JPS61201407A - Air-core reactor - Google Patents

Air-core reactor

Info

Publication number
JPS61201407A
JPS61201407A JP60043182A JP4318285A JPS61201407A JP S61201407 A JPS61201407 A JP S61201407A JP 60043182 A JP60043182 A JP 60043182A JP 4318285 A JP4318285 A JP 4318285A JP S61201407 A JPS61201407 A JP S61201407A
Authority
JP
Japan
Prior art keywords
air
core
coils
reactance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60043182A
Other languages
Japanese (ja)
Other versions
JPH057854B2 (en
Inventor
Kazutaka Misawa
一敞 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP60043182A priority Critical patent/JPS61201407A/en
Publication of JPS61201407A publication Critical patent/JPS61201407A/en
Publication of JPH057854B2 publication Critical patent/JPH057854B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • H01F37/005Fixed inductances not covered by group H01F17/00 without magnetic core

Abstract

PURPOSE:To obtain a resistance value whose ratio to reactance is large enough even if standard wires are employed by a method wherein an air-core reactor is constituted by a plurality of coaxial air-core coils whose directions of the windings are opposite to each other and at the same time the respective coils are connected to each other in parallel. CONSTITUTION:If air-core coils 1 and 2 have directions of wirings opposite to each other and are arranged coaxially, the fluxes generated by the two air-core coils 1 and 2 cancel each other. Therefore, a resultant reactance X' of the two coils is approximately 10% of the reactance of a single air-core coil. At the same time, as the respective air-core coils 1 and 2 are connected in parallel, a resultant resistance value R' is approximately a half of the resistance of a single air-core coil. Therefore, R'/X' is approximately 1.5/10 or 0.15. A mutual coupling coefficient of the two air-core coils which determines the resultant reactance can be chosen to be an optional value close to one by selecting average diameters or the like properly so that the resultant resistance can be so designed as to have a required value against the resultant reactance.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は空心リアクトル装置に関する。[Detailed description of the invention] (Industrial application field) This invention relates to an air core reactor device.

(従来の技術) たとえば中性点りアクドルなどでは、そのリアクタンス
の15%程度の抵抗を直列に接続することが要求される
。この抵抗をリアクトルの空心コイルを構成する電線の
抵抗器で形成することが考えられる。しかし通常の電線
たとえばアルミニウム線を用いた空心リアクトルでは、
リアクタンスの3%程度の抵抗器しか得られず、15%
程度の抵抗器を発生させることは極めて困難である。
(Prior Art) For example, in the case of a neutral point accelerator, it is required to connect a resistor of about 15% of the reactance in series. It is conceivable to form this resistance with a resistor of the electric wire that constitutes the air-core coil of the reactor. However, in air-core reactors using ordinary electric wires, such as aluminum wires,
A resistor with only about 3% of reactance can be obtained, and 15%
It is extremely difficult to generate a resistor of this magnitude.

これを改善するために空心コイルとして、特殊な高抵抗
線を用いて構成することが考えられるが。
In order to improve this problem, it may be possible to construct the air-core coil using a special high-resistance wire.

この種抵抗線は極めて固く、巻線のための加工には不向
きである。またリアクトルの容量によっては空心コイル
の寸法が大きくなることがあるが。
This type of resistance wire is extremely hard and unsuitable for processing into windings. Also, depending on the capacity of the reactor, the dimensions of the air-core coil may become larger.

そのような場合は固有抵抗の異なる電線を別途製作して
空心コイルを製作しなければならない不便がある。
In such a case, there is an inconvenience that an air-core coil must be manufactured by separately manufacturing electric wires having different specific resistances.

これらの理由から通常では空心リアクトルとは別個に抵
抗器を製作し、これを空心リアクトルに対して別に設置
して直列に接続するようにしている。しかしこのような
別置型とすれば、設置スペースが広くなるといった欠点
は避けられない。
For these reasons, normally a resistor is manufactured separately from the air-core reactor, and this resistor is installed separately from the air-core reactor and connected in series. However, such a separately installed type inevitably has the disadvantage that it requires a large installation space.

(発明が解決しようとする問題点) この発明は通常の電線を使用して空心コイルを形成して
も、リアクタンスに対する比が従来よりも十分大きい抵
抗値を呈するようにすることを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide an air-core coil that exhibits a resistance value that is sufficiently larger in ratio to reactance than the conventional one, even when an air-core coil is formed using ordinary electric wires.

(問題点を解決するための手段) この発明は、互いに巻回方向が逆とされ、ともに同軸と
された複数の空心コイルによって空心すアクドルを構成
するとともに、前記各空心コイルを互いに並列に接続し
て構成したことを特徴とする。
(Means for Solving the Problems) The present invention constitutes an air-core axle by a plurality of air-core coils whose winding directions are opposite to each other and are coaxial, and the air-core coils are connected in parallel to each other. It is characterized by being configured as follows.

(作用) 各空心コイルをその巻回方向を逆にして同軸に配置すれ
ば、その合成リアクタンスは個々の空心リアクトルのり
アクタンスよりも小さくなる。また各空心コイルは並列
に接続されるので、その合成抵抗は個々の空心コイルの
抵抗値よりも小さくなる。しかし抵抗値は空心コイルが
2個の場合は半分程度となるにすぎないが、前記合成リ
アクタンスは、各空心コイルを密に結合するなどしてそ
の相互結合係数を1に十分近付けるようにすれば、1個
の空心コイルのりアクタンスの10%程度にまで小さく
なる。したがってリアクタンスに対する抵抗の比は大き
くなり、具体的には所望の15%程度の抵抗値のものも
得られるようになる。
(Function) If each air-core coil is arranged coaxially with its winding direction reversed, its combined reactance will be smaller than the reactance of each individual air-core reactor. Further, since each air-core coil is connected in parallel, the combined resistance thereof is smaller than the resistance value of each individual air-core coil. However, the resistance value is only about half when there are two air-core coils, but the composite reactance can be reduced by closely coupling each air-core coil to make the mutual coupling coefficient sufficiently close to 1. , it becomes as small as about 10% of the actance of one air-core coil. Therefore, the ratio of resistance to reactance becomes large, and specifically, a desired resistance value of about 15% can be obtained.

(実施例) この発明の実施例を図によって説明する。1゜2はたと
えば銅、アルミニウムなどの電線からなる空心コイルで
ある。そしてこの発明にしたがい、それぞれの巻回方向
が逆とされ、かつ同軸に配置される。そして各空心コイ
ル1,2は互いに並列に接続されてあり、一方の端子3
は中性点側端子として使用され、他方の端子4はアース
側端子として使用される。
(Example) An example of the present invention will be described with reference to the drawings. 1.degree.2 is an air-core coil made of electric wire, such as copper or aluminum. According to the invention, the respective winding directions are reversed and they are arranged coaxially. The air core coils 1 and 2 are connected in parallel to each other, and one terminal 3
is used as a neutral point side terminal, and the other terminal 4 is used as a ground side terminal.

各空心コイル1,2は絶縁油、SFGガスなどの#!!
縁媒体を満たしたタンク5に収納される。なお図では理
解しやすいようにするため、各空心コイルの高さを変え
て示しているが、これらはすべて同じであってもよいこ
ともちろんである。
Each air core coil 1, 2 is filled with #! insulation oil, SFG gas, etc. !
It is stored in a tank 5 filled with edge medium. Note that although the air-core coils are shown at different heights in the figure for ease of understanding, it goes without saying that they may all be the same.

ところで単一の空心コイルからなる空心リアクトルでは
、この空心コイルを構成する電線の抵抗Rのリアクタン
スXに対する割合はたとえば3%程度、すなわちR/X
は3/100したがって0.03程度である。
By the way, in an air-core reactor consisting of a single air-core coil, the ratio of the resistance R of the electric wire constituting the air-core coil to the reactance X is, for example, about 3%, that is, R/X
is 3/100, which is about 0.03.

ところが前記のように空心コイル1,2をその巻回方向
を逆にし、かつ同軸に配置すれば、両空心コイルによっ
て発生する磁束が互いに打ち消し合うため、その合成リ
アクタンスX′は空心コイル単独の場合の約10%程度
となる。また各空心コイル1,2は互いに並列に接続さ
れているので、合成抵抗値R′は単独の空心コイルのそ
れの約半分となる。したがってR’ /X’は1.5/
10すなわち0.15程度となる。
However, if the winding directions of the air-core coils 1 and 2 are reversed and they are placed coaxially as described above, the magnetic fluxes generated by both air-core coils cancel each other out, so the combined reactance X' of the air-core coil alone is It is about 10% of the total. Furthermore, since the air-core coils 1 and 2 are connected in parallel with each other, the combined resistance value R' is approximately half that of a single air-core coil. Therefore, R'/X' is 1.5/
10, that is, about 0.15.

以上の説明から理解できるように1合成リアクタンスに
較べて比較的大きな合成抵抗を有するリアクトルがこれ
によって製作することができるようになる。そして合成
リアクタンスを決定する両空心コイルの相互結合係数は
、各空心コイルの高さ、平均直径などを適当に選ぶこと
によって、1に近い任意の値とすることができるので、
前記合成抵抗を前記合成リアクタンスに対して所望の値
に設計できるようになる。具体的にはこの値は5〜25
%程度が適当である。
As can be understood from the above description, a reactor having a relatively large combined resistance compared to one combined reactance can be manufactured by this method. The mutual coupling coefficient of both air-core coils, which determines the composite reactance, can be set to any value close to 1 by appropriately selecting the height, average diameter, etc. of each air-core coil.
The combined resistance can be designed to a desired value with respect to the combined reactance. Specifically, this value is 5 to 25
% is appropriate.

また空心コイルを通常の電線を使って製作することがで
き、たとえばこの電線としてアルミニウム線のように軽
量で、比熱の大きいものを使用すれば、発生損失に対す
る空心コイルの温度上昇を低く押えることができるよう
になる。また空心コイルの軽量化が可能となるから、コ
イル加工の容゛易性とあいまって大きな経済的効果をも
たらす6ちなみにインダクタンス530mH,直列抵抗
分30Ω、電流定格225 A 10秒間の中性点りア
クドルを。
Additionally, air-core coils can be manufactured using ordinary electric wires. For example, if the wires are lightweight and have a high specific heat, such as aluminum wires, the temperature rise of the air-core coils due to the generated loss can be kept low. become able to. In addition, since it is possible to reduce the weight of the air-core coil, this, combined with the ease of coil processing, brings about a great economical effect6.Incidentally, the inductance is 530mH, the series resistance is 30Ω, the current rating is 225A, and the neutral point accelerator for 10 seconds. of.

固有抵抗約20μΩ−1の銅ニツケル合金製の電線で製
作すると、その空心コイルの高さは約1000mm。
When manufactured using a copper-nickel alloy wire with a specific resistance of about 20 μΩ-1, the height of the air-core coil is about 1000 mm.

所要導体重量は約500kgとなり、最高上昇温度は約
90℃である。
The required weight of the conductor is approximately 500 kg, and the maximum temperature rise is approximately 90°C.

一方この発明にしたがい同じリアクトルを、固有抵抗2
.83μΩ−1のアルミニウム線で製作し、同軸コイル
間の相互結合係数を約0.8に選定すれば、空心コイル
の高さは約1160nmとなるが、所要導体重量は約1
80kg、最高上昇温度は約90℃であって、軽量化の
可能性は明らかである。リアクトルの容量が更に大きい
場合は、この軽量化は一層顕著となる。
On the other hand, according to this invention, the same reactor has a specific resistance of 2
.. If it is made of 83 μΩ-1 aluminum wire and the mutual coupling coefficient between the coaxial coils is selected to be approximately 0.8, the height of the air-core coil will be approximately 1160 nm, but the required conductor weight will be approximately 1
It weighs 80 kg and the maximum temperature rise is about 90°C, so the possibility of weight reduction is clear. If the capacity of the reactor is even larger, this weight reduction will be even more remarkable.

第2図に示す実施例は、空心コイル間の結合を更に高め
る構成を示し、空心コイル1を2分割して空心コイル1
1.12とし、これを空心コイル2の内外側からはさみ
込む構造としたものである。
The embodiment shown in FIG. 2 shows a configuration that further increases the coupling between the air-core coils, and the air-core coil 1 is divided into two parts.
1.12, which is sandwiched between the inside and outside of the air-core coil 2.

空心コイル11.12の磁束の方向は、空心コイル2の
それと逆であることは言うまでもない。
It goes without saying that the direction of the magnetic flux in the air-core coils 11 and 12 is opposite to that in the air-core coil 2.

第3図は空心コイル間からの洩れ磁束がタンク5の壁と
交差して渦電流が発生して過熱するのを防止するための
構成を示し、タンク5の内側にアルミニュウムなどのよ
うな非磁性良導体の円筒状電磁シールド6を配置したも
のである。第4図はこの電磁シールド6を、洩れ磁束の
大きいコイル上下の部分まで延長した構成である。61
.62はその延長部を示す。なおこの延長部61.62
は電磁シールド6と離れていてもよい。ただしこれらは
すべて何れも接地しておく。
Figure 3 shows a configuration to prevent leakage magnetic flux from between the air-core coils from intersecting the walls of the tank 5, generating eddy currents and overheating. A cylindrical electromagnetic shield 6 of good conductivity is arranged. FIG. 4 shows a configuration in which this electromagnetic shield 6 is extended to the upper and lower parts of the coil where the leakage magnetic flux is large. 61
.. 62 indicates its extension. Furthermore, this extension part 61.62
may be separated from the electromagnetic shield 6. However, all of these should be grounded.

(発明の効果) 以上詳述したようにこの発明によれば、空心コイルを構
成する電線の抵抗を利用してリアクトルの直列抵抗とす
る場合、この電線として通常のものを使用してもリアク
タンスに対する比の大きい抵抗値を呈する直列抵抗分が
得られるようになるといった効果を奏する。
(Effects of the Invention) As detailed above, according to the present invention, when the resistance of the electric wire constituting the air-core coil is used as the series resistance of the reactor, even if a normal electric wire is used, the reactance This has the effect that a series resistance component exhibiting a large resistance value can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す断面図、第2図乃至第
4図はこの発明の他の各実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of the invention, and FIGS. 2 to 4 are sectional views showing other embodiments of the invention.

Claims (1)

【特許請求の範囲】[Claims] 互いに巻回方向が逆とされた複数の空心コイルを同軸に
配置するとともに、前記各空心コイルを互いに並列に接
続してなる空心リアクトル装置。
An air-core reactor device in which a plurality of air-core coils having opposite winding directions are arranged coaxially, and the air-core coils are connected in parallel to each other.
JP60043182A 1985-03-04 1985-03-04 Air-core reactor Granted JPS61201407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043182A JPS61201407A (en) 1985-03-04 1985-03-04 Air-core reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043182A JPS61201407A (en) 1985-03-04 1985-03-04 Air-core reactor

Publications (2)

Publication Number Publication Date
JPS61201407A true JPS61201407A (en) 1986-09-06
JPH057854B2 JPH057854B2 (en) 1993-01-29

Family

ID=12656752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043182A Granted JPS61201407A (en) 1985-03-04 1985-03-04 Air-core reactor

Country Status (1)

Country Link
JP (1) JPS61201407A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10676923B2 (en) 2016-03-07 2020-06-09 Innovative Building Technologies, Llc Waterproofing assemblies and prefabricated wall panels including the same
US10724228B2 (en) 2017-05-12 2020-07-28 Innovative Building Technologies, Llc Building assemblies and methods for constructing a building using pre-assembled floor-ceiling panels and walls
US10900224B2 (en) 2016-03-07 2021-01-26 Innovative Building Technologies, Llc Prefabricated demising wall with external conduit engagement features
US10961710B2 (en) 2016-03-07 2021-03-30 Innovative Building Technologies, Llc Pre-assembled wall panel for utility installation
US10975590B2 (en) 2014-08-30 2021-04-13 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
US11054148B2 (en) 2014-08-30 2021-07-06 Innovative Building Technologies, Llc Heated floor and ceiling panel with a corrugated layer for modular use in buildings
US11060286B2 (en) 2014-08-30 2021-07-13 Innovative Building Technologies, Llc Prefabricated wall panel for utility installation
US11098475B2 (en) 2017-05-12 2021-08-24 Innovative Building Technologies, Llc Building system with a diaphragm provided by pre-fabricated floor panels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529157A (en) * 1978-08-22 1980-03-01 Nissin Electric Co Ltd Air-core reactor
JPS5632425U (en) * 1979-08-20 1981-03-30

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399615A (en) * 1977-02-10 1978-08-31 Nat Jutaku Kenzai Floor assembly method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529157A (en) * 1978-08-22 1980-03-01 Nissin Electric Co Ltd Air-core reactor
JPS5632425U (en) * 1979-08-20 1981-03-30

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975590B2 (en) 2014-08-30 2021-04-13 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
US11054148B2 (en) 2014-08-30 2021-07-06 Innovative Building Technologies, Llc Heated floor and ceiling panel with a corrugated layer for modular use in buildings
US11060286B2 (en) 2014-08-30 2021-07-13 Innovative Building Technologies, Llc Prefabricated wall panel for utility installation
US10676923B2 (en) 2016-03-07 2020-06-09 Innovative Building Technologies, Llc Waterproofing assemblies and prefabricated wall panels including the same
US10900224B2 (en) 2016-03-07 2021-01-26 Innovative Building Technologies, Llc Prefabricated demising wall with external conduit engagement features
US10961710B2 (en) 2016-03-07 2021-03-30 Innovative Building Technologies, Llc Pre-assembled wall panel for utility installation
US10724228B2 (en) 2017-05-12 2020-07-28 Innovative Building Technologies, Llc Building assemblies and methods for constructing a building using pre-assembled floor-ceiling panels and walls
US11098475B2 (en) 2017-05-12 2021-08-24 Innovative Building Technologies, Llc Building system with a diaphragm provided by pre-fabricated floor panels

Also Published As

Publication number Publication date
JPH057854B2 (en) 1993-01-29

Similar Documents

Publication Publication Date Title
US4520335A (en) Transformer with ferromagnetic circuits of unequal saturation inductions
US4524342A (en) Toroidal core electromagnetic device
US4364020A (en) Amorphous metal core laminations
US4902998A (en) Inductor assembly with cooled winding turns
JPS61201407A (en) Air-core reactor
US7463461B2 (en) Resistive superconducting fault current limiter
JPH10172824A (en) Superconducting coil for induction electric equipment
JPH0359564B2 (en)
US5539369A (en) Multiple-toroid induction device
JP4409856B2 (en) Superconducting coil
JP2000102161A (en) Transformer
US3210705A (en) Winding for electrical apparatus
JPH0534090Y2 (en)
JPH0638218U (en) Transformer winding
US3054974A (en) Winding arrangement for foil wound transformer
JP3248283B2 (en) Transformer winding
JPS6046808B2 (en) Three phase air core reactor
US3284747A (en) Electromagnetic device including interlinked magnetic flux and electric current loops
US1204377A (en) Polyphase-current-limiting reactance-coil.
JPS61188914A (en) Transformer winding
JPH04323812A (en) Foil-wound transformer
JPH02895Y2 (en)
JPH01111314A (en) Superconducting transformer
US3832660A (en) Transformer having an electrically symmetrical tapped winding
JPH02267906A (en) Tap winding of transformer