JPH06216735A - Output circuit - Google Patents

Output circuit

Info

Publication number
JPH06216735A
JPH06216735A JP364493A JP364493A JPH06216735A JP H06216735 A JPH06216735 A JP H06216735A JP 364493 A JP364493 A JP 364493A JP 364493 A JP364493 A JP 364493A JP H06216735 A JPH06216735 A JP H06216735A
Authority
JP
Japan
Prior art keywords
mosfet
current
output circuit
limiting element
current limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP364493A
Other languages
Japanese (ja)
Other versions
JP3089873B2 (en
Inventor
Hiroshi Maruyama
宏志 丸山
Yukihiro Mochizuki
幸広 望月
Minoru Saito
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05003644A priority Critical patent/JP3089873B2/en
Publication of JPH06216735A publication Critical patent/JPH06216735A/en
Application granted granted Critical
Publication of JP3089873B2 publication Critical patent/JP3089873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To extend a turn-off or turn-on time of a MOSFET of an output stage. CONSTITUTION:The output circuit is constituted of a MOSFET of one polarity channel of an output stage, and a first and a second MOSFETs of the other polarity channel and one polarity channel which are connected in series between a power source terminal and a ground terminal, and also, whose gates are connected to each other. Between a second MOSFET 4 of an inverter of the pre-stage and the ground terminal, and between a first MOSFET 3 and a power source terminal V1, a first current limiting element and a second current limiting element consisting of a MOSFET 6 and a MOSFET 9 in which a voltage being a little higher than a threshold voltage is applied to their gates, respectively are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はサーマルヘッドドライバ
ーなど電子装置の出力回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an output circuit of an electronic device such as a thermal head driver.

【0002】[0002]

【従来の技術】図7はサーマルヘッドドライバーなどの
出力回路の従来例を示す回路図である。図7において、
出力回路はそのドレインが出力端子Oにそのソースが接
地端子にそれぞれ接続された出力段のN MOSFET
1と電圧端子V1 と接地端子間にその主端子が直列に接
続されたP MOSFET3と N MOSFET4と
からなる前段のインバータとで構成され、このP MO
SFET3とN MOSFET4の主端子の接続点は出
力段のN MOSFET1のゲートに接続され、これら
のゲートはそれぞれ入力端子Iに接続される。
2. Description of the Related Art FIG. 7 is a circuit diagram showing a conventional example of an output circuit such as a thermal head driver. In FIG.
The output circuit is an N-MOSFET of the output stage whose drain is connected to the output terminal O and whose source is connected to the ground terminal.
1 and a voltage terminal V 1 and a ground terminal, the main terminal of which is connected in series to a front-stage inverter composed of a P MOSFET 3 and an N MOSFET 4.
The connection point between the main terminals of the SFET 3 and the N MOSFET 4 is connected to the gate of the N MOSFET 1 of the output stage, and these gates are connected to the input terminal I, respectively.

【0003】この出力回路の動作は次の通りである。入
力端子Iに「H」の信号を入力するとP MOSFET
3はオン,N MOSFET4はオフとなり、出力段の
NMOSFET1はそのゲートに電源端子V1 からP
MOSFET3を通してゲート電流が入力されてオンす
る。また、入力端子に「L」の信号を入力するとPMO
SFET3はオフ,N MOSFET4はオンとなり、
出力段のN MOSFET1はそのゲートが接地されて
オフする。
The operation of this output circuit is as follows. When inputting "H" signal to input terminal I, P MOSFET
3 is on, N MOSFET 4 is off, and the output stage NMOSFET 1 has its gate connected to the power terminals V 1 to P
The gate current is input through the MOSFET 3 and turned on. Also, if an "L" signal is input to the input terminal, the PMO
SFET3 is off, N MOSFET4 is on,
The N-MOSFET 1 in the output stage is turned off because its gate is grounded.

【0004】このようにして入力端子Iに「H」あるい
は「L」の信号を入力することにより、出力端子Oと接
地端子間にオンあるいはオフの信号が出力される。
By inputting the "H" or "L" signal to the input terminal I in this manner, an ON or OFF signal is output between the output terminal O and the ground terminal.

【0005】[0005]

【発明が解決しようとする課題】前述の出力回路におい
ては、出力段のN MOSFETのターンオフあるいは
ターンオン時間が短かいとスイッチング時に回路にノイ
ズ電圧が発生しやすくなり、このノイズ電圧が高いと素
子を破壊する事故を生じることがある。この対策として
前段のインバータのN MOSFETあるいはP MO
SFETのゲート長を長くしてゲート容量を増大し、前
段のインバータのタンーオフあるいはターンオン時間を
延長して出力段のN MOSFETのターンオフあるい
はターンオン時間を延長しノイズ電圧を低減することが
行われるが、この場合、ターンオフあるいはターンオン
時間を0.8μSから1.0μSに延長するのに、例え
ばこの出力回路を半導体集積回路として形成した場合半
導体チップの面積を約10%増大する必要がある。この
ように半導体チップの面積が増大することはコスト上昇
要因となり、特に各表示ドットごとに出力回路が設けら
れるサーマルヘッドドライバーなど出力回路の個数が多
いとき特に問題となる。
In the above-mentioned output circuit, if the turn-off or turn-on time of the N MOSFET in the output stage is short, a noise voltage is apt to occur in the circuit during switching. This may cause an accident of destruction. As a countermeasure, N MOSFET or P MO of the inverter in the previous stage
The gate length of the SFET is increased to increase the gate capacitance, and the turn-off or turn-on time of the inverter in the previous stage is extended to extend the turn-off or turn-on time of the N MOSFET in the output stage to reduce the noise voltage. In this case, in order to extend the turn-off or turn-on time from 0.8 μS to 1.0 μS, it is necessary to increase the area of the semiconductor chip by about 10% when this output circuit is formed as a semiconductor integrated circuit. Such an increase in the area of the semiconductor chip causes a cost increase, and is especially a problem when the number of output circuits such as a thermal head driver in which an output circuit is provided for each display dot is large.

【0006】本発明の目的は出力回路が形成されている
半導体チップの面積をそれ程大きくすることなく出力段
のMOSFETのターンオンあるいはターンオフ時間を
延長することにある。
An object of the present invention is to extend the turn-on or turn-off time of the output stage MOSFET without increasing the area of the semiconductor chip on which the output circuit is formed.

【0007】[0007]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明は出力段の一極性チャンネルのMOSFE
Tと、電源端子と接地端子間に直列に接続され、かつそ
られのゲートが互に接続された他極性チャンネルおよび
一極性チャンネルの第1および第2のMOSFETとか
らなる前段のインバータとで構成された出力回路におい
て、前記第2のMOSFETと接地端子の間に限流要素
(以下第1の限流要素と称する)を設けるようにする。
あるいは前記第1のMOSFETと電源端子の間に限流
要素(以下第2の限流要素と称する)を設けるようにす
る。更にあるいは前記第2のMOSFETと接地端子の
間および前記第1のMOSFETと電源端子との間にそ
れぞれ第1および第2の限流要素を設けるようにする。
そして前記第1の限流要素はそのゲートにスレッシュ電
圧より僅かに高い電圧が印加される一極性チャンネルの
MOSFETからなり、前記第2の限流要素はそのゲー
トにスレッシュ電圧より僅かに高い電圧が印加される他
極性チャンネルのMOSFETからなるようにする。あ
るいは前記第1の限流要素は電流ミラー回路に構成され
て所定の電流値の電流を通電する一極性チャンネルのM
OSFETからなり、前記第2の限流要素は電流ミラー
回路に構成されて所定の電流値の電流を通電する他極性
チャンネルのMOSFETからなるようにする。
In order to achieve the above-mentioned object, the present invention provides a unipolar channel MOSFE of the output stage.
T, and a front-stage inverter composed of a first polarity MOSFET and a second polarity MOSFET of a unipolar channel connected in series between a power supply terminal and a ground terminal and having their gates connected to each other. In this output circuit, a current limiting element (hereinafter referred to as a first current limiting element) is provided between the second MOSFET and the ground terminal.
Alternatively, a current limiting element (hereinafter referred to as a second current limiting element) is provided between the first MOSFET and the power supply terminal. Further alternatively, first and second current limiting elements are provided between the second MOSFET and the ground terminal and between the first MOSFET and the power supply terminal, respectively.
The first current limiting element is composed of a unipolar channel MOSFET in which a voltage slightly higher than the threshold voltage is applied to its gate, and the second current limiting element has a voltage slightly higher than the threshold voltage in its gate. It is composed of MOSFETs of the other polarity channel to be applied. Alternatively, the first current limiting element is configured as a current mirror circuit, and M of a unipolar channel that conducts a current of a predetermined current value.
The second current limiting element is composed of an OSFET, and the second current limiting element is composed of a MOSFET of another polarity channel which is configured as a current mirror circuit and carries a current of a predetermined current value.

【0008】[0008]

【作用】本発明は出力段の一極性チャンネルのMOSF
ETと、電源端子と接地端子間に直列に接続され、かつ
そられのゲートが互に接続された他極性チャンネルおよ
び一極性チャンネルの第1および第2のMOSFETと
からなる前段のインバータとで構成された出力回路にお
いて、前記第2のMOSFETと接地端子の間に限流要
素(以下第1の限流要素と称する)を設け、この第1の
限流要素はそのゲートにスレッシュ電圧より僅かに高い
電圧が印加される一極性チャンネルのMOSFETから
なるようにした。この場合このMOSFETは抵抗とし
て作用するので、出力段のMOSFETのゲート容量に
蓄積された電荷はこの抵抗を通して放電し、このゲート
容量とこの抵抗の抵抗値とで定まる時定数に対応して出
力段のMOSFETのターンオフ時間は延長される。あ
るいはこの第1の限流要素は電流ミラー回路に構成され
て所定の電流値の電流を通電する一極性チャンネルのM
OSFETからなるようにした。この場合出力段のMO
SFETのゲート容量に蓄積された電荷は前記の所定の
電流値の電流によって放電されるので、このゲート容量
とこの電流の電流値とで定まる時定数に対応して出力段
のMOSFETのターンオフ時間は延長される。あるい
は前記第1のMOSFETと電源端子の間に限流要素
(以下第2の限流要素と称する)を設け、この第2の限
流要素はそのゲートにスレッシュ電圧より僅かに高い電
圧が印加される他極性チャンネルのMOSFETとから
なるようにした。この場合このMOSFETは抵抗とし
て作用するので、出力段のMOSFETのゲート容量に
蓄積された電荷はこの抵抗を通して放電し、このゲート
容量とこの抵抗の抵抗値とで定まる時定数に対応して出
力段のMOSFETのターンオフ時間は延長される。あ
るいはこの第2の限流要素は電流ミラー回路に構成され
て所定の電流値の電流を通電する他極性チャンネルのM
OSFETからなるようにした。この場合出力段のMO
SFETのゲート容量に蓄積された電荷は前記の所定の
電流値の電流によって放電されるので、このゲート容量
とこの電流の電流値とで定まる時定数に対応して出力段
のMOSFETのターンオフ時間は延長される。あるい
は前記第2のMOSFETと接地端子の間および前記第
1のMOSFETと電源端子との間にそれぞれ第1およ
び第2の限流要素を設けるようにした。これら第1およ
び第2の限流要素は前述と同様であり、出力段のMOS
FETのターンオフ時間およびターンオン時間がそれぞ
れ延長される。
The present invention is a unipolar channel MOSF of the output stage.
ET and a front-stage inverter composed of a first polarity MOSFET and a second polarity MOSFET of one polarity channel connected in series between a power supply terminal and a ground terminal and having their gates connected to each other In the output circuit described above, a current limiting element (hereinafter referred to as a first current limiting element) is provided between the second MOSFET and the ground terminal, and the first current limiting element has a gate at a voltage slightly lower than a threshold voltage. It is composed of a unipolar channel MOSFET to which a high voltage is applied. In this case, since this MOSFET acts as a resistor, the electric charge accumulated in the gate capacitance of the MOSFET in the output stage is discharged through this resistor, and the output stage corresponding to the time constant determined by this gate capacitance and the resistance value of this resistor. The MOSFET turn-off time is extended. Alternatively, the first current limiting element is configured as a current mirror circuit, and M of a unipolar channel that conducts a current of a predetermined current value.
It is composed of OSFET. In this case, the output stage MO
Since the electric charge accumulated in the gate capacitance of the SFET is discharged by the current of the above-mentioned predetermined current value, the turn-off time of the MOSFET of the output stage is corresponding to the time constant determined by this gate capacitance and the current value of this current. Be extended. Alternatively, a current limiting element (hereinafter referred to as a second current limiting element) is provided between the first MOSFET and the power supply terminal, and a voltage slightly higher than the threshold voltage is applied to the gate of the second current limiting element. And a MOSFET of another polarity channel. In this case, since this MOSFET acts as a resistor, the charge accumulated in the gate capacitance of the MOSFET in the output stage is discharged through this resistor, and the output stage is corresponding to the time constant determined by this gate capacitance and the resistance value of this resistor. The MOSFET turn-off time is extended. Alternatively, the second current limiting element is configured as a current mirror circuit and M of another polarity channel that conducts a current of a predetermined current value.
It is composed of OSFET. In this case, the output stage MO
Since the electric charge accumulated in the gate capacitance of the SFET is discharged by the current of the above-mentioned predetermined current value, the turn-off time of the MOSFET in the output stage is corresponding to the time constant determined by this gate capacitance and the current value of this current. Be extended. Alternatively, first and second current limiting elements are provided between the second MOSFET and the ground terminal and between the first MOSFET and the power supply terminal, respectively. These first and second current limiting elements are the same as those described above, and the output stage MOS is
The FET turn-off time and turn-on time are each extended.

【0009】[0009]

【実施例】図1は本発明の出力回路の一実施例を示す回
路図である。図1に示す本発明の出力回路は図7に示す
従来の出力回路において、前段のインバータのN MO
SFET4と接地端子との間に、そのドレインがN M
OSFET4のソースにそのソースが接地端子にそれぞ
れ接続されるN MOSFET6を設け、このNMOS
FET6のゲートには電源端子V2 の電圧v2 が抵抗7
および8によって分圧されて入力される。
1 is a circuit diagram showing an embodiment of an output circuit of the present invention. The output circuit of the present invention shown in FIG. 1 is the same as the conventional output circuit shown in FIG.
Between the SFET4 and the ground terminal, its drain is NM
The source of the OSFET 4 is provided with an N MOSFET 6 whose source is connected to the ground terminal, respectively.
The voltage v 2 of the power supply terminal V 2 is applied to the resistor 7 at the gate of the FET 6.
And divided by 8 and input.

【0010】この出力回路の動作は次の通りである。ま
ず、抵抗7および8の抵抗値を調整してN MOSFE
T6のゲートに入力される電圧をこのN MOSFET
6のスレッシュ電圧1.1Vより僅かに高い1.2Vと
するとこのN MOSFET6のドレイン・ソース間抵
抗は、例えば200KΩ程度となる。この状態で入力端
子Iに「L」の信号が入力された場合を考えると、前段
のインバータのP MOSFET3はオフ,N MOS
FET4はオンとなり、出力段のN MOSFET1の
ゲートはN MOSFET6のドレイン・ソースを通し
て接地される。これにより、出力段のN MOSFET
1のゲート容量に蓄積された電荷はこのN MOSFE
T6のドレイン・ソース間の抵抗、この例では200K
Ωの抵抗を通して放電するので、このゲート容量とN
MOSFET6のドレイン・ソース間の抵抗値とで定ま
る時定数に対応して、出力段のN MOSFET1のタ
ーンオフ時間は、例えば0.8μSから2.8μSに延
長される。
The operation of this output circuit is as follows. First, the resistance values of the resistors 7 and 8 are adjusted to adjust the N MOSFE.
The voltage input to the gate of T6
When the threshold voltage of 6 is 1.2 V, which is slightly higher than the threshold voltage of 1.1 V, the resistance between the drain and the source of this N MOSFET 6 is, for example, about 200 KΩ. Considering the case where an "L" signal is input to the input terminal I in this state, the P MOSFET 3 of the inverter in the previous stage is off, and the N MOS is on.
The FET 4 is turned on, and the gate of the N MOSFET 1 in the output stage is grounded through the drain / source of the N MOSFET 6. As a result, the N MOSFET of the output stage
The charge accumulated in the gate capacitance of 1 is this N MOSFE
T6 drain-source resistance, 200K in this example
Since it discharges through the resistance of Ω, this gate capacitance and N
The turn-off time of the N MOSFET 1 in the output stage is extended from 0.8 μS to 2.8 μS, for example, corresponding to the time constant determined by the drain-source resistance of the MOSFET 6.

【0011】なお、その他の動作については図7と同様
である。図2は本発明の出力回路の異なる実施例を示す
回路図である。図2に示す本発明の出力回路は図7に示
す従来の出力回路において、前段のインバータのP M
OSFET3と電源端子V1 との間に、そのドレインが
電源端子V1 にそのソースがP MOSFET3のドレ
インにそれぞれ接続されるP MOSFET9を設け、
このP MOSFET9のゲートには電源端子V2 の電
圧v2 が抵抗10および11によって分圧されて入力さ
れる。
The other operations are the same as in FIG. FIG. 2 is a circuit diagram showing another embodiment of the output circuit of the present invention. The output circuit of the present invention shown in FIG. 2 corresponds to the conventional output circuit shown in FIG.
Between the OSFET 3 and the power supply terminal V 1 , a P MOSFET 9 whose drain is connected to the power supply terminal V 1 and whose source is connected to the drain of the P MOSFET 3 is provided,
The voltage v 2 of the power supply terminal V 2 is divided by the resistors 10 and 11 and input to the gate of the P MOSFET 9.

【0012】この出力回路の動作は次の通りである。ま
ず、抵抗10および11の抵抗値を調整してP MOS
FET9のゲートに入力される電圧をこのP MOSF
ET9のスレッシュ電圧1.1Vより僅かに高い1.2
VとするとこのP MOSFET9のドレイン・ソース
間抵抗は、例えば200KΩ程度となる。この状態で入
力端子Iに「H」の信号が入力された場合を考えると、
前段のインバータのPMOSFET3はオン,N MO
SFET4はオフとなり、出力段のN MOSFET1
のゲートはP MOSFET9のドレイン・ソースを通
して電源端子V1 に導通する。これにより、出力段のN
MOSFET1のゲートには電源端子V1 からP M
OSFET9のドレイン・ソース間の抵抗、この例では
200KΩの抵抗を通して充電されるので、ゲート容量
とP MOSFET9のドレイン・ソース間の抵抗値で
定まる時定数に対応して、出力段のN MOSFET1
の、例えば0.8μSから2.8μSに延長される。
The operation of this output circuit is as follows. First, by adjusting the resistance values of the resistors 10 and 11, the PMOS
The voltage input to the gate of FET9 is
1.2 which is slightly higher than the threshold voltage of ET9 1.1V
Assuming V, the drain-source resistance of this P MOSFET 9 is, for example, about 200 KΩ. Considering the case where a signal of "H" is input to the input terminal I in this state,
The PMOSFET 3 of the inverter in the previous stage is ON, N MO
SFET4 is turned off, and the output stage NMOSFET1
The gate of is connected to the power supply terminal V 1 through the drain / source of the P MOSFET 9. As a result, the output stage N
The gate of MOSFET 1 has power supply terminals V 1 to P M
Since it is charged through the drain-source resistance of the OSFET 9, which is a resistance of 200 KΩ in this example, the N MOSFET 1 of the output stage corresponds to the time constant determined by the gate capacitance and the resistance value between the drain-source of the P MOSFET 9.
, For example, from 0.8 μS to 2.8 μS.

【0013】なお、その他の動作については図7と同様
である。図3は本発明の出力回路の更に異なる実施例を
示す回路図である。図3に示す本発明の出力回路は図7
に示す従来の出力回路において、前段のインバータのP
MOSFET4と接地端子との間に、そのドレインがN
MOSFET4のソースにそのソースが接地端子にそ
れぞれ接続されるN MOSFET6と、前段のインバ
ータのP MOSFET3と電源端子V1 との間に、そ
のドレインが電源端子V1 にそのソースがP MOSF
ET3のドレインにそれぞれ接続されるP MOSFE
T9とを設け、これらN MOSFET6とP MOS
FET9の各ゲートには電源端子V2 の電源v2 が抵抗
12,13および14によって印加される。
The other operations are the same as those in FIG. FIG. 3 is a circuit diagram showing still another embodiment of the output circuit of the present invention. The output circuit of the present invention shown in FIG. 3 is shown in FIG.
In the conventional output circuit shown in FIG.
The drain is N between the MOSFET 4 and the ground terminal.
Between the source of the MOSFET 4 and the N MOSFET 6 whose sources are respectively connected to the ground terminal, and between the P MOSFET 3 and the power supply terminal V 1 of the preceding stage inverter, its drain is the power supply terminal V 1 and its source is P MOSF.
P-MOSFE connected to the drain of ET3
T9 and these N MOSFET 6 and P MOS
The power supply v 2 of the power supply terminal V 2 is applied to each gate of the FET 9 by the resistors 12, 13 and 14.

【0014】この出力回路は図1に示す出力回路と図2
に示す出力回路の回路構成を併せて有するもので、その
動作はこれら出力回路の動作を併せたものである。図4
は本発明の出力回路の更に異なる実施例を示す回路図で
ある。図4は図1の抵抗7および8に代えて、そのドレ
インが抵抗16を介して電源端子V2 にそのソースが接
地端子にそれぞれ接続され、そのドレインとゲート間が
短絡されたN MOSFET15を設け、このN MO
SFET15のゲートを前段のインバータのN MOS
FET6のゲートに接続したものである。ここで、N
MOSFET15とN MOSFET6とは電流ミラー
回路を構成しており、抵抗16に流れる電流I0 に等し
い電流がN MOSFET6のドレイン・ソースを通し
て流れる(N MOSFET15とN MOSFET6
の容量が等しいとして)。
This output circuit is similar to the output circuit shown in FIG.
The circuit configuration of the output circuit shown in (1) is also included, and the operation is a combination of the operations of these output circuits. Figure 4
FIG. 7 is a circuit diagram showing still another embodiment of the output circuit of the present invention. In FIG. 4, instead of the resistors 7 and 8 of FIG. 1, an N MOSFET 15 is provided, the drain of which is connected to the power supply terminal V 2 through the resistor 16 and the source of which is connected to the ground terminal, and the drain and gate of which are short-circuited. , This N MO
The gate of SFET15 is the NMOS of the previous stage inverter.
It is connected to the gate of the FET 6. Where N
The MOSFET 15 and the N MOSFET 6 form a current mirror circuit, and a current equal to the current I 0 flowing through the resistor 16 flows through the drain / source of the N MOSFET 6 (N MOSFET 15 and N MOSFET 6).
Of equal capacity).

【0015】この出力回路の動作は次の通りである。ま
ず、抵抗16の抵抗値を調整して電流I0 の電流値を、
例えば25μAに調整する(例えば、電源端子V2 の電
圧v 2 を5V,抵抗16を200KΩとして)。この状
態で入力端子Iに「L」の信号が入力されると前段のイ
ンバータのP MOSFET3はオフ,N MOSFE
T4はオンとなり、出力段のN MOSFET1のゲー
トはN MOSFET6のドレイン・ソースを通して接
地される。ここで、このN MOSFET6はN MO
SFET15と電流ミラー回路を構成しているので、こ
のN MOSFET6のドレイン・ソースを通して流れ
る電流は抵抗16を流れる電流I0 に等しく制御され、
出力段のN MOSFET1のゲート容量に蓄積された
電荷はこの電流I0 によって、この例では25μAの電
流で放電されるので、このゲート容量と電流I0 の電流
値とで定まる時定数に対応して出力段のN MOSFE
T1のターンオフ時間は、例えば0.8μSから2.8
μSに延長される。
The operation of this output circuit is as follows. Well
Without adjusting the resistance value of the resistor 160Current value of
For example, it is adjusted to 25 μA (for example, power supply terminal V2Electric power
Pressure v 25V and resistance 16 to 200KΩ). This state
In this state, when the signal of “L” is input to the input terminal I,
Inverter P MOSFET3 is off, N MOSFE
T4 is turned on, and the gate of N MOSFET1 of the output stage is turned on.
Is connected through the drain and source of N MOSFET 6.
Grounded. Here, this N MOSFET 6 is N MO
Since it constitutes a current mirror circuit with SFET15,
Flow through the drain and source of N MOSFET 6
Current I flowing through the resistor 160Is controlled equal to
Accumulated in the gate capacitance of N MOSFET1 in the output stage
The electric charge is this current I0Therefore, in this example, 25 μA
This gate capacitance and current I0Current
N MOSFE of the output stage corresponding to the time constant determined by
The turn-off time of T1 is, for example, 0.8 μS to 2.8.
It is extended to μS.

【0016】なお、その他の動作については図7と同様
である。図5は本発明の出力回路の更に異なる実施例を
示す回路図である。図5は図2の抵抗10および11に
代えて、そのドレインが電源端子V2 にそのソースが抵
抗16を介して接続端子にそれぞれ接続され、そのソー
スとゲート間が短絡されたP MOSFET17を設
け、このP MOSFET17のゲートを前段のインバ
ータのP MOSFET9のゲートに接続したものであ
る。ここで、P MOSFET17とP MOSFET
9とは電流ミラー回路を構成しており、抵抗16に流れ
る電流I0 に等しい電流がP MOSFET9のドレイ
ン・ソースを通して流れる(P MOSFET17とP
MOSFET6の容量が等しいとして)。
The other operations are the same as in FIG. FIG. 5 is a circuit diagram showing still another embodiment of the output circuit of the present invention. In FIG. 5, instead of the resistors 10 and 11 of FIG. 2, a P MOSFET 17 is provided, the drain of which is connected to the power supply terminal V 2 and the source of which is connected to the connection terminal through the resistor 16, and the source and gate of which are short-circuited. The gate of the P MOSFET 17 is connected to the gate of the P MOSFET 9 of the preceding inverter. Here, P MOSFET 17 and P MOSFET
9 constitutes a current mirror circuit, and a current equal to the current I 0 flowing through the resistor 16 flows through the drain / source of the P MOSFET 9 (P MOSFET 17 and P MOSFET 17).
(Assuming that the capacitances of MOSFET 6 are equal).

【0017】この出力回路の動作は次の通りである。ま
ず、抵抗16の抵抗値を調整して電流I0 の電流値を、
例えば25μAに調整する(例えば、電源端子V2 の電
圧v 2 を5V,抵抗16を200KΩとして)。この状
態で入力端子Iに「H」の信号が入力されると前段のイ
ンバータ回路のP MOSFET3はオン,N MOS
FET4はオフとなり、出力段のN MOSFET1の
ゲートはP MOSFET9のドレイン・ソースを通し
て電源端子V1 に導通する。ここで、このPMOSFE
T9はP MOSFET17と電流ミラー回路を構成し
ているので、このP MOSFET9のドレイン・ソー
スを通して流れる電流は抵抗16を流れる電流I0 に等
しく制御され、出力段のN MOSFET1のゲート容
量はこの電流I0 によって、この例では25μAの電流
で充電されるので、このゲート容量と電流I0 の電流値
とで定まる時定数対応して出力段のN MOSFET1
のターンオン時間は、例えば0.8μSから2.8μS
に延長される。
The operation of this output circuit is as follows. Well
Without adjusting the resistance value of the resistor 160Current value of
For example, it is adjusted to 25 μA (for example, power supply terminal V2Electric power
Pressure v 25V and resistance 16 to 200KΩ). This state
When the "H" signal is input to the input terminal I,
The P MOSFET 3 of the inverter circuit is ON, and the N MOS is
FET4 is turned off, and the output stage N MOSFET1
The gate is through the drain and source of P MOSFET 9.
Power terminal V1Conduct to. Where this PMOS FE
T9 forms a current mirror circuit with P MOSFET 17
Therefore, the drain and saw of this P MOSFET 9
Current flowing through the resistor 16 is the current I flowing through the resistor 16.0And so on
Controlled, the gate capacitance of N MOSFET1 in the output stage
The amount is this current I0In this example, the current of 25 μA
This gate capacitance and current I0Current value
N MOSFET1 at the output stage corresponding to the time constant determined by
The turn-on time of is, for example, 0.8 μS to 2.8 μS
Be extended to.

【0018】なお、その他の動作については図7と同様
である。図6は本発明の出力回路の更に異なる実施例を
示す回路図である。図6は図3の抵抗12,13および
14に代えて、そのソースが接地端子に接続されそのド
レインとゲート間が短絡されたN MOSFET15
と、そのドレインが電源端子V1 に接続され、そのソー
スとゲート間が短絡されたP MOSFET17と、こ
のP MOSFET17のソースとN MOSFET1
5のドレインとの間に接続された抵抗16とを設け、N
MOSFET15のゲートをN MOSFET6のゲ
ートに、P MOSFET17のゲートをP MOSF
ET9のゲートに接続したものである。
The other operations are the same as in FIG. FIG. 6 is a circuit diagram showing a further different embodiment of the output circuit of the present invention. FIG. 6 shows an N MOSFET 15 whose source is connected to the ground terminal and whose drain and gate are short-circuited, instead of the resistors 12, 13 and 14 of FIG.
And its drain is connected to the power supply terminal V 1 and its source and gate are short-circuited, and the source of this P MOSFET 17 and the N MOSFET 1
And a resistor 16 connected between the drain and the drain of
The gate of MOSFET 15 is the gate of N MOSFET 6, and the gate of P MOSFET 17 is P MOSF.
It is connected to the gate of ET9.

【0019】この出力回路は図4に示す出力回路と図5
に示す出力回路の回路構成を併せて有するもので、その
動作はこれら出力回路の動作を併せたものである。前述
の図4〜6に示す実施例において、抵抗16を通して流
れる電流I0 の電流値は、前述のように抵抗16の抵抗
値を調整して設定してもよいし、あるいは電源端子V2
の電圧v2 の電圧値を調整して設定してもよい。
This output circuit is similar to the output circuit shown in FIG.
The circuit configuration of the output circuit shown in (1) is also included, and the operation is a combination of the operations of these output circuits. In the embodiments shown in FIGS. 4 to 6 described above, the current value of the current I 0 flowing through the resistor 16 may be set by adjusting the resistance value of the resistor 16 as described above, or the power supply terminal V 2
The voltage value of the voltage v 2 may be adjusted and set.

【0020】また、図1〜図6に示す実施例において、
図7に示す従来の回路に追加し設けたN MOSFET
6,P MOSFET9,N MOSFET15,P
MOSFET17および抵抗7,8,10,11,1
2,13,14,16はゲート制御用のごく小容量であ
り、これらを設けても半導体チップの面積はそれ程増大
することはない。
In the embodiment shown in FIGS. 1 to 6,
N MOSFET added to the conventional circuit shown in FIG.
6, P MOSFET 9, N MOSFET 15, P
MOSFET 17 and resistors 7, 8, 10, 11, 1
Reference numerals 2, 13, 14, and 16 are very small capacitors for gate control, and even if they are provided, the area of the semiconductor chip does not increase so much.

【0021】なお、図1〜図6に示す実施例においては
出力段のMOSFETはN MOSFETとして説明し
たが、P MOSFETの場合この極性としに応じて、
前段のインバータの各MOSFETあるいは各実施例で
追加したMOSFETの極性を選定することで同様に実
施できることは勿論である。
In the embodiments shown in FIGS. 1 to 6, the MOSFET in the output stage is described as an N MOSFET, but in the case of a P MOSFET, the polarity is changed according to the polarity.
Of course, the same operation can be performed by selecting the polarity of each MOSFET of the preceding inverter or the MOSFET added in each embodiment.

【0022】[0022]

【発明の効果】本発明の出力回路は出力段のMOSFE
Tのターンオフ時間あるいはターンオン時間を延長して
スイッチング時における回路のノイズ電圧を低減したの
で回路の信頼性が向上するとともに、半導体集積回路と
して形成した場合に半導体チップの面積がそれ程増大す
ることがなく低コストとなる。このことは、特に出力回
路の個数の多いサーマルヘッドドライバーなどで効果が
大きい。
According to the output circuit of the present invention, the output stage MOSFE is provided.
Since the turn-off time or turn-on time of T is extended to reduce the noise voltage of the circuit at the time of switching, the reliability of the circuit is improved and the area of the semiconductor chip does not increase so much when it is formed as a semiconductor integrated circuit. Low cost. This is particularly effective in a thermal head driver having a large number of output circuits.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の出力回路の一実施例を示す回路図FIG. 1 is a circuit diagram showing an embodiment of an output circuit of the present invention.

【図2】本発明の出力回路の異なる実施例を示す回路図FIG. 2 is a circuit diagram showing another embodiment of the output circuit of the present invention.

【図3】本発明の出力回路の更に異なる実施例を示す回
路図
FIG. 3 is a circuit diagram showing still another embodiment of the output circuit of the present invention.

【図4】本発明の出力回路の更に異なる実施例を示す回
路図
FIG. 4 is a circuit diagram showing still another embodiment of the output circuit of the present invention.

【図5】本発明の出力回路の更に異なる実施例を示す回
路図
FIG. 5 is a circuit diagram showing still another embodiment of the output circuit of the present invention.

【図6】本発明の出力回路の更に異なる実施例を示す回
路図
FIG. 6 is a circuit diagram showing still another embodiment of the output circuit of the present invention.

【図7】従来の出力回路の一例を示す回路図FIG. 7 is a circuit diagram showing an example of a conventional output circuit.

【符号の説明】[Explanation of symbols]

1 N MOSFET(出力段の) 3 P MOSFET(前段のインバータの第1の) 4 N MOSFET(前段のインバータの第2の) 6 N MOSFET(第1の限流要素) 9 P MOSFET(第2の限流要素) 1 N MOSFET (of output stage) 3 P MOSFET (first of inverter of previous stage) 4 N MOSFET (second of inverter of previous stage) 6 N MOSFET (first current limiting element) 9 P MOSFET (second of current limiting element) Current limiting element)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】出力段の一極性チャンネルのMOSFET
と、電源端子と接地端子間に直列に接続され、かつそら
れのゲートが互に接続された他極性チャンネルおよび一
極性チャンネルの第1および第2のMOSFETとから
なる前段のインバータとで構成された出力回路におい
て、前記第2のMOSFETと接地端子の間に限流要素
(以下第1の限流要素と称する)を設けたことを特徴と
する出力回路。
1. A unipolar channel MOSFET for an output stage.
And a front-stage inverter comprising a first polarity MOSFET and a second polarity MOSFET of another polarity channel connected in series between a power supply terminal and a ground terminal and having their gates connected to each other. In the output circuit, a current limiting element (hereinafter referred to as a first current limiting element) is provided between the second MOSFET and the ground terminal.
【請求項2】出力段の一極性チャンネルのMOSFET
と、電源端子と接地端子間に直列に接続され、かつそら
れのゲートが互に接続された他極性チャンネルおよび一
極性チャンネルの第1および第2のMOSFETとから
なる前段のインバータとで構成された出力回路におい
て、前記第1のMOSFETと電源端子の間に限流要素
(以下第2の限流要素と称する)を設けたことを特徴と
する出力回路。
2. A unipolar channel MOSFET of the output stage.
And a front-stage inverter comprising a first polarity MOSFET and a second polarity MOSFET of another polarity channel connected in series between a power supply terminal and a ground terminal and having their gates connected to each other. In the output circuit, a current limiting element (hereinafter referred to as a second current limiting element) is provided between the first MOSFET and the power supply terminal.
【請求項3】出力段の一極性チャンネルのMOSFET
と、電源端子と接地端子間に直列に接続され、かつそら
れのゲートが互に接続された他極性チャンネルおよび一
極性チャンネルの第1および第2のMOSFETとから
なる前段のインバータとで構成された出力回路におい
て、前記第2のMOSFETと接地端子の間および前記
第1のMOSFETと電源端子との間にそれぞれ第1お
よび第2の限流要素を設けたことを特徴とする出力回
路。
3. A unipolar channel MOSFET of the output stage.
And a front-stage inverter comprising a first polarity MOSFET and a second polarity MOSFET of another polarity channel connected in series between a power supply terminal and a ground terminal and having their gates connected to each other. In the output circuit, the output circuit further comprises first and second current limiting elements provided between the second MOSFET and the ground terminal and between the first MOSFET and the power supply terminal, respectively.
【請求項4】請求項1記載の出力回路において、第1の
限流要素はそのゲートにスレッシュ電圧より僅かに高い
電圧が印加される一極性チャンネルのMOSFETから
なることを特徴とする出力回路。
4. The output circuit according to claim 1, wherein the first current limiting element is a unipolar channel MOSFET having a gate to which a voltage slightly higher than a threshold voltage is applied.
【請求項5】請求項2記載の出力回路において、第2の
限流要素はそのゲートにスレッシュ電圧より僅かに高い
電圧が印加される他極性チャンネルのMOSFETから
なることを特徴とする出力回路。
5. The output circuit according to claim 2, wherein the second current limiting element comprises a MOSFET of another polarity channel having a gate to which a voltage slightly higher than a threshold voltage is applied.
【請求項6】請求項3記載の出力回路において、第1の
限流要素はそのゲートにスレッシュ電圧より僅かに高い
電圧が印加される一極性チャンネルのMOSFETから
なり、第2の限流要素はそのゲートにスレッシュ電圧よ
り僅かに高い電圧が印加される他極性チャンネルのMO
SFETからなることを特徴とする出力回路。
6. The output circuit according to claim 3, wherein the first current limiting element is a unipolar channel MOSFET having a gate to which a voltage slightly higher than a threshold voltage is applied, and the second current limiting element is A voltage slightly higher than the threshold voltage is applied to its gate
An output circuit comprising an SFET.
【請求項7】請求項1記載の出力回路において、第1の
限流要素は電流ミラー回路に構成されて所定の電流値の
電流を通電する一極性チャンネルのMOSFETからな
ることを特徴とする出力回路。
7. The output circuit according to claim 1, wherein the first current limiting element is a unipolar channel MOSFET which is configured as a current mirror circuit and conducts a current of a predetermined current value. circuit.
【請求項8】請求項2記載の出力回路において、第2の
限流要素は電流ミラー回路に構成されて所定の電流値の
電流を通電する他極性チャンネルのMOSFETからな
ることを特徴とする出力回路。
8. The output circuit according to claim 2, wherein the second current limiting element comprises a MOSFET of another polarity channel configured as a current mirror circuit and conducting a current of a predetermined current value. circuit.
【請求項9】請求項3記載の出力回路において、第1の
限流要素は電流ミラー回路に構成されて所定の電流値の
電流を通電する一極性チャンネルのMOSFETからな
り、第2の限流要素は電流ミラー回路に構成されて所定
の電流値の電流を通電する他極性チャンネルのMOSF
ETからなることを特徴とする出力回路。
9. The output circuit according to claim 3, wherein the first current limiting element comprises a MOSFET of a unipolar channel configured as a current mirror circuit to pass a current having a predetermined current value, and a second current limiting element. The element is a MOSF of another polarity channel that is configured as a current mirror circuit and conducts a current of a predetermined current value.
An output circuit comprising an ET.
【請求項10】半導体集積回路として形成されたことを
特徴とする請求項1ないし9の出力回路。
10. The output circuit according to claim 1, which is formed as a semiconductor integrated circuit.
JP05003644A 1993-01-13 1993-01-13 Output circuit Expired - Fee Related JP3089873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05003644A JP3089873B2 (en) 1993-01-13 1993-01-13 Output circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05003644A JP3089873B2 (en) 1993-01-13 1993-01-13 Output circuit

Publications (2)

Publication Number Publication Date
JPH06216735A true JPH06216735A (en) 1994-08-05
JP3089873B2 JP3089873B2 (en) 2000-09-18

Family

ID=11563194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05003644A Expired - Fee Related JP3089873B2 (en) 1993-01-13 1993-01-13 Output circuit

Country Status (1)

Country Link
JP (1) JP3089873B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094406A (en) * 1999-09-20 2001-04-06 Fuji Electric Co Ltd Drive circuit
JP2004072424A (en) * 2002-08-06 2004-03-04 Denso Corp Gate drive circuit of mos gate transistor
JP2008103895A (en) * 2006-10-18 2008-05-01 Fuji Electric Device Technology Co Ltd Driving circuit of insulated gate type device
JP2009141690A (en) * 2007-12-06 2009-06-25 Fuji Electric Device Technology Co Ltd Driver circuit
JP2011239666A (en) * 2010-05-04 2011-11-24 Samsung Electronics Co Ltd Drive circuit, and power supply device and electric apparatus including the same
CN102810539A (en) * 2011-06-03 2012-12-05 美国亚德诺半导体公司 Metal oxide semiconductor output circuits and methods of forming the same
WO2014199818A1 (en) * 2013-06-14 2014-12-18 富士電機株式会社 Gate-driving circuit
JP5791758B1 (en) * 2014-05-15 2015-10-07 三菱電機株式会社 Gate drive circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094406A (en) * 1999-09-20 2001-04-06 Fuji Electric Co Ltd Drive circuit
JP2004072424A (en) * 2002-08-06 2004-03-04 Denso Corp Gate drive circuit of mos gate transistor
JP2008103895A (en) * 2006-10-18 2008-05-01 Fuji Electric Device Technology Co Ltd Driving circuit of insulated gate type device
JP2009141690A (en) * 2007-12-06 2009-06-25 Fuji Electric Device Technology Co Ltd Driver circuit
JP2011239666A (en) * 2010-05-04 2011-11-24 Samsung Electronics Co Ltd Drive circuit, and power supply device and electric apparatus including the same
CN102810539A (en) * 2011-06-03 2012-12-05 美国亚德诺半导体公司 Metal oxide semiconductor output circuits and methods of forming the same
JP2012253326A (en) * 2011-06-03 2012-12-20 Analog Devices Inc Metal oxide semiconductor output circuits and methods of forming the same
WO2014199818A1 (en) * 2013-06-14 2014-12-18 富士電機株式会社 Gate-driving circuit
US9525414B2 (en) 2013-06-14 2016-12-20 Fuji Electric Co., Ltd. Gate drive circuit providing constant driving current
JP5791758B1 (en) * 2014-05-15 2015-10-07 三菱電機株式会社 Gate drive circuit
JP2015220519A (en) * 2014-05-15 2015-12-07 三菱電機株式会社 Gate drive circuit

Also Published As

Publication number Publication date
JP3089873B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
US7239185B2 (en) Driver circuit connected to pulse shaping circuitry
US6459322B1 (en) Level adjustment circuit and data output circuit thereof
US5917359A (en) Semiconductor apparatus having protective circuitry
EP1043838B1 (en) Undershoot hardened fet switch
JP2922028B2 (en) Output circuit of semiconductor integrated circuit
EP1217744B1 (en) An output buffer with constant switching current
EP0615653B1 (en) Inductive load dump circuit
KR100323193B1 (en) Power ON Reset Circuit
EP0357366B1 (en) Improved current mirror circuit
EP0350879B1 (en) Output buffer circuit of semiconductor integrated circuit
JPH07502876A (en) MOSFET power transistor protection circuit device
US5526216A (en) Circuit configuration for gentle shutoff of an MOS semiconductor component in the event of excess current
JP3089873B2 (en) Output circuit
US20020005595A1 (en) Regenerative tie-high tie-low cell
US6759880B2 (en) Driver circuit connected to a switched capacitor and method of operating same
JPS6077520A (en) Control circuit of drive circuit
JP3258050B2 (en) Circuit device with inductive load MOSFET
JPH0677804A (en) Output circuit
JPH0758899B2 (en) Electronic switch
JPH03232316A (en) Cmos switch driver in which spike current is reduced
JP2666347B2 (en) Output circuit
US6806749B2 (en) Circuit arrangement and method for generating a time-limited signal
US20030231038A1 (en) Pulse shaping circuit and method
JP3470517B2 (en) Semiconductor circuit
JP3002036B2 (en) Analog input channel selection circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees