JPH06216565A - Superconductive magnetic shield body formed of beltlike superconductive sheet - Google Patents

Superconductive magnetic shield body formed of beltlike superconductive sheet

Info

Publication number
JPH06216565A
JPH06216565A JP5024835A JP2483593A JPH06216565A JP H06216565 A JPH06216565 A JP H06216565A JP 5024835 A JP5024835 A JP 5024835A JP 2483593 A JP2483593 A JP 2483593A JP H06216565 A JPH06216565 A JP H06216565A
Authority
JP
Japan
Prior art keywords
sheet
magnetic shield
layer
annular
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5024835A
Other languages
Japanese (ja)
Other versions
JP3199888B2 (en
Inventor
Takao Sugioka
孝雄 杉岡
Masaru Inoue
勝 井上
Kohei Otani
光平 大谷
Manabu Sato
学 佐藤
Kenji Hisada
健次 久田
Takamasa Yokote
隆昌 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Koatsu Gas Kogyo Co Ltd
Original Assignee
Toyo Aluminum KK
Koatsu Gas Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Koatsu Gas Kogyo Co Ltd filed Critical Toyo Aluminum KK
Priority to JP02483593A priority Critical patent/JP3199888B2/en
Publication of JPH06216565A publication Critical patent/JPH06216565A/en
Application granted granted Critical
Publication of JP3199888B2 publication Critical patent/JP3199888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To manufacture a cylindrical magnetic body having an optional sectional shape from a laminated sheet of narrow width by removing a beltlike sheet of a laminate consisting of a superconductive layer and a normal conductive metal layer in the longitudinal direction for being made a sheet of a seamless closed loop while making the closed loop sheet a unit magnetic shield body. CONSTITUTION:When a beltlike sheet 10 is provided with the cut-out parts 6 about on the central line in the longitudinal direction excepting both ends 21, 22 and doubly folded on the broken lines 5 of both ends 21, 22, a pair of beltlike part pieces 11, 13 integrally mounted on both common end parts 21, 22 are formed. When a pair of these beltlike part pieces 11, 13 are curved, a closed loop sheet 1, where the cut-out parts of the beltlike part pieces 11, 13 form opening part end edges, can be formed, and this closed loop sheet 1 is made a unit magnetic shield body. In case the closed loop sheet 1 is circularly formed, its inner diameter is determined by the length of the cut-out parts 6 of the beltlike sheet 10, and a loop magnetic shield body having a diameter of an optional size can be made by properly selecting the length of the beltlike sheet 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、帯状の超電導体シート
から形成する大径の超電導磁気遮蔽体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-diameter superconducting magnetic shield formed from a band-shaped superconducting sheet.

【0002】[0002]

【従来の技術】Nb−Ti合金などの超電導体とCu又
はAlなど常電導性金属との多層積層体を、液体ヘリウ
ム温度下で冷却して、超電導磁気遮蔽体に利用する技術
は公知であり(特開昭61−183979号公報)、ま
た、このNb−Ti積層体から形成したディスク状円環
板を多数重積した円筒体が、外部の強磁界を遮蔽して、
中空部を零磁界とする磁気遮蔽体も既に開示した(特開
平2−97098号公報)。
2. Description of the Related Art A technique for cooling a multi-layer laminate of a superconductor such as an Nb-Ti alloy and a normal-conducting metal such as Cu or Al at a liquid helium temperature and utilizing it as a superconducting magnetic shield is known. (JP-A-61-183979), a cylindrical body formed by stacking a large number of disc-shaped annular plates formed of the Nb-Ti laminated body shields an external strong magnetic field,
A magnetic shield in which the hollow portion has a zero magnetic field has already been disclosed (Japanese Patent Laid-Open No. 2-97098).

【0003】磁気遮蔽体用のNb−Ti積層体は、Nb
−Ti合金層間に介装されるAl又はCu等の常電導性
金属層が、Nb−Ti合金層に浸透する磁束の流動の際
に発する熱をヘリウム液相に伝導して冷却することによ
り、Nb−Ti合金層のフラックスジャンプを防止し、
さらにNb−Ti合金層を20μm以下の薄層にし且つ
多層に積層することによって、Nb−Ti積層体全体の
最大磁気遮蔽磁界を大幅に増加させることは、既に開示
した。
Nb--Ti laminates for magnetic shields are Nb
-The normal conductive metal layer such as Al or Cu interposed between the Ti alloy layers conducts the heat generated during the flow of the magnetic flux penetrating the Nb-Ti alloy layer to the helium liquid phase for cooling, Prevents flux jumps in the Nb-Ti alloy layer,
Further, it has already been disclosed that the maximum magnetic shield magnetic field of the entire Nb-Ti laminated body is significantly increased by making the Nb-Ti alloy layer a thin layer of 20 μm or less and laminating it in multiple layers.

【0004】このNb−Ti積層体には、シート基板の
表面にNb−Ti合金と金属Alとを交互にスパッタリ
ングにより蒸着して形成する多層蒸着シートが利用され
ていた。この多層蒸着シートは、Nb−Ti合金層を層
厚み1μm以下の極めて薄く形成し得て、安定性に優れ
た磁気遮蔽体を構成できる。さらに、Nb−Tiの板又
は箔の両面に金属Al層を接着して冷間圧延により形成
し三層構造の長尺シートを提案しているが(特開平3−
283475号公報)、このシートから切り出した円環
板(箔)を積層して円筒状の磁気遮蔽体に形成すること
も実施されている。この圧延シートは、層厚みに限界が
あるが、Nb−Ti合金層中に、冷間加工組織として多
量の格子欠陥を導入し、且つ冷間加工後の時効処理によ
りα−Tiの多数の微細粒子を析出させることにより、
臨界遮蔽電流密度を高めて磁気安定性を改善することが
可能となった。
For this Nb-Ti laminated body, a multi-layer vapor-deposited sheet formed by alternately vapor-depositing Nb-Ti alloy and metallic Al on the surface of a sheet substrate by sputtering is used. In this multilayer vapor-deposited sheet, the Nb—Ti alloy layer can be formed to be extremely thin with a layer thickness of 1 μm or less, and a magnetic shield excellent in stability can be configured. Further, a long sheet having a three-layer structure has been proposed by bonding a metal Al layer to both surfaces of a Nb-Ti plate or foil and forming it by cold rolling (JP-A-3-
No. 283475), an annular plate (foil) cut out from this sheet is laminated to form a cylindrical magnetic shield. Although this rolled sheet has a limited layer thickness, a large amount of lattice defects are introduced as a cold-working structure into the Nb-Ti alloy layer, and a large number of fine α-Ti fine particles are formed by aging treatment after cold-working. By precipitating the particles,
It has become possible to improve the magnetic stability by increasing the critical shielding current density.

【0005】他方、管状の磁気遮蔽体では、Nb−Ti
管とCu管とを同軸状に交互に挿嵌して、熱間で管圧延
する圧着方法も知られ、このような多層同軸管をもっ
て、磁気遮蔽体とする技術もある(特開平3−2737
00号)。
On the other hand, in a tubular magnetic shield, Nb-Ti is used.
There is also known a crimping method in which tubes and Cu tubes are alternately inserted coaxially and hot rolled, and there is also a technique of using such a multilayer coaxial tube as a magnetic shield (Japanese Patent Laid-Open No. 3-2737).
No. 00).

【0006】[0006]

【発明が解決しようとする課題】筒状の超電導磁気遮蔽
体を円環状の板から積層して形成する場合は、所望の内
径及び外径並びに高さに任意に調整できるので、磁気遮
蔽体の形成に有利である。
When the cylindrical superconducting magnetic shield is formed by laminating annular plates, the magnetic shield can be adjusted to desired inner and outer diameters and heights. It is advantageous for formation.

【0007】近年、超電導マグネットを利用した機器の
大型化に伴って、磁気遮蔽体も内径20cm〜2mもの
大型のものが必要とされるに至り、そこで円環状のNb
−Ti積層板も大径のものが必要となってきた。
In recent years, with the increase in size of equipment using superconducting magnets, it has become necessary to use a large magnetic shield with an inner diameter of 20 cm to 2 m.
-Ti laminated plates have also been required to have a large diameter.

【0008】しかるに、大径の磁気遮蔽体を上記円環板
から形成するとなると、広幅の積層圧延シートを必要と
し、さらに、内径のくり抜き部分が大きくて歩留が悪い
と言う問題があった。。また、上記同軸管を利用する場
合には、拡径のための複雑な圧延工程を要し、現実的で
はなかった。
However, if a large-diameter magnetic shield is formed from the annular plate, there is a problem that a wide laminated rolled sheet is required, and the hollowed-out portion of the inner diameter is large, resulting in poor yield. . Further, when the above coaxial tube is used, a complicated rolling process for expanding the diameter is required, which is not realistic.

【0009】大径の磁気遮蔽体を、円筒状支持体の外面
に帯状の積層シートを多数回捲着して形成することもで
きるが、円筒の軸心方向の磁力線に対して磁気遮蔽を行
なうには、超電導体であるNb−Ti合金層は軸心廻り
の遮蔽電流が流れるように円周方向に短絡している必要
がある。そこで、積層体のシートの両端部を、相隣接す
るNb−Ti合金層同士が接触するように、超電導性低
融点合金で接合する方法もあるが、この接合部での僅か
の電気抵抗によって発熱し局部的な常電導転移によっ
て、磁気遮蔽能の不安定化や消失が生じるなどの問題が
あった。
A large-diameter magnetic shield can be formed by winding a band-shaped laminated sheet around the outer surface of a cylindrical support a number of times. Magnetic shielding is performed on magnetic force lines in the axial direction of the cylinder. In addition, the Nb-Ti alloy layer, which is a superconductor, needs to be short-circuited in the circumferential direction so that a shield current around the axis flows. Therefore, there is also a method of joining both ends of the sheet of the laminated body with a superconducting low melting point alloy so that adjacent Nb-Ti alloy layers are in contact with each other, but heat is generated due to a slight electric resistance at this joining portion. However, there is a problem that the magnetic shielding ability becomes unstable and disappears due to local normal conduction transition.

【0010】本発明は、以上の問題に鑑み、Nb−Ti
合金などの超電導体層とCu又はAlなどの常電導性金
属層との積層体に成形容易な冷間圧延シート又は多層蒸
着シートを利用して、これら狭幅長尺シートから所望の
任意径に形成された筒状磁気遮蔽体を提供しようとする
ものである。
In view of the above problems, the present invention is Nb-Ti.
Using a cold-rolled sheet or a multilayer vapor-deposited sheet that is easy to form into a laminate of a superconducting layer such as an alloy and a normal-conducting metal layer such as Cu or Al, a narrow and long sheet can be formed into a desired arbitrary diameter. It is intended to provide a formed tubular magnetic shield.

【0011】[0011]

【解決手段】本発明の超電導磁気遮蔽体は、超電導体層
と常電導金属層とから成る積層体の帯状シートを、その
長手方向に切開して、接合部のない閉環状シートとな
し、当該閉環状シートをもって単位磁気遮蔽体となした
環状超電導磁気遮蔽体である。
SOLUTION: The superconducting magnetic shield of the present invention has a strip-shaped sheet of a laminate composed of a superconductor layer and a normal-conducting metal layer, which is cut in the longitudinal direction to form a closed annular sheet having no joint. An annular superconducting magnetic shield having a closed annular sheet as a unit magnetic shield.

【0012】本発明の閉環状シートは、超電導体層と常
電導金属層とから成る積層体の帯状シートから一体に形
成されるが、帯状シートをその長手方向中央に折線部を
もって2重折りとなし、両端部を残して当該折線部を切
開して、一対の帯状部片を形成し、該一対の帯状部片を
相反対側に湾曲して閉環状となしたもので、この閉環状
シートをもって単位磁気遮蔽体とするものである。
The closed ring-shaped sheet of the present invention is integrally formed from a strip-shaped sheet of a laminated body composed of a superconductor layer and a normal-conducting metal layer. The strip-shaped sheet is double-folded with a fold line portion in the longitudinal center thereof. None, the fold line portion is cut open leaving both ends to form a pair of strip-shaped pieces, and the pair of strip-shaped pieces are curved to opposite sides to form a closed ring. Is a unit magnetic shield.

【0013】また、当該閉環状シートは、両端部を共通
し且つ相互に分離した一対の帯状部片が相反対方向に湾
曲して成り、当該閉環状シートをもって単位磁気遮蔽体
とするものでもよい。
Further, the closed annular sheet may be formed by a pair of strip-shaped pieces having both ends in common and separated from each other, curved in opposite directions, and the closed annular sheet may be used as a unit magnetic shield. .

【0014】本発明には、このような単位磁気遮蔽体を
複数層に積層して環状に形成された超電導磁気遮蔽体が
含まれ、また、この環状超電導磁気遮蔽体を、筒状の支
持体の周面に、且つ筒軸方向に並設して覆設し固定して
筒状に形成した超電導磁気遮蔽体が含まれる。
The present invention includes a superconducting magnetic shield formed by laminating a plurality of such unit magnetic shields in a plurality of layers and forming the annular superconducting magnetic shield with a cylindrical support. A cylindrical superconducting magnetic shield is provided on the peripheral surface of the superconducting magnetic shield in the axial direction of the cylinder so as to be covered and fixed.

【0015】このような筒状の磁気遮蔽体として、特
に、上記支持体の周面に並列して覆設した第1の環状超
電導磁気遮蔽体の外周に第2の環状超電導磁気遮蔽体を
並列して覆設し、第1の環状超電導磁気遮蔽体の相近接
する周縁が第2の環状超電導磁気遮蔽体の周体により、
被覆されて形成されるものがある。各環状超電導磁気遮
蔽体の超電導層同士を非接触状態として、第1及び第2
の環状超電導磁気遮蔽体が配置されているものが、好ま
しい。
As such a cylindrical magnetic shield, in particular, a second annular superconducting magnetic shield is arranged in parallel on the outer periphery of a first annular superconducting magnetic shield which is arranged in parallel on the peripheral surface of the support. The first annular superconducting magnetic shield is surrounded by the peripheral body of the second annular superconducting magnetic shield.
Some are formed by coating. The first and second superconducting layers of each annular superconducting magnetic shield are placed in a non-contact state.
The above-mentioned annular superconducting magnetic shield is preferably arranged.

【0016】帯状シートは、上述のような冷間圧延シー
ト又は多層蒸着シートが利用できる。まず、冷間圧延シ
ートについては、超電導体層にはNb−Ti合金層を利
用し、常電導金属層には、Cu層若しくはAl層を利用
して、上記積層体を冷間圧延して帯状シートにしたもの
が好適に採用される。この帯状シートは、積層体を圧下
率25〜99%の強度の圧延をし、その冷間圧延工程後
に時効熱処理してNb−Ti合金層中にα−Ti相微細
粒子を析出分散させたものが特によい。
As the strip-shaped sheet, the cold-rolled sheet or the multilayer vapor-deposited sheet as described above can be used. First, for a cold rolled sheet, a Nb-Ti alloy layer is used for the superconductor layer, and a Cu layer or an Al layer is used for the normal conductive metal layer, and the laminate is cold rolled to form a strip. A sheet is preferably used. This strip-shaped sheet is obtained by rolling the laminate with a reduction rate of 25 to 99% and aging heat treatment after the cold rolling step to precipitate and disperse the α-Ti phase fine particles in the Nb-Ti alloy layer. Is especially good.

【0017】他方、多層蒸着シートの場合は、超電導体
層としてNb−Ti合金、NbN化合物及びNbN−T
iN混晶体のいずれか一種の層を、上記常電導金属層と
してCu層若しくはAl層を、適当幅の長尺シート基板
に交互にスパッター蒸着して上記帯状シートに形成され
た積層体から成るものが利用される。
On the other hand, in the case of the multilayer vapor-deposited sheet, the Nb-Ti alloy, the NbN compound and the NbN-T are used as the superconductor layer.
A laminate formed by alternately sputter-depositing any one layer of an iN mixed crystal, a Cu layer or an Al layer as the normal conducting metal layer on a long sheet substrate having an appropriate width, and forming the strip sheet. Is used.

【0018】[0018]

【実施例】本発明の超電導磁気遮蔽体を、図面に基づい
て以下に、説明する。図1は、同図(D)に示すような
Nb−Ti合金層40とAl層41との3層積層体から
冷間圧延により帯状シート10を成形し、この帯状シー
ト10から閉環状シート1に形成した単位磁気遮蔽体を
示したものである。
The superconducting magnetic shield of the present invention will be described below with reference to the drawings. 1A and 1B, a strip-shaped sheet 10 is formed by cold rolling from a three-layer laminated body of an Nb-Ti alloy layer 40 and an Al layer 41 as shown in FIG. 3 shows the unit magnetic shield formed in FIG.

【0019】図1(A)に示す帯状シート10には、両
端部21,22を除いて、長手方向のほぼ中央線上に切
開部6を設けてあり、両端部21,22の折れ線5上で
2重に折りたたむと、図1(B)に示すように、共通の
両端部21,22に一体に取着された一対の帯状部片1
1,13が形成され、この一対の帯状部片11,13を
湾曲させると、帯状部片11,13の切開部6が開口部
端縁となる閉環状シート1を形成でき、この閉環状シー
ト1をもって、単位磁気遮蔽体にする。閉環状シート1
には、外側に、帯状シート10の端部21、22が耳状
に残る。
The strip-shaped sheet 10 shown in FIG. 1 (A) is provided with an incision 6 substantially on the center line in the longitudinal direction except both end portions 21 and 22, and on the fold line 5 of both end portions 21 and 22. When double-folded, as shown in FIG. 1B, the pair of strip-shaped pieces 1 integrally attached to the common end portions 21 and 22.
1 and 13 are formed, and when the pair of strip-shaped pieces 11 and 13 are curved, the closed annular sheet 1 in which the cutout portion 6 of the strip-shaped pieces 11 and 13 serves as the edge of the opening can be formed. 1 is used as a unit magnetic shield. Closed ring seat 1
On the outer side, the end portions 21 and 22 of the strip-shaped sheet 10 are left in an ear shape on the outer side.

【0020】図1(B)において、閉環状シート1の開
口部を貫通する方向の磁力線9が作用した場合には、シ
ート1を構成するNb−Ti超電導体層40を流れる遮
蔽電流91は、一対の帯状部片11、13と耳状の両端
部21、22及びその曲折部5を流れるように閉ループ
を形成し、この遮蔽電流91が、外部磁界を遮蔽するよ
うに作用する。そして、閉ループ91を形成するNb−
Ti超電導体層40には、接続部がないので、経時的安
定度の高い永久電流が流れる。
In FIG. 1B, when the magnetic field lines 9 in the direction penetrating the opening of the closed annular sheet 1 act, the shielding current 91 flowing through the Nb-Ti superconductor layer 40 forming the sheet 1 is A closed loop is formed so as to flow through the pair of strip-shaped pieces 11 and 13, the ear-shaped ends 21 and 22, and the bent portion 5, and the shielding current 91 acts to shield the external magnetic field. Then, Nb− forming the closed loop 91.
Since the Ti superconducting layer 40 has no connecting portion, a persistent current with high temporal stability flows.

【0021】図1(C)は、図1(A)に示した帯状シ
ート10によって構成した他の態様の閉環状シート1を
示す。この場合、切開部6を設けた帯状シート10の一
対の帯状部片11,13をシート面の法線方向に互いに
湾曲状に変位させて、環状に開口したもので、この場合
も、閉環状シート1廻りにNb−Ti超電導体層40を
流れる遮蔽電流91の閉ループが形成され、当該超電導
体層40には同様に接続部がない。
FIG. 1 (C) shows another embodiment of the closed annular sheet 1 constituted by the strip-shaped sheet 10 shown in FIG. 1 (A). In this case, the pair of strip-shaped pieces 11 and 13 of the strip-shaped sheet 10 provided with the cutout portion 6 are curvedly displaced in the normal direction of the sheet surface and opened in a ring shape. A closed loop of the shielding current 91 flowing in the Nb-Ti superconducting layer 40 is formed around the sheet 1, and the superconducting layer 40 also has no connection portion.

【0022】閉環状シート1を円形に形成した場合、そ
の内径は、帯状シート10の切開部6の長さによって定
まるので、帯状シート10の長さを適宜選ぶことによ
り、シート幅に関係なく、任意の大きさの直径の環状磁
気遮蔽体にできる。
When the closed annular sheet 1 is formed in a circular shape, its inner diameter is determined by the length of the cutout portion 6 of the belt-shaped sheet 10. Therefore, by appropriately selecting the length of the belt-shaped sheet 10, regardless of the sheet width. It can be an annular magnetic shield of any diameter.

【0023】帯状シート10に上述のようなα−Ti相
析出冷間圧延シートを利用すると、この冷間圧延シート
は、圧延方向の最大遮蔽電流密度がその垂直方向のそれ
より大きいと言う異方性を示すのであるが、切開線6が
圧延方向7と平行であるので、閉環状シート1廻りの超
電導電流ループ91はその大部分が圧延方向7に平行に
流れ(図1(B))、従って最大遮蔽磁界を高めること
が可能となる。他方、端部21,22は当該超電導電流
ループ91が圧延方向7と概ね直交するが、この端部長
さを相対的に大きくして遮蔽電流密度を相対的に低減す
ることにより、この磁気不安定性から逃れることができ
る。従って本発明の超電導磁気遮蔽体は、素材の帯状シ
ート10の圧延方向に最大遮蔽電流を増加させるような
異方性があるほど優れた磁気遮蔽能を発現する。
When the α-Ti phase precipitation cold-rolled sheet as described above is used for the strip-shaped sheet 10, this cold-rolled sheet is anisotropic in that the maximum shielding current density in the rolling direction is larger than that in the vertical direction. However, since the incision line 6 is parallel to the rolling direction 7, most of the superconducting flow loop 91 around the closed annular sheet 1 flows parallel to the rolling direction 7 (FIG. 1 (B)). Therefore, the maximum shielded magnetic field can be increased. On the other hand, in the end portions 21 and 22, the superconducting current flow loop 91 is substantially orthogonal to the rolling direction 7. However, by relatively increasing the end portion length to relatively reduce the shield current density, this magnetic instability is caused. You can escape from it. Therefore, the superconducting magnetic shield of the present invention exhibits a superior magnetic shielding ability as the anisotropy increases the maximum shielding current in the rolling direction of the strip material sheet 10.

【0024】図2(A)は、図1(B)の閉環状シート
1を3枚重ねて積層した単位磁気遮蔽体としてなしたも
のを示すが、多数枚の閉環状シート1を重ね合わせるこ
とによって、多層の閉環状シートとなして、磁気遮蔽能
を大きくすることができる。
FIG. 2 (A) shows a unit magnetic shield formed by stacking three closed annular sheets 1 of FIG. 1 (B) and laminating them. Thus, the magnetic shielding ability can be increased by forming a multilayer closed annular sheet.

【0025】図2(B)は、閉環状シート1の外周に耳
状に突出した端部21、22を、外周面に添着するよう
に折り畳んだものである。
In FIG. 2B, the end portions 21 and 22 protruding like ears on the outer periphery of the closed annular sheet 1 are folded so as to be attached to the outer peripheral surface.

【0026】図2(C)は、多層閉環状シート1の単位
磁気遮蔽体3から形成した円筒状の超電導磁気遮蔽体8
を示しているが、円筒状の支持体80(通常は、アルミ
ニウム製)の外周に、4列の単位磁気遮蔽体3a・・・
を外覆並設して第1の超電導磁気遮蔽体とする。次い
で、この第1の超電導磁気遮蔽体の単位磁気遮蔽体3a
・・・の外周に、3列の単位磁気遮蔽体3b・・・を外
覆並設して第1の超電導磁気遮蔽体としたものである。
この場合、単位磁気遮蔽体3を形成する閉環状シート1
の積層数が多いほど、軸方向の磁界に対する磁気遮蔽能
が増大するので好ましい。
FIG. 2C shows a cylindrical superconducting magnetic shield 8 formed from the unit magnetic shields 3 of the multilayer closed annular sheet 1.
However, four rows of unit magnetic shields 3a ... Are provided on the outer periphery of the cylindrical support 80 (usually made of aluminum).
Are arranged side by side to form a first superconducting magnetic shield. Next, the unit magnetic shield 3a of the first superconducting magnetic shield
.. are provided on the outer periphery of the unit magnetic shields 3b ..
In this case, the closed annular sheet 1 forming the unit magnetic shield 3
The larger the number of stacked layers, the better the magnetic shielding ability against the magnetic field in the axial direction.

【0027】また、外側の第2の磁気遮蔽体を成す単位
磁気遮蔽体3b・・・が内側第2の磁気遮蔽体を構成し
て相隣接する単位磁気遮蔽体3a・・・の当接した周縁
やその隙間を覆うように配置するのが、半径方向の磁界
に対する磁気遮蔽能が増大する。この場合、各環状超電
導磁気遮蔽体3a・・・,3b・・・の超電導層40同
士を非接触状態として、第1及び第2の環状超電導磁気
遮蔽体が配置されていることが、筒状遮蔽体の各部での
半径方向の最大遮蔽磁界を均一化するのに好ましい。超
電導層40同士を非接触状態とするのは、単位磁気遮蔽
体の環状シート1に超電導体層40と常電導金属層41
との積層体シートを使用するので、容易に実現できる。
Further, the unit magnetic shields 3b ... Forming the outer second magnetic shield constitute the inner second magnetic shield, and the adjacent unit magnetic shields 3a .. The magnetic shield ability to the magnetic field in the radial direction is increased by arranging so as to cover the peripheral edge and the gap therebetween. In this case, the first and second annular superconducting magnetic shields are arranged so that the superconducting layers 40 of the annular superconducting magnetic shields 3a ... It is preferable to make the maximum radial shield magnetic field uniform in each part of the shield. The superconducting layers 40 are brought into non-contact with each other because the superconducting layer 40 and the normal conducting metal layer 41 are provided on the annular sheet 1 of the unit magnetic shield.
It can be easily realized by using the laminate sheet of and.

【0028】閉環状シート1は、通常は可撓性があり、
また閉環状シート1の内径あるいは開口部の大きさは、
帯状シート10からの形成の際の切開部6の長さを調節
するか若しくは、閉環状シート1の外周に突出した端部
21、22の折り畳み長さを調整して自由に調整できる
から、支持体80の形状を磁気遮蔽空間の形状に合致す
るように適宜選んで、所望の形状及び大きさの超電導磁
気遮蔽体に形成するとができる。例えば、支持体80
を、四角筒状や太鼓胴状等所望の筒状にあるいはその筒
底面を部分球面状又は鏡板状に選んで、その外周または
内周に上記閉環状シート1を被着して、磁気遮蔽体とす
るのである。
The closed annular sheet 1 is usually flexible,
The inner diameter or the size of the opening of the closed annular sheet 1 is
It can be freely adjusted by adjusting the length of the incision portion 6 when forming from the band-shaped sheet 10 or by adjusting the folding length of the end portions 21 and 22 protruding to the outer periphery of the closed annular sheet 1. The shape of the body 80 can be appropriately selected so as to match the shape of the magnetically shielded space, and can be formed into a superconducting magnetic shield having a desired shape and size. For example, the support 80
To a desired tubular shape such as a square tubular shape or a drum shape, or the bottom surface thereof to be a partial spherical surface or an end plate shape, and the closed annular sheet 1 is attached to the outer circumference or the inner circumference to form a magnetic shield. And

【0029】上記実施例は、帯状の圧延シートから形成
された閉環状シート1を利用した例を示したが、帯状シ
ートとしては、スパッタリングによる積層シートも同様
に利用できる。この場合には、長尺のAl箔に、Nb−
Ti合金層とAl層とを1μm厚み以下に交互にスパッ
タ蒸着して、多層の蒸着層を形成し、この多層蒸着シー
トを所定長さに裁断し、長手方向に切開して閉環状シー
ト1とするのである。
In the above-mentioned embodiment, the closed ring-shaped sheet 1 formed from a strip-shaped rolled sheet is used, but a laminated sheet formed by sputtering can also be used as the strip-shaped sheet. In this case, Nb-
A Ti alloy layer and an Al layer are alternately sputter-deposited to a thickness of 1 μm or less to form a multilayer vapor-deposited layer. The multilayer vapor-deposited sheet is cut into a predetermined length and cut in the longitudinal direction to form a closed annular sheet 1. To do.

【0030】図3には、帯状シート10の切開を工夫し
たさらに大径の単位磁気遮蔽体が示されている。この例
は、同図(A)に示すように、帯状シート10にその一
端を切り欠く第1の切開部61がシート長手方向の中央
部に設けられ、当該第1の切開部61により切開かれた
端部21,22を切り残して、第2の切開部62が第1
の切開部61の端部を迂回するように長手方向に設けら
れたもので、図3(B,C)に示すように、展開する
と、大径の閉環状シート1が得られ、これを単位磁気遮
蔽体として、同様に、積層すると、筒状の超電導磁気遮
蔽体を構成することができる。
FIG. 3 shows a larger-diameter unit magnetic shield in which the incision of the strip sheet 10 is devised. In this example, as shown in FIG. 1A, a first cutout 61 is formed in the belt-shaped sheet 10 by cutting out one end thereof at the central portion in the longitudinal direction of the sheet, and the first cutout 61 cuts the sheet. The second incision portion 62 has the first end 21 and 22 left uncut.
It is provided in the longitudinal direction so as to bypass the end of the incision 61, and when expanded as shown in FIGS. 3B and 3C, a large-diameter closed annular sheet 1 is obtained, which is a unit. Similarly, as a magnetic shield, a cylindrical superconducting magnetic shield can be formed by stacking layers.

【0031】次に、本発明の超伝導磁気遮蔽体の磁気遮
蔽能を以下のように調べた。帯状シート10は、Nb−
Ti合金層の両面にAl層を接合して、冷間圧延により
成形した幅50mmの三層構造の箔(Nb−Ti層厚3
4μm、Al層厚8μm、時効焼鈍材)を長さ150m
mに切断し、長手方向の中央線上に90mm長さの切開
をして、直径約50mm、高さ25mmの閉環状シート
1を形成し、次いで、図2(A)に示すように、この閉
環状シート1を10枚重ね合わせて、単位磁気遮蔽体3
とした。
Next, the magnetic shielding ability of the superconducting magnetic shield of the present invention was examined as follows. The strip-shaped sheet 10 is Nb-
A foil having a three-layer structure with a width of 50 mm formed by joining Al layers on both sides of a Ti alloy layer and performing cold rolling (Nb-Ti layer thickness 3
4 μm, Al layer thickness 8 μm, aging annealed material) length 150 m
m, a 90 mm long incision is made on the center line in the longitudinal direction to form a closed annular sheet 1 having a diameter of about 50 mm and a height of 25 mm, and then, as shown in FIG. Unit magnetic shield 3 by stacking 10 annular sheets 1
And

【0032】単位磁気遮蔽体3を、図2(C)に示すよ
うに、アルミニウム製の外径50mm、高さ120m
m、厚み3mmの円筒支持体80の外周に、上層及び下
層の2層に計7列にわたり低温用接着剤により覆設接着
して、超電導磁気遮蔽体8を形成した。
As shown in FIG. 2C, the unit magnetic shield 3 is made of aluminum and has an outer diameter of 50 mm and a height of 120 m.
The superconducting magnetic shield 8 was formed on the outer periphery of the cylindrical support 80 having a thickness of 3 mm and a thickness of 3 mm by covering the two layers of the upper layer and the lower layer with a low temperature adhesive in a total of 7 rows.

【0033】液体ヘリウム中において、超電導マグネッ
トの軸心上に配置して、磁気遮蔽体の中空部内にホール
素子磁気センサーを固定して、磁界を印加した。上記単
位磁気遮蔽体3単独では、軸方向の外部磁界5000G
までは、中空部内は実質的に零磁界にすることができ
た。又、上記の超電導磁気遮蔽体8は、軸方向及び径方
向の外部磁界約1Tに対して、中空部内は中心軸状で実
質的に零磁界に遮蔽することができた。
In the liquid helium, the Hall element magnetic sensor was fixed on the axis of the superconducting magnet, fixed inside the hollow portion of the magnetic shield, and a magnetic field was applied. With the unit magnetic shield 3 alone, an external magnetic field of 5000 G in the axial direction
Up to, the inside of the hollow portion could be made to have substantially zero magnetic field. Further, the superconducting magnetic shield 8 was able to shield an external magnetic field of about 1 T in the axial direction and the radial direction to a substantially zero magnetic field with a central axis in the hollow portion.

【0034】次に、外形400mm、高さ350mm、
厚さ3mmのステンレス鋼製支持体の外周に上記3層構
造のNb−Ti圧延シートを用いて大型の磁気遮蔽体を
試作して、磁気遮蔽能力を調べた。
Next, the outer diameter is 400 mm, the height is 350 mm,
A large-scale magnetic shield was trial-produced by using the Nb-Ti rolled sheet having the above-mentioned three-layer structure on the outer circumference of a stainless steel support having a thickness of 3 mm, and the magnetic shield ability was examined.

【0035】組立は、幅100mmの上記圧延シートの
長手方向に切開線をいれて、直径400mm、高さ50
mmの閉環状シートを形成し、この閉環状シート20枚
重積して形成した単位磁気遮蔽体6列を支持体の外周に
低温用接着剤で軸方向に被着して、磁気遮蔽体とした。
The assembling is performed by cutting lines along the longitudinal direction of the rolled sheet having a width of 100 mm and having a diameter of 400 mm and a height of 50.
mm closed annular sheet is formed, and 6 rows of unit magnetic shields formed by stacking 20 closed annular sheets are axially adhered to the outer periphery of the support with a low temperature adhesive to form a magnetic shield. did.

【0036】試験結果は、液体ヘリウム温度において、
磁気遮蔽体の軸方向の磁場1500Gに対して中空部内
は実質的に零磁界にすることができた。
The test results show that at liquid helium temperature,
With respect to the magnetic field 1500G in the axial direction of the magnetic shield, the inside of the hollow portion could be substantially zero magnetic field.

【0037】[0037]

【発明の効果】本発明の筒状の超電導磁気遮蔽体は、超
電導体層と常電導金属層との積層体の閉環状シートを利
用するが、閉環状シートは当該積層体の狭幅帯状シート
から形成され、その開口部の寸法形状は、帯状シートの
幅に依存せず、単に帯状シートの中央部切開長さにより
決められるので、任意の大きさの閉環状シートが簡便に
得られ、従って、超電導体層を含む素材の大きさに限定
されず、大型の超電導磁気遮蔽体が製作できる。
The cylindrical superconducting magnetic shield of the present invention utilizes a closed annular sheet of a laminate of a superconducting layer and a normal conducting metal layer. The closed annular sheet is a narrow strip sheet of the laminate. The size and shape of the opening is not dependent on the width of the strip-shaped sheet, but is simply determined by the incision length of the central portion of the strip-shaped sheet, so that a closed annular sheet of any size can be easily obtained. The size of the material including the superconductor layer is not limited, and a large-sized superconducting magnetic shield can be manufactured.

【0038】また、帯状シートから単位磁気遮蔽体を形
成する際に、超電導材料の歩留がよく、複雑な熱間加工
や機械加工を必要とせず、簡便に目的形状の磁気遮蔽体
が得られる。
Further, when the unit magnetic shield is formed from the strip-shaped sheet, the yield of the superconducting material is good, complicated hot working and machining are not required, and the magnetic shield having the desired shape can be easily obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導体層と常電導金属との積層体の帯状シー
トの平面図(A)、当該帯状シートから形成した閉環状
シートの斜視図(B、C)及び当該帯状シートの積層構
造を示す断面図(D)。
FIG. 1 is a plan view (A) of a strip sheet of a laminate of a superconductor layer and a normal conducting metal, a perspective view (B, C) of a closed annular sheet formed from the strip sheet, and a laminated structure of the strip sheet. Sectional drawing (D) shown.

【図2】閉環状シートの斜視図(A、B)と、当該閉環
状シートを組み合わせて構成した円筒状超電導磁気遮蔽
体の斜視図(C)。
FIG. 2 is a perspective view (A, B) of a closed annular sheet and a perspective view (C) of a cylindrical superconducting magnetic shield formed by combining the closed annular sheets.

【図3】切開された帯状シート(A)と、展開して閉環
状シート(B、C)との斜視図。
FIG. 3 is a perspective view of the incised band-shaped sheet (A) and the expanded and closed annular sheet (B, C).

【符号の説明】[Explanation of symbols]

1 閉環状シート 10 帯状シート 21、22 端部 3 単位磁気遮蔽体 6 切開部(縁) 8 超電導磁気遮蔽体 80 支持体 DESCRIPTION OF SYMBOLS 1 Closed annular sheet 10 Band-shaped sheets 21, 22 End part 3 Unit magnetic shield 6 Incision part (edge) 8 Superconducting magnetic shield 80 Support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 勝 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 (72)発明者 大谷 光平 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 (72)発明者 佐藤 学 大阪市北区堂山町1番5号 高圧ガス工業 株式会社内 (72)発明者 久田 健次 大阪市中央区久太郎町三丁目6番8号 東 洋アルミニウム株式会社内 (72)発明者 横手 隆昌 大阪市中央区久太郎町三丁目6番8号 東 洋アルミニウム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Inoue 1-5 Doyamacho, Kita-ku, Osaka City High-pressure gas industry Co., Ltd. (72) Inventor Kohei Otani 1-5 Doyama-cho, Kita-ku, Osaka High-pressure gas industry Co., Ltd. (72) Inventor Manabu Sato 1-5 Doyama-cho, Kita-ku, Osaka High-pressure gas industry Co., Ltd. (72) Kenji Hisada 3-6-8, Kutaro-cho, Chuo-ku, Osaka Toyo Aluminum Co., Ltd. (72) Inventor Takamasa Yokote 3-6-8, Kutaro-cho, Chuo-ku, Osaka City Toyo Aluminum Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 超電導体層と常電導金属層とから成る積
層体の帯状シートをその長手方向に切開して、接合部の
ない閉環状シートとなし、当該閉環状シートをもって単
位磁気遮蔽体となした環状超電導磁気遮蔽体。
1. A strip-shaped sheet of a laminate composed of a superconductor layer and a normal-conducting metal layer is cut in its longitudinal direction to form a closed annular sheet having no joint, and the closed annular sheet serves as a unit magnetic shield. Made annular superconducting magnetic shield.
【請求項2】 超電導体層と常電導金属層とから成る積
層体の帯状シートをその長手方向中央に折線部をもって
2重折りとなし、両端部を残して当該折線部を切開し
て、一対の帯状部片を形成し、該一対の帯状部片を相反
対側に湾曲して閉環状シートとなし、当該閉環状シート
をもって単位磁気遮蔽体となした環状超電導磁気遮蔽
体。
2. A laminate sheet comprising a superconductor layer and a normal-conducting metal layer is double-folded with a fold line portion at the center in the longitudinal direction, and the fold line portion is cut out leaving both ends, and a pair is formed. 5. A ring-shaped superconducting magnetic shield, wherein the pair of band-shaped pieces are formed, and the pair of band-shaped pieces are curved to opposite sides to form a closed ring-shaped sheet, and the closed ring-shaped sheet serves as a unit magnetic shield.
【請求項3】 超電導体層と常電導金属層とから成る積
層体の帯状シートから一体に形成された閉環状シートで
あつて、当該閉環状シートは、両端部を共通し且つ相互
に分離した一対の帯状部片が相反対方向に湾曲して成
り、当該閉環状シートをもって単位磁気遮蔽体となした
環状超電導磁気遮蔽体。
3. A closed annular sheet integrally formed from a strip-shaped sheet of a laminate composed of a superconductor layer and a normal conductive metal layer, the closed annular sheet having both ends common and separated from each other. An annular superconducting magnetic shield comprising a pair of strip-shaped parts curved in opposite directions, and the closed annular sheet serving as a unit magnetic shield.
【請求項4】 上記単位磁気遮蔽体を複数層に積層して
成る請求項1乃至3いずれか記載の環状超電導磁気遮蔽
体。
4. The annular superconducting magnetic shield according to claim 1, wherein the unit magnetic shield is laminated in a plurality of layers.
【請求項5】 請求項1乃至4いずれか記載の環状超電
導磁気遮蔽体を、筒状の支持体の周面に、筒軸方向に共
軸状に並列して、覆設したことを特徴とする筒状超電導
磁気遮蔽体。
5. The annular superconducting magnetic shield according to any one of claims 1 to 4 is provided so as to cover the circumferential surface of a cylindrical support in parallel with each other in the axial direction of the cylinder. A tubular superconducting magnetic shield.
【請求項6】 上記支持体の周面に並列して覆設した第
1の環状超電導磁気遮蔽体の外周に第2の環状超電導磁
気遮蔽体を並列して覆設し、第1の環状超電導磁気遮蔽
体の相近接する周縁が第2の環状超電導磁気遮蔽体の周
体により被覆されて成る請求項5記載の筒状超電導磁気
遮蔽体。
6. A second annular superconducting magnetic shield is provided in parallel on the outer periphery of a first annular superconducting magnetic shield which is provided in parallel with the peripheral surface of the support, and a first annular superconducting conductor is provided. 6. The cylindrical superconducting magnetic shield according to claim 5, wherein the adjacent peripheral edges of the magnetic shield are covered with the peripheral body of the second annular superconducting magnetic shield.
【請求項7】 上記の超電導体層がNb−Ti合金層
で、常電導金属層がCu層若しくはAl層であり、且
つ、上記帯状シートが上記積層体を冷間圧延して成る請
求項1乃至3いずれか記載の環状超電導磁気遮蔽体。
7. The superconducting layer is an Nb—Ti alloy layer, the normal conducting metal layer is a Cu layer or an Al layer, and the strip-shaped sheet is formed by cold rolling the laminate. 4. The annular superconducting magnetic shield according to any one of 1 to 3.
【請求項8】 上記帯状シートが上記積層体を冷間圧延
工程後に時効熱処理してα−Ti相を析出して成る請求
項1乃至3いずれか記載の環状超電導磁気遮蔽体。
8. The annular superconducting magnetic shield according to claim 1, wherein the strip-shaped sheet is formed by subjecting the laminate to an aging heat treatment after a cold rolling step to precipitate an α-Ti phase.
【請求項9】 上記の超電導体層がNb−Ti合金層、
NbN化合物層及びNbN−TiN混晶体層のいずれか
一種の層で、上記常電導金属層がCu層若しくはAl層
であり、且つ、上記帯状シートはシート基板に当該超電
導体層と当該常電導金属層とが交互にスパッター蒸着し
て形成された積層体から成る請求項1乃至3いずれか記
載の環状超電導磁気遮蔽体。
9. The superconductor layer is an Nb—Ti alloy layer,
Any one of a NbN compound layer and an NbN-TiN mixed crystal layer, the normal conductive metal layer is a Cu layer or an Al layer, and the strip-shaped sheet is a sheet substrate on which the superconducting layer and the normal conductive metal are formed. The annular superconducting magnetic shield according to any one of claims 1 to 3, wherein the layer and the layer are composed of a laminated body formed by alternate sputter deposition.
JP02483593A 1993-01-19 1993-01-19 Superconducting magnetic shield formed from belt-shaped superconducting sheet Expired - Fee Related JP3199888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02483593A JP3199888B2 (en) 1993-01-19 1993-01-19 Superconducting magnetic shield formed from belt-shaped superconducting sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02483593A JP3199888B2 (en) 1993-01-19 1993-01-19 Superconducting magnetic shield formed from belt-shaped superconducting sheet

Publications (2)

Publication Number Publication Date
JPH06216565A true JPH06216565A (en) 1994-08-05
JP3199888B2 JP3199888B2 (en) 2001-08-20

Family

ID=12149267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02483593A Expired - Fee Related JP3199888B2 (en) 1993-01-19 1993-01-19 Superconducting magnetic shield formed from belt-shaped superconducting sheet

Country Status (1)

Country Link
JP (1) JP3199888B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019319A (en) * 2005-07-08 2007-01-25 Toshiba Corp Permanent current superconductiing coil and magnet
EP1908086A2 (en) * 2005-07-06 2008-04-09 Korea Polytechnic University Superconductive magnet for persistent current and method for manufacturing the same
CN102810378A (en) * 2012-07-13 2012-12-05 中国科学院电工研究所 Superconducting magnet and manufacturing method thereof
GB2494771A (en) * 2011-09-14 2013-03-20 Bruker Biospin Ag Method for making a magnet coil using a slit band-shaped conductor
JP2013175577A (en) * 2012-02-24 2013-09-05 National Institute For Materials Science Annular line structure using high-temperature superconducting flat tape line material, and method of manufacturing the same
JP2013251527A (en) * 2012-04-26 2013-12-12 Sumitomo Heavy Ind Ltd Superconducting magnetic shield device and manufacturing method therefor
WO2014125694A1 (en) * 2013-02-15 2014-08-21 住友重機械工業株式会社 Superconducting magnetic shielding device
JP2014157940A (en) * 2013-02-15 2014-08-28 Sumitomo Heavy Ind Ltd Superconductive magnetic shield equipment
JP2014220279A (en) * 2013-05-01 2014-11-20 住友重機械工業株式会社 Super conducting magnetic shield device
JP2015532526A (en) * 2012-10-02 2015-11-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Superconducting coil device and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106714539A (en) * 2017-01-07 2017-05-24 深圳市景程信息科技有限公司 Electromagnetic pulse protection device of regular quadrilateral structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1908086A2 (en) * 2005-07-06 2008-04-09 Korea Polytechnic University Superconductive magnet for persistent current and method for manufacturing the same
JP2009500843A (en) * 2005-07-06 2009-01-08 コリアポリテクニック大学 Superconducting magnet for permanent current and manufacturing method thereof
JP4677032B2 (en) * 2005-07-06 2011-04-27 コリアポリテクニック大学 Superconducting magnet for permanent current and manufacturing method thereof
EP1908086A4 (en) * 2005-07-06 2012-01-18 Univ Korea Polytechnic Superconductive magnet for persistent current and method for manufacturing the same
JP4723936B2 (en) * 2005-07-08 2011-07-13 株式会社東芝 Persistent current superconducting coils and magnets
JP2007019319A (en) * 2005-07-08 2007-01-25 Toshiba Corp Permanent current superconductiing coil and magnet
US8712489B2 (en) 2011-09-14 2014-04-29 Bruker Biospin Ag Method for manufacturing a magnet coil configuration using a slit band-shaped conductor
GB2494771B (en) * 2011-09-14 2016-01-06 Bruker Biospin Ag Method for manufacturing a magnet coil using a slit band-shaped conductor
GB2494771A (en) * 2011-09-14 2013-03-20 Bruker Biospin Ag Method for making a magnet coil using a slit band-shaped conductor
JP2013175577A (en) * 2012-02-24 2013-09-05 National Institute For Materials Science Annular line structure using high-temperature superconducting flat tape line material, and method of manufacturing the same
JP2013251527A (en) * 2012-04-26 2013-12-12 Sumitomo Heavy Ind Ltd Superconducting magnetic shield device and manufacturing method therefor
CN102810378A (en) * 2012-07-13 2012-12-05 中国科学院电工研究所 Superconducting magnet and manufacturing method thereof
JP2015532526A (en) * 2012-10-02 2015-11-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Superconducting coil device and manufacturing method thereof
WO2014125694A1 (en) * 2013-02-15 2014-08-21 住友重機械工業株式会社 Superconducting magnetic shielding device
JP2014157940A (en) * 2013-02-15 2014-08-28 Sumitomo Heavy Ind Ltd Superconductive magnetic shield equipment
JP2014157939A (en) * 2013-02-15 2014-08-28 Sumitomo Heavy Ind Ltd Superconductive magnetic shield equipment
WO2014136288A1 (en) * 2013-03-05 2014-09-12 住友重機械工業株式会社 Superconductive magnetic shield device and method of producing same
JP2014220279A (en) * 2013-05-01 2014-11-20 住友重機械工業株式会社 Super conducting magnetic shield device

Also Published As

Publication number Publication date
JP3199888B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JPH06216565A (en) Superconductive magnetic shield body formed of beltlike superconductive sheet
JP5597711B2 (en) Multifilament conductor and manufacturing method thereof
JPH0297098A (en) Superconductive magnetic shielding body
EP0310396B1 (en) Planar inductor
JP6610790B2 (en) Bulk magnet structure and bulk magnet system for NMR
JPS5952028B2 (en) Impeder for manufacturing ERW pipes
JPH11340037A (en) Soft magnetic film, soft magnetic multi-layer film, manufacture thereof, and magnetic body element using same
TWI702596B (en) Manufacturing method of magnetometer and magnetometer assembly
EP1571678A1 (en) Superconducting magnet, process for producing the same and its magnetizing method
EP3042978A1 (en) Method for depositing oxide layer, and layered substrate for epitaxial growth and process for producing same
JP3328350B2 (en) Superconducting magnetic shield to prevent external magnetic leakage
US5571602A (en) Superconducting joints for superconducting sheets
US5258573A (en) Superconductor magnetic shield
US5373275A (en) Superconducting magnetic shield and process for preparing the same
JP3650426B2 (en) Superconducting magnetic shield
JPH08236983A (en) Superconductive magnetic shield method
JP3544781B2 (en) Method for producing Nb-Ti based superconducting multilayer board
JPS61201407A (en) Air-core reactor
JP2893039B2 (en) Method of manufacturing superconducting three-layer foil material
WO2017081762A1 (en) Superconducting wire rod
JP7043716B2 (en) Superconducting wire and coil unit
JP2003332645A (en) Superconducting composite magnetic shielding material
JPS638602B2 (en)
JP2002367799A (en) Manufacturing method of superconducting clad molding body and superconducting clad molding body manufactured by the method
Kumakura et al. Development of Bi-2212 tapes and coils applying the dip-coating process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees