として不定芽形成培養を
行った。この葉柄片は滅菌した本発明の培養容器中に収
納したセル成形した支持体上に置床した。支持体はバー
ミキュライトを詰めた18mm径のセル成形トレイとし
た。培養容器はオートクレーブ滅菌を行うためポリカー
ボネート等のプラスチック製の成形容器を用い、蓋は密
封性を保つためパッチン錠を取り付けたものとした。培
養容器のサイズはクリーンベンチ内での無菌操作を容易
にするため、210mm×250mm(高さ100m
m)のものを用いた。
EXAMPLES The present invention will be described in more detail with reference to Examples and Test Examples, but the present invention is not limited to these Examples. Example 1 As a plant body, adventitious bud formation culture was performed using a petiole piece (3 mm diameter, 2 mm thickness) of a sterile plant of Regus Begonia. The petiole pieces were placed on a cell-molded support housed in a sterilized culture container of the present invention. The support was an 18 mm diameter cell molding tray packed with vermiculite. As the culture container, a plastic molded container such as polycarbonate was used for autoclave sterilization, and a lid was fitted with a patch tablet to maintain hermeticity. The size of the culture vessel is 210 mm x 250 mm (height 100 m to facilitate aseptic operation in a clean bench).
m) was used.

【0033】培地は、MS(Murashige Skoog)培地にシ
ュクロース3%、ナフタレン酢酸1mg/リットル及び
カイネチン1mg/リットルを加えたものを用いた。培
養は光強度、温度、湿度、炭酸ガス濃度の制御が可能な
本発明の培養装置を用いて行った。
The medium used was MS (Murashige Skoog) medium supplemented with 3% sucrose, 1 mg / liter naphthalene acetic acid and 1 mg / liter kinetin. The culturing was carried out using the culturing apparatus of the present invention capable of controlling the light intensity, temperature, humidity and carbon dioxide concentration.

【0034】まず、温度25℃、湿度70%RH、光強
度40μmol/m2 /secで24時間照明(昼光色
蛍光灯)で培養を行ったところ、培養開始から約60日
目頃に培地中の糖消費量が減少し始めた。この事実は培
養開始から55日目頃までは該葉柄片は従属栄養生長を
続け、55日目頃から光合成を開始したことを意味す
る。そこで、本培養条件下では、培養開始後60日目を
従属栄養生長から混合栄養生長への移行期と決定した。
First, when the culture was carried out at a temperature of 25 ° C., a humidity of 70% RH, and a light intensity of 40 μmol / m 2 / sec for 24 hours under illumination (daylight fluorescent lamp), about 60 days after the start of the culture, Sugar consumption began to decline. This fact means that the petiole pieces continued to grow heterotrophically from the start of the culture until about the 55th day, and started the photosynthesis from about the 55th day. Therefore, under the main culture conditions, 60 days after the start of culture was determined as the transitional period from heterotrophic growth to mixed vegetative growth.

【0035】次に本発明の培養方法に従い、培養容器内
に炭酸ガス施肥を行うと共に培養容器内の湿度を低下さ
せ、さらに光強度を漸次増加させた。炭酸ガス施肥は強
制的に行うのではなく、培養装置の室内の炭酸ガス濃度
を1000ppm程度に高め、培養容器内へは培養容器
の側面に取り付けてある無菌通気膜を通じて間接的に行
った。これによりガス交換が培養容器内外で行われるの
と同時に湿度も影響を受け、それまで飽和状態にあった
ものが90%RH程度に低下し、この二つの効果により
不定芽の生長が促進され幼苗化が進むことになる。ま
た、光強度は60〜70μmol/m2 /secとし
た。
Next, according to the culture method of the present invention, carbon dioxide fertilization was performed in the culture container, the humidity in the culture container was lowered, and the light intensity was gradually increased. The carbon dioxide fertilization was not forcibly performed, but the concentration of carbon dioxide gas in the chamber of the culture device was increased to about 1000 ppm, and the fertilization was indirectly performed into the culture container through a sterile aeration membrane attached to the side surface of the culture container. As a result, gas exchange is carried out both inside and outside the culture vessel, and at the same time, humidity is affected, and what was previously saturated is reduced to about 90% RH. These two effects promote the growth of adventitious shoots Will be promoted. The light intensity was set to 60 to 70 μmol / m 2 / sec.

【0036】炭酸ガス施肥は10日間行った。炭酸ガス
施肥は長期間行う程植物体の生長も進み鉢上げ後の苗の
活着率も高かったが、成苗化日数が長期化するため、成
苗化日数及び鉢上げ後の苗の活着率を勘案して炭酸ガス
施肥を約10日間及びその後工程の順化期間を約5日間
とするのが最も効率的であった。
Carbon dioxide fertilization was performed for 10 days. The longer the carbon dioxide fertilization was, the more the plants grew and the survival rate of seedlings after pot raising was high.However, since the number of days for seedling formation is prolonged, the number of days for seedling formation and seedling survival rate after potting are increased. In consideration of the above, it was most efficient to apply the carbon dioxide gas for about 10 days and then acclimate the process for about 5 days.

【0037】順化は、支持体を水洗いして糖を洗い流
し、再度培養容器内に移し、湿度を90%RHから90
〜80%RH、80〜70%RH、70〜60%RHと
順次下げた。照明強度は120〜140μmol/m2
/secまで上昇させ、1日の間に点灯時間と消灯時間
を設けてリズムを作り、屋外環境への移行を容易にし
た。こうして得られた培養苗は従来の成苗化日数の約1
/2(75日)を要したにすぎないが、鉢上げ後の活着
率は95%以上を示し、優れた方法であることがわかっ
た。
The acclimation was carried out by washing the support with water to wash away the sugar, transferring it again into the culture vessel, and changing the humidity from 90% RH to 90%.
-80% RH, 80-70% RH, 70-60% RH. Illumination intensity is 120 to 140 μmol / m 2
/ Sec to increase the lighting time and extinguish time during the day to create a rhythm and facilitate the transition to the outdoor environment. The culture seedlings obtained in this way are about 1
It took only 1/2 (75 days), but the survival rate after potting was 95% or more, which proved to be an excellent method.

【0038】実施例2 リーガスベゴニアの代わりにセントポーリアの葉柄片を
用いて同様の実験を行った。従属栄養生長から混合栄養
生長への移行期は培養開始から約60日目であった。
Example 2 A similar experiment was carried out by using petiole pieces of Saintpaulia instead of Ligas begonia. The transitional period from heterotrophic growth to mixed vegetative growth was about 60 days after the start of culture.

【0039】試験例 実施例1において行った不定芽形成培養と同様にして、
リーガスベゴニアの無菌植物の葉柄片を材料とした不定
芽形成培養を行い、糖濃度と炭酸ガス濃度の経時的変化
を試験した。糖濃度は、培養10日毎にデジタル糖度計
PR−1(アタゴ社製)で、炭酸ガス濃度は、培養5日
毎に検知管法(ガステックNo.2LL)で測定を行っ
た。
Test Example In the same manner as the adventitious bud formation culture carried out in Example 1,
Adventitious bud-forming culture was performed using petiole pieces of a sterile plant of Regus begonia, and the changes in sugar concentration and carbon dioxide concentration with time were examined. The sugar concentration was measured by a digital sugar content meter PR-1 (manufactured by Atago Co.) every 10 days of culture, and the carbon dioxide concentration was measured by a detector tube method (Gastech No. 2LL) every 5 days of culture.

【0040】糖濃度の測定結果を図3に示す。培養55
日頃には培地中の糖消費量は減少し始めた。また、この
ことから培養55日頃が従属栄養生長から混合栄養生長
への移行期と決定した。
The results of measuring the sugar concentration are shown in FIG. Culture 55
The daily consumption of sugar in the medium began to decrease. From this, it was determined that about 55 days of culture was the transitional period from heterotrophic growth to mixed vegetative growth.

【0041】[0041]

【発明の効果】本発明の培養方法を用いることにより、
成苗化日数を短縮することができるとともに従来よりも
強い(活着率の高い)正常な培養苗を得ることができ
る。また、本発明の培養装置を使用することにより、1
台の装置で種苗生産の場面において、培養開始から順化
までのすべて行うことができること、また、研究の場面
においても各種の環境条件を1台の装置で再現でき、効
率良い比較検討が可能である。特に本発明の植物組織培
養苗の培養方法を使用するのに適した装置である。さら
に、本発明の培養容器を使用することにより作業効率が
大きく向上するため、培養苗の生産コストの低減が可能
となった。
By using the culture method of the present invention,
It is possible to shorten the number of days for forming seedlings and obtain a normal cultured seedling that is stronger (higher survival rate) than before. In addition, by using the culture device of the present invention,
It is possible to perform everything from the start of culturing to acclimation in the production of seeds with one device, and also to reproduce various environmental conditions with one device in the situation of research, which enables efficient comparison and examination. is there. The apparatus is particularly suitable for using the method for cultivating plant tissue culture seedlings of the present invention. Further, since the work efficiency is greatly improved by using the culture container of the present invention, the production cost of the cultured seedlings can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の培養装置の概略構成図を示す。FIG. 1 shows a schematic configuration diagram of a culture device of the present invention.

【図2】本発明の培養容器の概略構成図を示す。FIG. 2 shows a schematic configuration diagram of a culture container of the present invention.

【図3】試験例における培地中の糖濃度の経時変化を示
す。
FIG. 3 shows the time-dependent changes in the sugar concentration in the medium in Test Examples.

【符号の説明】[Explanation of symbols]

1 培養A室 2 光源(昼色光蛍光灯) 3 赤外線遮蔽フィルター 4 電磁開閉弁 5 温度及び湿度制御用ダンパー 6 炭酸ガス供給源 7 加湿器 8 培養容器 9 支持体 10 植物体 11 培養容器の本体 12 蓋 13 シール用パッキン 14 パッチン錠 15 無菌通気膜 16 無菌通気膜カバー 17 支持体 18 植物体 1 Culture A room 2 Light source (daylight fluorescent lamp) 3 Infrared shielding filter 4 Electromagnetic on-off valve 5 Temperature and humidity control damper 6 Carbon dioxide gas supply source 7 Humidifier 8 Culture vessel 9 Support body 10 Plant body 11 Culture vessel body 12 Lid 13 Seal packing 14 Patchon tablet 15 Aseptic breathable membrane 16 Aseptic breathable membrane cover 17 Support 18 Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 培養容器中の培地糖濃度の減少量が低下
し始める時期より該培養容器内に炭酸ガス施肥を行うと
共に該培養容器内の湿度を低下させ、さらに光強度を漸
次増加させることを特徴とする植物組織培養苗の培養方
法。
1. From the time when the decrease amount of the medium sugar concentration in the culture container begins to decrease, carbon dioxide fertilization is performed in the culture container, the humidity in the culture container is decreased, and the light intensity is gradually increased. A method for cultivating plant tissue culture seedlings, which comprises:
【請求項2】 植物組織培養苗が、不定芽、不定胚又は
無菌播種等由来のものである請求項1記載の培養方法。
2. The culture method according to claim 1, wherein the plant tissue culture seedling is derived from an adventitious bud, an adventitious embryo, or aseptic seeding.
【請求項3】 培養容器の収納が可能な複数の区分けさ
れた室を有し、各室への炭酸ガス供給手段、および各室
の温度及び湿度の制御手段を備えたことを特徴とする植
物組織培養苗の培養装置。
3. A plant characterized by having a plurality of compartments capable of accommodating a culture vessel, comprising carbon dioxide supply means for each compartment, and temperature and humidity control means for each compartment. Tissue culture seedling culture device.
【請求項4】 人工光源からの熱を遮断する赤外線遮蔽
フィルターをさらに備えたことを特徴とする請求項3記
載の培養装置。
4. The culture device according to claim 3, further comprising an infrared shielding filter that shields heat from the artificial light source.
【請求項5】 セル成形した支持体の収納が可能な培養
容器であって、配置される培養装置の室内の環境により
該培養容器内の温度、湿度、ガス等の制御が可能な無菌
通気膜を介した開口部を有することを特徴とする培養容
器。
5. A culture vessel capable of accommodating a cell-molded support, and a sterile aeration membrane capable of controlling temperature, humidity, gas and the like in the culture vessel according to the environment of the room of the culture apparatus in which it is placed. A culture container having an opening through the culture container.
【請求項6】 セル成形した支持体を収納した請求項5
記載の培養容器を請求項3記載の培養装置の室内に設置
して、培養容器内を密封状態で培養する時期、無菌通気
膜を通じて通気培養を行う時期、及び培養容器を開放状
態にして順化を行う時期を順次行うことを特徴とする植
物組織培養苗の培養方法。
6. The cell-shaped support member is housed therein.
The culture container according to claim 3 is installed in the chamber of the culture device according to claim 3, the culture is performed in a sealed state in the culture container, the aeration culture is performed through a sterile aeration membrane, and the culture container is opened to acclimatize. A method for cultivating plant tissue culture seedlings, which comprises sequentially performing the steps.
JP5034476A 1993-01-28 1993-01-28 Culture method of plant tissue culture seedling Expired - Lifetime JP2732184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5034476A JP2732184B2 (en) 1993-01-28 1993-01-28 Culture method of plant tissue culture seedling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5034476A JP2732184B2 (en) 1993-01-28 1993-01-28 Culture method of plant tissue culture seedling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21058197A Division JPH1066464A (en) 1997-08-05 1997-08-05 Culture system for plant tissue culture seedling

Publications (2)

Publication Number Publication Date
JPH06217660A true JPH06217660A (en) 1994-08-09
JP2732184B2 JP2732184B2 (en) 1998-03-25

Family

ID=12415309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5034476A Expired - Lifetime JP2732184B2 (en) 1993-01-28 1993-01-28 Culture method of plant tissue culture seedling

Country Status (1)

Country Link
JP (1) JP2732184B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106172009A (en) * 2016-08-15 2016-12-07 上海离草科技有限公司 Plant sugar-free culture systems and plant cultivation container
CN107960240A (en) * 2016-10-19 2018-04-27 姬志刚 A kind of Juglans fast culture container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344814A (en) * 1986-08-12 1988-02-25 株式会社小松製作所 Hydroponic culture apparatus
JPS6331761U (en) * 1986-08-19 1988-03-01
JPS63287478A (en) * 1987-05-21 1988-11-24 Watanabeyasushi Kk Box for cultivating biological tissue
JPS63301722A (en) * 1987-05-30 1988-12-08 Toshiba Electric Equip Corp Lighting equipment for growth and culture of plant
JPH01167302A (en) * 1987-12-23 1989-07-03 Lion Corp Stabilization of water-soluble chitin or chitosan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344814A (en) * 1986-08-12 1988-02-25 株式会社小松製作所 Hydroponic culture apparatus
JPS6331761U (en) * 1986-08-19 1988-03-01
JPS63287478A (en) * 1987-05-21 1988-11-24 Watanabeyasushi Kk Box for cultivating biological tissue
JPS63301722A (en) * 1987-05-30 1988-12-08 Toshiba Electric Equip Corp Lighting equipment for growth and culture of plant
JPH01167302A (en) * 1987-12-23 1989-07-03 Lion Corp Stabilization of water-soluble chitin or chitosan

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106172009A (en) * 2016-08-15 2016-12-07 上海离草科技有限公司 Plant sugar-free culture systems and plant cultivation container
CN106172009B (en) * 2016-08-15 2018-08-21 上海离草科技有限公司 Plant sugar-free culture systems and plant cultivation container
CN107960240A (en) * 2016-10-19 2018-04-27 姬志刚 A kind of Juglans fast culture container

Also Published As

Publication number Publication date
JP2732184B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
CN102550411B (en) Method for producing pre-basic seeds of potatoes
CN102422816A (en) Method for rapidly culturing shoot tips in vitro
CN106942051B (en) A kind of culture medium and propagation method of the tissue-culturing quick-propagation of alum root blade
CN101263787A (en) Louis iris tissue culture fast seedling establishment and ecological application method
CN106106178A (en) A kind of method for tissue culture of confection Rhizoma Iridis Tectori
CN106665367B (en) A kind of Golden Bell Tree quick breeding method for tissue culture
KR100868523B1 (en) Mass propagation method through in vitro aseptic germination of Calanthe spp.
JP3877800B2 (en) Propagation method of aseptic sweet potato seedlings
JP2732184B2 (en) Culture method of plant tissue culture seedling
JPH1066464A (en) Culture system for plant tissue culture seedling
JPS6344813A (en) Hydroponic culture apparatus
CN109548655A (en) The method for tissue culture of bitter Lang Shu
JPS6015286B2 (en) Mass propagation method for lily seedlings
JPH0322931A (en) Formation and proliferation of crown of plant of genus asparagus and proliferation of seedling
JP2745179B2 (en) Method of raising dwarfed plants in containers
KR19990074043A (en) Manufacturing method of excellent seedlings of palenopsis by bioreactor
JPH10313717A (en) Tomato seed and seedling culturing method
KR100189575B1 (en) Apparatus for cultivating seedling
JPH0638A (en) Method for culturing seedling of orchis graminifolia
JPH03123424A (en) Proliferation of plant of genus rosa
JP3051781B2 (en) Method for mass propagation of violet plants
JPH08172954A (en) Production of bulb of plant belonging to genus lilium
JPH08131000A (en) Large multiplication of alpine plants such as papaver fauriei or aquilegia akiensis
CN116530401A (en) Transplanting method of sweet potato detoxified seedlings
JP2908937B2 (en) Raising seedlings of dwarfed plants of the genus Saintpaulia

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20071226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20131226

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20131226