JPH06216098A - Cleaning method for silicon wafer - Google Patents

Cleaning method for silicon wafer

Info

Publication number
JPH06216098A
JPH06216098A JP34988192A JP34988192A JPH06216098A JP H06216098 A JPH06216098 A JP H06216098A JP 34988192 A JP34988192 A JP 34988192A JP 34988192 A JP34988192 A JP 34988192A JP H06216098 A JPH06216098 A JP H06216098A
Authority
JP
Japan
Prior art keywords
cleaning
wafer
chelating agent
added
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34988192A
Other languages
Japanese (ja)
Other versions
JP3174823B2 (en
Inventor
Hideo Akitani
秀夫 秋谷
Shuji Kuwano
修治 桑野
Toru Matsumoto
徹 松本
Hisashi Muraoka
久志 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T ELECTRON TECHNOL KK
PIYUARETSUKUSU KK
Toshiba Corp
NTT ElectronicsTechno Corp
Original Assignee
N T T ELECTRON TECHNOL KK
PIYUARETSUKUSU KK
Toshiba Corp
NTT ElectronicsTechno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T ELECTRON TECHNOL KK, PIYUARETSUKUSU KK, Toshiba Corp, NTT ElectronicsTechno Corp filed Critical N T T ELECTRON TECHNOL KK
Priority to JP34988192A priority Critical patent/JP3174823B2/en
Publication of JPH06216098A publication Critical patent/JPH06216098A/en
Application granted granted Critical
Publication of JP3174823B2 publication Critical patent/JP3174823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To provide a wafer having a clean spontaneous oxide film by adding chelating agent in which complexan or carboxylate ligand of a value of a specific range is substituted for other acid group to cleanser to clean the wafer, and then rinsing it with water added with fluoric acid of a specific value or more. CONSTITUTION:A silicon wafer contaminated by forming 10<12>atoms/cm<2> of <59>Fe to iron hydroxide colloid is cleaned by using chelating agent as SC-1 liquid containing NH4OH:H2O2:H2O=1vol.:1vol.:5vol. at 70 deg.C for 10min. That is, the agent in which complexan or its carboxylate group ligand of 0.1 to 100ppm is replaced with other acid group is added to cleanser containing alkali.hydrogen peroxide.water. The wafer is cleaned. Then, it is rinsed by using water added with fluoric acid of 1ppm or more. Thus, the wafer having a clean spontaneous oxide film can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体シリコンウェー
ハの製造工程並びに半導体デバイス製造工程におけるシ
リコンウェーハ表面の洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor silicon wafer manufacturing process and a method for cleaning a silicon wafer surface in a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】半導体用シリコンウェーハの清浄化の対
象となるのは微粒子汚染と化学汚染である。これらに対
して広く使われている洗浄法はRCA法と呼ばれるもの
で、3種の洗浄液、即ち、水酸化アンモニウム・過酸化
水素・水から成る洗浄液(SC−1)、稀フッ酸から成
る洗浄液(DHF)、塩酸・過酸化水素・水より成る洗
浄液(SC−2)を用いて洗浄を行なうものである。
2. Description of the Related Art Particle contamination and chemical contamination are the targets for cleaning semiconductor silicon wafers. A widely used cleaning method for these is called the RCA method, which is three kinds of cleaning solutions, that is, a cleaning solution containing ammonium hydroxide, hydrogen peroxide and water (SC-1), and a cleaning solution containing diluted hydrofluoric acid. (DHF), a cleaning solution (SC-2) containing hydrochloric acid, hydrogen peroxide and water is used for cleaning.

【0003】この洗浄法が登場した当初の清浄化作用に
ついての考え方は化学汚染に対するものだけであった。
即ち、SC−1を用いてアンミン錯イオンを形成する金
属や有機質汚染を除き、この際生じた自然酸化膜を次の
DHF(通常、HF:H2 O=1容:50〜200容)
で溶解除去してこの膜に捕捉されていた不純物を同時に
除き、仕上げとして重金属溶解作用の強いSC−2で最
後まで残存した金属を取り除くというものである。この
洗浄法においては、最後に洗浄な自然酸化膜が形成され
ているとされ、この膜が形成されている為に、洗浄後の
ウェーハは親水性となっている。
When the cleaning method was first introduced, the idea of the cleaning action was only for chemical pollution.
That is, SC-1 is used to remove metal and organic contamination forming an ammine complex ion, and the natural oxide film formed at this time is subjected to the following DHF (usually HF: H 2 O = 1 volume: 50 to 200 volume).
The impurities that have been captured by this film are removed at the same time by dissolving and removing with SC-2, and the metal that remains until the end is removed with SC-2, which has a strong action of dissolving heavy metals. In this cleaning method, it is said that a clean natural oxide film is finally formed, and since this film is formed, the wafer after cleaning is hydrophilic.

【0004】その後、SC−1が他の洗浄液に比して抜
群の微粒子除去効果を示すことが認識され、現在ではこ
のRCA法は、特にLSIの分野で広く採用されるに至
っている。標準的なSC−1の組成は、アンモニア水
(28重量%):過酸化水素水(30〜35重量%):
水=1容:1容:5容であり、この洗浄液を用いての処
理は、一般に70〜80℃で10分程度である。この処
理は、シリコン表面に対して若干のエッチング作用を伴
い、シリコン表面に微細なピットを生じることがあるの
で、水の稀釈を増すとかアンモニアの濃度を減少させる
等の手段が適宜試みられている。
Thereafter, it was recognized that SC-1 has an excellent effect of removing fine particles as compared with other cleaning liquids, and now the RCA method has been widely adopted particularly in the field of LSI. The standard SC-1 composition is ammonia water (28% by weight): hydrogen peroxide solution (30 to 35% by weight):
Water = 1 volume: 1 volume: 5 volumes, and the treatment using this washing solution is generally at 70 to 80 ° C for about 10 minutes. Since this treatment is accompanied by a slight etching action on the silicon surface and may cause fine pits on the silicon surface, means such as increasing the dilution of water or decreasing the concentration of ammonia have been appropriately tried. .

【0005】上述したRCA法による洗浄では、各洗浄
液による処理の後、ウェーハ表面並びにウェーハキャリ
ヤに吸着した洗浄液を除いて次の処理に送るために、純
水による十分なリンスが必要である。即ち、この洗浄法
では、少なくとも3つの洗浄処理と3つの純水リンス処
理が必要となる。従って、生産性の点から、量産工場の
洗浄装置としては、多数のウェーハを搭載したキャリヤ
を連続的に搬送して多槽(この場合6槽以上)の処理槽
に順次浸漬する構造が採用されている。
In the above-mentioned cleaning by the RCA method, a sufficient rinse with pure water is required to remove the cleaning liquid adsorbed on the wafer surface and the wafer carrier after the processing with each cleaning liquid and send it to the next processing. That is, this cleaning method requires at least three cleaning processes and three pure water rinsing processes. Therefore, from the viewpoint of productivity, as a cleaning device in a mass production plant, a structure is adopted in which a carrier carrying a large number of wafers is continuously transported and sequentially immersed in a multi-tank (in this case, 6 or more) processing tank. ing.

【0006】[0006]

【発明が解決しようとする課題】ところで、SC−1に
よる洗浄の後に行なわれる稀フッ酸(DHF)による自
然酸化膜を除去する処理では、SC−1の微粒子除去効
果とは逆に、ウェーハ裏面乃至その周辺、キャリヤ・容
器壁等から離脱した微粒子等により、ウェーハ表面の微
粒子濃度が通常増加する。しかも、DHFによる洗浄に
引き続いて行なわれるSC−2洗浄では微粒子除去効果
が弱く、付着した微粒子を十分に除去することが困難で
ある。従って、現在ではLSIのパターン微細化が進
み、微粒子除去の重要性が急速に増したので、当初のR
CA法の順序を変えて、DHF→SC−1→SC−2の
順序での洗浄が試みられている。
By the way, in the process of removing the natural oxide film by dilute hydrofluoric acid (DHF) after the cleaning by SC-1, contrary to the effect of removing particles by SC-1, the back surface of the wafer is reversed. Or, the concentration of fine particles on the wafer surface usually increases due to fine particles or the like separated from the periphery of the carrier or the wall of the carrier. Moreover, the effect of removing fine particles is weak in the SC-2 cleaning which is performed subsequent to the cleaning with DHF, and it is difficult to sufficiently remove the adhered fine particles. Therefore, at present, the pattern miniaturization of LSI has progressed, and the importance of removing fine particles has increased rapidly.
By changing the order of the CA method, cleaning has been attempted in the order of DHF → SC-1 → SC-2.

【0007】しかし、上記のような洗浄順序では、SC
−1に使用する薬品の順序を極めて高純度にしないと、
最終のSC−2洗浄の後でも十分な清浄度が得られない
という問題がある。即ち、SC−1洗浄では、該洗浄液
中のFeやAl等がウェーハに非常に吸着し易く、洗浄
時に成長する自然酸化膜中に取り込まれる。ところが、
後続するSC−2洗浄ではシリコン表面に対するエッチ
ング作用がないため、かなりの量のこれら金属が不純物
として残存してしまうのである。このため、SC−1洗
浄後のFeやAlの吸着量を1010atoms/cm2 以下に抑
えようとするだけで、SC−1洗浄液中のFeやAlの
濃度は0.01ppb 程度の高純度に制御しなければならな
いのである。
However, in the above cleaning sequence, SC
Unless the order of the chemicals used for -1 is extremely high,
There is a problem that sufficient cleanliness cannot be obtained even after the final SC-2 cleaning. That is, in SC-1 cleaning, Fe, Al, etc. in the cleaning liquid are very likely to be adsorbed on the wafer and are taken into the natural oxide film grown during cleaning. However,
Subsequent SC-2 cleaning has no etching effect on the silicon surface, leaving a considerable amount of these metals as impurities. For this reason, the concentration of Fe and Al in the SC-1 cleaning solution is about 0.01 ppb with high purity only by trying to suppress the adsorption amount of Fe and Al after SC-1 cleaning to 10 10 atoms / cm 2 or less. Must be controlled.

【0008】従って、高価な超高純度の薬品が必要とな
るばかりか、洗浄液乃至薬液供給系の清浄度を特に厳し
く管理しなければならないが、FeやAlはクリーンル
ーム内で最も汚染しやすい不純物であるため、この管理
は容易ではない。また洗浄槽には連続してウェーハが搬
入されてくるので、ウェーハが持ち込むFeやAlが槽
内の洗浄液中に蓄積する。従って、高清浄度を確保する
ためには、洗浄液を毎回交換しなければならない場合も
生じ、直接材料費だけでなく廃液処理の負担も大きくな
る。
[0008] Therefore, not only expensive chemicals of ultra-high purity are required, but also the cleanliness of the cleaning liquid or the chemical liquid supply system must be controlled particularly strictly, but Fe and Al are the impurities most easily contaminated in the clean room. Because of this, this management is not easy. Further, since the wafers are continuously loaded into the cleaning tank, Fe and Al carried by the wafers are accumulated in the cleaning liquid in the tank. Therefore, in order to ensure high cleanliness, the cleaning liquid may have to be replaced every time, which increases not only the direct material cost but also the burden of waste liquid treatment.

【0010】そこで実際は、洗浄工程をSC−1→SC
−2→DHFの順序とし、リンスの際に1MHz程度の
超音波を加えることにより、最終のDHFで発生した微
粒子を除去することが行なわれている。即ち、SC−1
で自然酸化膜中に取り込まれた重金属は、上記の如くS
C−2では有効に洗浄されず、DHFによる自然酸化膜
除去がフッ酸の洗浄力と相まって有効に洗浄除去される
のである。
Therefore, in practice, the cleaning process is performed by SC-1 → SC.
In the order of −2 → DHF, ultrasonic waves of about 1 MHz are applied at the time of rinsing to remove fine particles generated in the final DHF. That is, SC-1
The heavy metal taken into the native oxide film by S is as described above.
C-2 is not effectively cleaned, and the removal of the natural oxide film by DHF is effectively carried out together with the cleaning power of hydrofluoric acid.

【0011】しかし、上記の方法では微粒子の除去を満
足に行なうことが極めて難しい。また、前述した何れの
順序による方法を採用した場合にも、洗浄後のウェーハ
を表面分析すると、しばしば1010atoms/cm2 以上の汚
染金属が検出されることがある。現在、十分に制御され
た洗浄な半導体製造ラインでも1012atoms/cm2 程度の
金属汚染が認められることがある。超高集積デバイスで
は、108 atoms/cm2のオーダーまでの清浄化が要求さ
れるので、洗浄システムには、表面の汚染金属レベルを
3桁以上低減することが望まれている。RCA洗浄方式
は、薬液自体には十分な洗浄力があるとしても、使用薬
品・純水の品質、洗浄装置の保守等の面で厳しい管理が
要求されるのである。
However, it is extremely difficult to satisfactorily remove fine particles by the above method. Further, no matter which of the above-mentioned methods is adopted, when the surface of the wafer after cleaning is analyzed, contaminant metals of 10 10 atoms / cm 2 or more are often detected. At present, metal contamination of about 10 12 atoms / cm 2 may be observed even in a well-controlled and clean semiconductor manufacturing line. Since ultra-high integration devices require cleaning up to the order of 10 8 atoms / cm 2 , cleaning systems are desired to reduce the surface contamination metal level by three orders of magnitude or more. In the RCA cleaning method, even if the chemical solution itself has sufficient cleaning power, strict control is required in terms of the quality of chemicals used, pure water, maintenance of the cleaning device, and the like.

【0012】また、生産に使われるウェーハの直径が大
きくなるにつれて洗浄装置も大型化し、8”ウェーハの
6槽構造の洗浄装置では、ローダ部、乾燥部、アンロー
ダ部も含めると長さは10mにも達する。一方、デバイ
ス高度化とともに必要な新たな製造装置が急激に増加
し、これに伴ってクリーンルーム面積も必然的に拡大す
るので、洗浄装置のこのような長大化は、投資や稼働上
の経済性或いは装置内清浄度維持の為の保守面でも好ま
しいものではない。
Also, as the diameter of the wafers used for production increases, the size of the cleaning equipment also increases, and the length of the cleaning equipment having a 6-tank structure of 8 "wafers is 10 m including the loader section, the drying section and the unloader section. On the other hand, with the sophistication of devices, the required new manufacturing equipment will increase rapidly and the clean room area will inevitably increase accordingly. It is not preferable in terms of economy or maintenance for maintaining cleanliness inside the device.

【0013】さらに高度化したデバイスでは、製造装置
のプロセスチャンバーにウェーハを投入する直前に、自
然酸化膜をフッ化水素ガスで除くドライプロセスも必要
となる。このプロセスでは、微粒子や金属元素等の汚染
は除き得ないので、予め、これらの有害物質の付着が必
要なレベル以下までに十分に洗浄された清浄自然酸化膜
を有するウェーハにしなければならない。
Further advanced devices also require a dry process of removing the natural oxide film with hydrogen fluoride gas immediately before the wafer is put into the process chamber of the manufacturing apparatus. This process cannot remove contaminants such as fine particles and metallic elements, so that it is necessary to prepare a wafer having a clean native oxide film that has been sufficiently washed to a level below the required level for the deposition of these harmful substances.

【0014】従って本発明の目的は、多数の洗浄槽を必
要とせず、少ない洗浄槽によりシリコンウェーハの洗浄
を行なうことが可能であるとともに、且つDHF→SC
−1→SC−2の順序のRCA洗浄方式に劣らない微粒
子除去能力と、SC−1→DHF→SC−2の順序のR
CA洗浄方式に劣らない化学汚染除去能力を有し、清浄
な自然酸化膜を有するウェーハとすることが可能なシリ
コンウェーハの洗浄方法を提供することにある。
Therefore, it is an object of the present invention that a large number of cleaning tanks are not required, and silicon wafers can be cleaned with a small number of cleaning tanks, and DHF → SC.
-1 → SC-2 in order of fine particle removal capacity comparable to RCA cleaning method, and SC-1 → DHF → SC-2 in order of R
It is an object of the present invention to provide a method for cleaning a silicon wafer, which has a chemical contamination removing ability comparable to that of the CA cleaning method and can be a wafer having a clean natural oxide film.

【0015】[0015]

【発明が解決しようとする課題】本発明によれば、アル
カリ・過酸化水素・水より成る洗浄液に、0.1 乃至100p
pm のコンプレクサン或いはそのカルボン酸基配位子を
他の酸基で置換したキレート化剤を添加してシリコンウ
ェーハの洗浄を行い、次いで1ppm 以上のフッ酸が添加
された水を用いてリンスを行なうことを特徴とする半導
体シリコンウェーハの洗浄方法が提供される。
According to the present invention, a cleaning solution consisting of alkali, hydrogen peroxide and water can be used in an amount of 0.1 to 100 p
The silicon wafer is washed by adding a chelating agent in which the pm complexan or its carboxylic acid group ligand is replaced with another acid group, and then rinsing with water containing 1 ppm or more of hydrofluoric acid. A method for cleaning a semiconductor silicon wafer is provided, which is characterized by being performed.

【0016】[0016]

【作用】本発明は、RCA洗浄における金属元素除去の
主力であるSC−2を省き、その代わりにコンプレクサ
ン等のキレート化剤をSC−1に添加することによりそ
の金属汚染洗浄力を強化し、SC−1→SC−2と同等
あるいはそれ以上の洗浄効果を上げることに成功したも
のである。また微粒子汚染し易い疎水性面を生じるDH
F洗浄を行なわず、その代わりに上記SC−1洗浄の後
に、微量のフッ酸を添加した水を用いてリンスを行なう
ことにより、自然酸化膜の表層部に偏在する残存汚染金
属及び吸着添加剤を溶出させるとともに、微粒子を離脱
させやすい親水性面を維持して微粒子除去効果を高めた
ものである。
In the present invention, SC-2, which is the main force for removing metal elements in RCA cleaning, is omitted, and instead, a chelating agent such as complexan is added to SC-1 to enhance the metal contamination cleaning power. , SC-1 → SC-2, or a cleaning effect equivalent to or higher than SC-2 was successfully achieved. In addition, DH that produces a hydrophobic surface that is easily contaminated with fine particles
F cleaning is not carried out, but instead, after the SC-1 cleaning, rinsing is carried out using water to which a slight amount of hydrofluoric acid has been added, whereby residual contaminant metals and adsorption additives unevenly distributed in the surface layer of the natural oxide film are absorbed. And the hydrophilic surface where the fine particles are easily released is maintained and the fine particle removing effect is enhanced.

【0017】放射性同位元素で標識したNa或いはFe
を1012atoms/cm2 の量で汚染させたウェーハについ
て、RCA洗浄を行なった後の該金属の残存量を、放射
能計数値から求めると、どの順序の方式で行なっても1
8 atoms/cm2 程度となり、非常によい洗浄効果が確認
できる。しかし、実際の製造ラインにおけるRCA洗浄
ウェーハの表面分析では、NaでもFeでも1010atom
s/cm2 以上の汚染がみられることがある。このような場
合、洗浄装置内に清浄ウェーハを所定時間放置して表面
分析を行なう装置内の環境汚染試験によっても、これら
が検出され、洗浄装置内のSC−2洗浄槽の使用を停止
すると放置試験ウェーハの清浄度が向上する。SC−2
洗浄を行なうと、高清浄化を目指す程、洗浄装置には構
造上及び管理上、さらに厳しい配慮が必要となるので、
本発明では、SC−2洗浄省略が、一つの特色である。
Na or Fe labeled with a radioisotope
For a wafer contaminated with 10 12 atoms / cm 2 of the amount, the residual amount of the metal after RCA cleaning is calculated from the radioactivity count value, and no matter which order method is used, 1
Since it is about 0 8 atoms / cm 2 , a very good cleaning effect can be confirmed. However, in the surface analysis of the RCA cleaned wafer in the actual production line, both Na and Fe show 10 10 atom.
Contamination of s / cm 2 or more may be seen. In such a case, these are detected even by an environmental pollution test in the equipment in which a clean wafer is left in the cleaning equipment for a predetermined time and surface analysis is performed, and it is left when the use of the SC-2 cleaning tank in the cleaning equipment is stopped. The cleanliness of the test wafer is improved. SC-2
When cleaning is performed, the higher the degree of cleaning, the more severe the structural and management requirements of the cleaning device.
In the present invention, SC-2 wash omission is one feature.

【0018】本発明方法においては、まずSC−1にキ
レート化剤を添加し、その金属汚染洗浄力を強化した洗
浄液を用いて洗浄が行われる。このキレート化剤として
は、コンプレクサン或いはそのカルボン酸基配位子を他
の酸基で置換したキレート化剤が使用される。SC−1
に錯化剤を添加してFeやAlに対する洗浄効果を高め
ようとすることは容易に考えられることであるが、有効
な錯化剤は全て有機物である。即ち、この有機物が洗浄
液からウェーハに付着すると炭素がデバイス特性に悪影
響を与えるので、半導体用高純度無機薬品のTOC規格
で要求されるような極めて微量で効果のある高性能の錯
化剤を用いなければならない。然しながら、本発明にお
いては、この洗浄に後続して行われるフッ酸添加純水リ
ンスにより自然酸化膜に吸着した有機物が除かれるの
で、比較的多量、例えば10ppm 程度、場合によっては
100ppm のキレート化剤をSC−1に添加しても、洗
浄後のウェーハに有害なレベルの有機物汚染を残さな
い。従って、本発明に必要なキレート化剤については、
高性能は必要であるが必ずしも超高性能は必要でない。
SC−1洗浄後のウェーハに残存し易い金属元素の中で
デバイス特性上特に問題なものはFeなので、本発明に
おいては、10ppm 以下の濃度で洗浄後のFeの残存率
が約1%以下となるコンプレクサン等をキレート化剤と
して用いた。
In the method of the present invention, first, a chelating agent is added to SC-1, and cleaning is performed using a cleaning liquid having an enhanced cleaning power for metal contamination. As this chelating agent, a chelating agent in which complexan or its carboxylic acid group ligand is substituted with another acid group is used. SC-1
Although it is easily conceivable to add a complexing agent to Fe to improve the cleaning effect on Fe and Al, all effective complexing agents are organic substances. That is, when this organic substance adheres to the wafer from the cleaning liquid, carbon adversely affects the device characteristics. Therefore, an extremely small amount of a high-performance complexing agent required by the TOC standard for high-purity inorganic chemicals for semiconductors is used. There must be. However, in the present invention, since the organic substances adsorbed on the natural oxide film are removed by the hydrofluoric acid-added pure water rinse performed after this cleaning, a relatively large amount of the chelating agent, for example, about 10 ppm, and in some cases 100 ppm. Does not leave a harmful level of organic contamination on the wafer after cleaning. Therefore, regarding the chelating agent necessary for the present invention,
High performance is necessary, but super high performance is not always necessary.
Among the metallic elements that tend to remain on the wafer after SC-1 cleaning, Fe is a particularly problematic one in terms of device characteristics. Therefore, in the present invention, the residual rate of Fe after cleaning is about 1% or less at a concentration of 10 ppm or less. And complex complex were used as chelating agents.

【0019】本発明において、キレート化剤として使用
されるコンプレクサンとしては、エチレンジアミン四酢
酸(EDTA)、ニトリロ三酢酸(NTA)、シクロヘ
キサンジアミン四酢酸(CyDTA)、トリエチレンテ
トラミン六酢酸(TTHA)等を例示することができ、
またそのカルボン酸基配位子を他の酸基で置換したもの
としては、ジヒドロキシエチルグリシン(DHEG)等
がある。また置換配位子にPを含むものには本発明に係
わるキレート化作用の強いものがあり、その例としてア
ルキルアミノジメチレンジホスホン酸、ポリメチレンビ
ス(ニトリロジメチレン)テトラホスホン酸、ニトリロ
トリスメチレンホスホン酸(NTPO)、さらにこれら
のホスホン酸をホスフィン酸に置換したものを挙げるこ
とができる。本発明に係わるこれら添加剤は、添加後の
液中でその中の金属不純物が洗浄を妨害しないレベルに
まで十分に精製されたものでなければならない。また洗
浄対象元素が多種多様の場合など、必要に応じて、これ
らキレート化剤を2種以上組み合わせて使用することも
できる。このキレート化剤の添加量は、0.1〜100ppm
である。
In the present invention, as the complexant used as the chelating agent, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), cyclohexanediaminetetraacetic acid (CyDTA), triethylenetetraminehexaacetic acid (TTHA), etc. Can be illustrated as
In addition, examples in which the carboxylic acid group ligand is substituted with another acid group include dihydroxyethylglycine (DHEG). Some of the substituted ligands containing P have a strong chelating effect according to the present invention, and examples thereof include alkylaminodimethylene diphosphonic acid, polymethylene bis (nitridimethylene) tetraphosphonic acid, and nitrilotrismethylene. Examples thereof include phosphonic acid (NTPO), and those obtained by substituting these phosphonic acids with phosphinic acid. These additives according to the present invention must be sufficiently purified in the liquid after addition to such a level that the metal impurities therein do not interfere with the cleaning. In addition, when the elements to be cleaned are various, it is possible to use two or more of these chelating agents in combination, if necessary. The amount of this chelating agent added is 0.1 to 100 ppm.
Is.

【0020】また上記キレート化剤が添加されるSC−
1は、先にも説明した通り、アルカリ、過酸化水素及び
水からなるものである。このアルカリとしては、例えば
水酸化アンモニウムや、水酸化テトラメチルアンモニウ
ム、水酸化トリメチル(2−ヒドロキシ)エチルアンモ
ニウム等の金属成分を有していない有機アルカリ等を例
示することができる。その組成は、一般にアルカリが0.
05〜5重量%、過酸化水素が0.05〜10重量%及び
残量が水となっている。
SC-to which the above chelating agent is added
As described above, 1 is composed of alkali, hydrogen peroxide and water. Examples of the alkali include ammonium hydroxide and organic alkalis having no metal component such as tetramethylammonium hydroxide and trimethyl (2-hydroxy) ethylammonium hydroxide. Its composition is generally 0 for alkali.
05 to 5% by weight, hydrogen peroxide is 0.05 to 10% by weight, and the balance is water.

【0021】本発明において使用されるキレート化剤
は、高濃度の過酸化水素あるいはアルカリの中では長期
間安定であるものは少ないので、洗浄に際して予めキレ
ート化剤を添加して洗浄液を調製しておく場合、その保
存期間はできるだけ短い方が望ましい。またこれらのキ
レート化剤は、通常、水に難溶性のものが多いが、アル
カリ性にすると容易に水溶液とすることができる。従っ
て、水難溶性のキレート化剤を使用する場合には、この
アルカリ水溶液を洗浄装置付属の調合槽に添加して、前
述した組成の洗浄液を調製することもできる。また、特
に金属汚染のひどいウェーハを処理する場合には、この
キレート化剤の水溶液を直接洗浄槽に添加して洗浄効果
の強化と、後続ウェーハに対する液からの吸着汚染抑止
作用の強化とを行うこともできる。
The chelating agents used in the present invention are rarely stable for a long period of time in high-concentration hydrogen peroxide or alkali. Therefore, a chelating agent is added in advance to prepare a cleaning solution. If stored, the storage period should be as short as possible. Many of these chelating agents are usually sparingly soluble in water, but can be easily made into an aqueous solution by making them alkaline. Therefore, when a sparingly water-soluble chelating agent is used, this alkaline aqueous solution can be added to the preparation tank attached to the cleaning device to prepare the cleaning liquid having the above-mentioned composition. Further, particularly when treating a wafer with severe metal contamination, an aqueous solution of this chelating agent is added directly to the cleaning tank to enhance the cleaning effect and enhance the effect of suppressing adsorption contamination from the liquid on subsequent wafers. You can also

【0022】上記の組成のSC−1洗浄液に前述したキ
レート化剤が添加された洗浄液は、一般にその添加量が
10ppm 程度で、Feの他、Ni,Cr,Cu,Zn
等、半導体プロセスで有害な重金属の表面付着量を2桁
あるいはそれ以上低減できる。特にコンプレクサン置換
配位子にPを含むものは、これらの金属に対する洗浄効
果は更に強化され、例えばFeについて、添加量10pp
m 程度で約3桁、1ppmでも2桁の低減が可能である。
ただ何れのものも III族のアクセプターであり膜成長プ
ロセス制御上有害なAl汚染に対しては十分でなく、ほ
ぼ1桁の低減効果に止まる。これは自然酸化膜を汚染す
るAlの大部分がSi原子と置換されていると理解さ
れ、この除去は後述するリンスによるエッチングによっ
て行われる。
The cleaning solution prepared by adding the above-mentioned chelating agent to the SC-1 cleaning solution having the above composition generally has an addition amount of about 10 ppm, and in addition to Fe, Ni, Cr, Cu, Zn.
For example, the amount of harmful heavy metals adhering to the surface in the semiconductor process can be reduced by two digits or more. Particularly, those containing P in the complexan-substituted ligand have a further enhanced cleaning effect on these metals. For example, with respect to Fe, the addition amount is 10 pp.
It is possible to reduce by about 3 digits at m and 1 digit by 2 digits.
However, all of them are group III acceptors and are not sufficient for Al contamination, which is harmful to the control of the film growth process, and the reduction effect is almost one digit. It is understood that most of Al contaminating the natural oxide film is replaced with Si atoms, and this removal is performed by rinsing etching.

【0023】本発明においては、上記洗浄液を洗浄槽に
供給してウェーハの洗浄を行った後に、1ppm 以上のフ
ッ酸が添加された純水を用いてリンスが行われる。微量
のフッ酸は洗浄液に入るとシリコンの自然酸化膜へ強い
影響を与えるがアルカリ性液中では反応性を示さない。
従って、前記SC−1洗浄後のリンス用の純水に微量の
フッ酸を添加しても、リンス槽に投入されてきたSC−
1液で濡れたシリコン表面への影響は殆どないといえ
る。リンス水の流れでSC−1液のほとんどが除かれた
段階から、本発明の特色とする作用が表れる。即ち、1
ppm 以上のフッ酸を添加した純水でのリンスは、先の洗
浄でウェーハ表面に吸着したキレート化剤に対して強い
除去作用を有している。またこの純水を加温する程、こ
の除去作用は強まる。一方、RCA処理中のDHFで処
理した後純水でリンスするというような工程では、キレ
ート化剤がDHF処理後直ちにウェーハ表面に移行仕手
除去されにくくなる。
In the present invention, the cleaning liquid is supplied to the cleaning tank to clean the wafer, and then rinsed with pure water containing 1 ppm or more of hydrofluoric acid. A small amount of hydrofluoric acid has a strong effect on the natural oxide film of silicon when it enters the cleaning solution, but it does not show reactivity in an alkaline solution.
Therefore, even if a slight amount of hydrofluoric acid is added to the rinse pure water after the SC-1 cleaning, the SC- which has been charged into the rinse tank is used.
It can be said that there is almost no effect on the silicon surface wet with one liquid. From the stage where most of the SC-1 solution is removed by the flow of rinse water, the action characteristic of the present invention appears. That is, 1
Rinsing with pure water containing at least ppm hydrofluoric acid has a strong removing effect on the chelating agent adsorbed on the wafer surface in the previous cleaning. Further, as the pure water is heated, the removing action becomes stronger. On the other hand, in the process of treating with DHF during RCA treatment and then rinsing with pure water, it becomes difficult for the chelating agent to be transferred to the wafer surface and removed immediately after the DHF treatment.

【0024】リンス水中のフッ酸濃度は、化学汚染除去
の点からは濃いほどよい。しかし、あまり濃くなると配
管材料等からの汚染を生じ、特別なリンス液供給機構が
必要となる問題があるため、一般的にはフッ酸濃度は1
00ppm 程度以下が好適である。これ以上の濃度になる
と、リンスの最終段階で純水へのフッ酸添加を短時間中
止し、ウェーハに吸着したF原子を離脱させる処理が必
要となる。
The concentration of hydrofluoric acid in the rinse water is preferably as high as possible in terms of removing chemical contamination. However, if the concentration is too high, there is a problem that contamination from piping materials and the like necessitates a special rinse liquid supply mechanism. Therefore, the concentration of hydrofluoric acid is generally 1
It is preferably about 00 ppm or less. When the concentration is higher than this, it is necessary to stop the addition of hydrofluoric acid to pure water for a short time at the final stage of rinsing to remove the F atoms adsorbed on the wafer.

【0025】本発明において、先に行われるキレート化
剤添加SC−1液による洗浄で十分に除去できないAl
原子に対して、上記のフッ酸添加純水リンスでの洗浄効
果を顕著に高めるためには、該純水を加温(通常、40
〜70℃程度)してリンスを行うことが望ましく、例え
ばフッ酸濃度100ppm 、50℃の10分リンスで表面
Al濃度を約1/20程度にまで低減することができ
る。これは、Alがウェーハ表面に形成されている自然
酸化膜の表面近くの薄層に偏在しており、その層がエッ
チングされたものと考えることができる。この条件下で
の長時間リンスにおける水滴接触角変化をしらべた実験
から、このリンスでのエッチング量が数Åであることが
推測できた。SC−1におけるエッチング作用は、シリ
コン表面の自然酸化膜形成を伴いつつ進行するので、洗
浄されない不純物や液から吸着する不純物が自然酸化膜
の表層に偏在可能性は大きい。本発明におけるリンスに
よる表面キレート化剤に対する除去効果も同様の作用と
して説明できる。
In the present invention, Al which cannot be removed sufficiently by the washing with the chelating agent-added SC-1 liquid which is carried out previously.
In order to remarkably enhance the cleaning effect of the above hydrofluoric acid-added pure water rinse on atoms, the pure water is heated (usually 40
It is desirable to perform rinsing at about 70 ° C.). For example, the surface Al concentration can be reduced to about 1/20 by rinsing for 10 minutes at a hydrofluoric acid concentration of 100 ppm and 50 ° C. This can be considered that Al is unevenly distributed in a thin layer near the surface of the natural oxide film formed on the wafer surface, and the layer is etched. From the experiment investigating the change of contact angle of water drop under long-term rinse under these conditions, it was estimated that the amount of etching under this rinse was several Å. Since the etching action in SC-1 proceeds along with the formation of a natural oxide film on the silicon surface, there is a high possibility that uncleaned impurities or impurities adsorbed from a liquid will be unevenly distributed on the surface layer of the natural oxide film. The effect of removing the surface chelating agent by the rinse in the present invention can be explained as a similar action.

【0026】またSC−1洗浄後においても残存してい
るFeに対しても、例えばリンス水温度50℃程度に加
温すると、フッ酸濃度が10ppm 程度で10分のリンス
で残存率は約1%となり、表面濃度が2桁低減する。C
r,Ni,Znに対する加温フッ酸添加純水リンスの洗
浄効果はFeと同程度である。Cuに対しての洗浄効果
は、これらよりも劣るが、フッ酸濃度100ppm 、50
℃の10分リンスで1桁程度の低減は可能である。
With respect to the Fe remaining after the SC-1 cleaning, for example, when the rinsing water temperature is heated to about 50 ° C., the residual ratio is about 1 after 10 minutes of rinsing at a hydrofluoric acid concentration of about 10 ppm. %, The surface density is reduced by two digits. C
The cleaning effect of the warm hydrofluoric acid-added pure water rinse on r, Ni, and Zn is about the same as that of Fe. The cleaning effect on Cu is inferior to these, but the concentration of hydrofluoric acid is 100 ppm, 50
A 10-minute rinsing at a temperature of about 1 digit is possible.

【0027】超清浄化のための洗浄では、薬液処理の段
階では必要な清浄度レベルに達していても、超純水リン
スの段階で逆に汚染するおそれがある。水からシリコン
表面に吸着しやすい元素があるため、洗浄表面のそれら
の濃度を108 atoms/cm2 のレベルに保とうとすると、
リンス用超純水に対して極めて厳密な純度管理が必要と
なる。水から吸着し易い不純物は、Fe,Al,Cu等
であり、リンス時間が長いほどまたpHが高いほど吸着
し易くなる。リンス効率を高めるためにクイック・ダン
プ方式等が採用されているが、リンス時間は通常10分
は必要である。特にSC−1洗浄の後のリンス槽中では
まずpHが高くなるので、FeやAl等が超純水中で数
ppt の超微量であったとしても10分のリンスで109 at
oms/cm2レベルの汚染を生じる可能性が高い。しかし1p
pm 以上のフッ酸添加純水リンスの場合には、リンス水
中にFeやAl等が数十ppt 存在していても、これらか
らの汚染を108 atoms/cm2 のレベルに止めることがで
きる。
In the cleaning for ultra-cleaning, even if the required cleanliness level is reached in the chemical treatment step, there is a risk of contaminating it in the ultra-pure water rinsing step. Since there are elements that are easily adsorbed from the water to the silicon surface, if we try to keep their concentration on the cleaned surface at a level of 10 8 atoms / cm 2 ,
Extremely strict purity control is required for ultrapure water for rinsing. Impurities that are easily adsorbed from water are Fe, Al, Cu, etc., and the longer the rinsing time and the higher the pH, the easier the adsorption becomes. Although a quick dump method or the like is used to improve the rinse efficiency, the rinse time is usually 10 minutes. Especially in the rinsing tank after SC-1 cleaning, the pH first rises, so Fe, Al, etc. can be absorbed in ultrapure water.
Rinse 10 minutes at 10 9 at even a very small amount of ppt
Possibly causing oms / cm 2 level contamination. But 1p
In the case of hydrofluoric acid-added pure water rinse of pm or more, even if Fe, Al, etc. are present in the rinse water in the order of several tens of ppt, the contamination from these can be stopped at the level of 10 8 atoms / cm 2 .

【0028】よく知られているように、酸化膜表面に対
して希フッ酸でエッチングを行うと、膜が残存している
間はその表面は強く親水性化されると共に強い脱微粒子
作用が見られる。本発明のフッ酸添加純水リンスにおい
ても、シリコン表面に自然酸化膜のある限り十分な脱微
粒子効果が認められ、洗浄後のウェーハ表面の親水性は
強い。本発明におけるキレート化剤添加SC−1洗浄
は、微粒子除去効果において従来のSC−1洗浄とまっ
たく変わらない。従って本発明方法においては、SC−
1洗浄槽及びリンス槽のわずか2槽処理でも、その相乗
効果で、RCA法でもっとも微粒子除去効果の大きいD
HF→SC−1→SC−2の6槽処理よりも優れた微粒
子除去効果を示す。
As is well known, when the surface of an oxide film is etched with dilute hydrofluoric acid, the surface is strongly hydrophilized and a strong departing action is observed while the film remains. To be Also in the hydrofluoric acid-added pure water rinse of the present invention, as long as there is a natural oxide film on the silicon surface, a sufficient departing effect is recognized, and the hydrophilicity of the wafer surface after cleaning is strong. The SC-1 cleaning in which the chelating agent is added in the present invention has no difference in the effect of removing fine particles from the conventional SC-1 cleaning. Therefore, in the method of the present invention, SC-
Even if only two cleaning tanks, one cleaning tank and one rinsing tank, are treated with the synergistic effect, D has the largest particle removal effect in the RCA method.
The particle removal effect is superior to that of the 6-tank treatment of HF → SC-1 → SC-2.

【0029】本発明において、特に金属汚染除去を重視
する場合は、クイック・ダンプ・リンスの途中の1回が
DHF処理となるようにその回だけ希フッ酸を直接リン
ス槽に添加して目的を達成することができる。その時点
でウェーハ表面が疏水性化して微粒子除去の面では劣る
が、一方、この後のリンスで自然酸化膜が生じにくいと
いう利点もあり、本発明は最終的に自然酸化膜のない表
面が必要な洗浄にも対応し得る。
In the present invention, when importance is attached to the removal of metal contamination, the purpose is to add dilute hydrofluoric acid directly to the rinse tank only once so that the DHF treatment is performed once during the quick dump rinse. Can be achieved. At that time, the wafer surface becomes hydrophobic and inferior in terms of removing fine particles, but on the other hand, there is also an advantage that a natural oxide film is less likely to be generated by the rinse after this, and the present invention finally requires a surface without a natural oxide film. It can also be used for easy cleaning.

【0030】[0030]

【実施例】次に本発明を実施例によって説明するが、勿
論、本発明はこれに限定されるものではない。本発明は
洗浄によるウェーハの超清浄化を目的とするものであ
り、目的清浄度が108 atoms/cm2 オーダーである為、
表面分析による効果の確認が難しい。従って以下の実施
例の幾つかは放射性同位元素(RI)で標識した元素で
汚染させたテストウェーハに対する洗浄効果を、洗浄前
後の放射能計数値の比較で行なうRIトレーサ法を用い
た。以下の実施例で59Feは、59Feで標識したFeを
意味するものである。
EXAMPLES The present invention will now be described with reference to examples, but of course the present invention is not limited thereto. The present invention aims at ultra-cleaning of a wafer by cleaning, and since the target cleanliness is on the order of 10 8 atoms / cm 2 ,
It is difficult to confirm the effect by surface analysis. Therefore, some of the following examples used the RI tracer method in which the cleaning effect on a test wafer contaminated with an element labeled with a radioisotope (RI) was compared by comparing the radioactivity counts before and after cleaning. 59 Fe in the following examples are intended to mean Fe labeled with 59 Fe.

【0031】実施例159 Feの1012atoms/cm2 を水酸化鉄コロイドとして汚
染させたシリコンウェーハに対し、NH4 OH:H2
2 :H2 O=1容:1容:5容のSC−1液に本発明の
キレート化剤を用いて70℃×10分の洗浄を行った時の洗
浄後の59Feの残存率を表1に示す。ここでC(P1)
は、アルキルアミノジメチレンジホスホン酸の低分子量
のものの略称である。因みにキレート化剤を添加しない
時は6.5%であった。いずれのキレート化剤も、10ppm
〜100ppmの添加で59Feの表面濃度レベルを2桁から3
桁下げられる。また配位子にPを含むものは洗浄効果が
大きく、C(P1)では、0.1ppm でも2桁近い低減が
得られた。
Example 1 For a silicon wafer in which 10 12 atoms / cm 2 of 59 Fe was contaminated as iron hydroxide colloid, NH 4 OH: H 2 O was used.
2: H 2 O = 1 volume: 1 volume: the SC-1 solution of 5 volumes of residual rate of 59 Fe after cleaning when performing the cleaning of 70 ° C. × 10 minutes using a chelating agent of the present invention It shows in Table 1. Where C (P1)
Is an abbreviation for alkylaminodimethylene diphosphonic acid having a low molecular weight. By the way, it was 6.5% when the chelating agent was not added. 10 ppm for both chelating agents
Addition of ~ 100ppm increases the surface concentration level of 59 Fe from 2 digits to 3
The digit can be lowered. Further, those containing P in the ligand had a great cleaning effect, and with C (P1), a reduction of almost two orders of magnitude was obtained even at 0.1 ppm.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例2 SC−1液の組成を、NH4 OH:H2 2 :H2 O=
1容:1容:12.5容、並びに1容:1容:25容と
し、実施例1と同様に洗浄を行った結果を表2に示す。
SC−1液を標準組成から2倍、3倍に薄めても本発明
で用いるキレート化剤の効果は変わらない。尚、ここで
C(P2)は、ポリメチレンビス(ニトリロジメチレ
ン)テトラホスホン酸の低分子量のものの略称である。
Example 2 The composition of the SC-1 solution was NH 4 OH: H 2 O 2 : H 2 O =
Table 2 shows the results of washing in the same manner as in Example 1 with 1 volume: 1 volume: 12.5 volume and 1 volume: 1 volume: 25 volume.
Even if the SC-1 solution is diluted to 2 times or 3 times the standard composition, the effect of the chelating agent used in the present invention does not change. Here, C (P2) is an abbreviation for a low molecular weight polymethylenebis (nitridimethylene) tetraphosphonic acid.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例364 Cuは希フッ酸から析出させ、22Na,51Cr,57
iは塩化物として、それぞれ略1012atoms/cm2 付着さ
せたシリコンウェーハに対し、 NH4 OH:H2 2 :H2 O=1容:1容:12.5容 のSC−1液に本発明のキレート化剤TTHA 10ppmを
添加したもので、70℃×10分の洗浄を行った時の残
存率を表3に示す。Naはキレートを作らないが、SC
−1そのものに洗浄力があり、キレート化剤は別にこれ
を妨害していない。
Example 3 64 Cu was precipitated from dilute hydrofluoric acid to obtain 22 Na, 51 Cr and 57 N.
i is a chloride, and about 10 12 atoms / cm 2 of each is attached to a silicon wafer, NH 4 OH: H 2 O 2 : H 2 O = 1 volume: 1 volume: 12.5 volume SC-1 liquid 10% of the chelating agent of the present invention, TTHA, is added to Table 3, and the residual rate after washing at 70 ° C. for 10 minutes is shown in Table 3. Na does not chelate, but SC
-1 itself has detergency, and chelating agents do not otherwise interfere with this.

【0036】[0036]

【表3】 [Table 3]

【0037】実施例4 キレート化剤無添加のSC−1液に塩化アルミニウムの
微量を溶解して6枚のシリコンウェーハを同時に浸漬
し、その3枚のAl表面付着量をフッ酸で気相分解フレ
ームレス原子吸光法により分析したところ、平均で9×
1011atoms/cm2であった。残りの3枚に対し、NTP
Oの10ppm を添加したSC−1で70℃×10分の洗
浄を行い、同様の分析を行ったところ、平均で1.04×1
11atoms/cm2 であった。本発明で用いるキレート化剤
添加SC−1の洗浄効果は、Al汚染に対してはやや悪
く、この例では洗浄後約10%が残存している。
Example 4 A minute amount of aluminum chloride was dissolved in SC-1 solution containing no chelating agent, and six silicon wafers were simultaneously immersed. The amount of Al adhering to the three wafers was vapor-phase decomposed with hydrofluoric acid. An average of 9x when analyzed by flameless atomic absorption spectrometry
It was 10 11 atoms / cm 2 . NTP for the remaining 3 sheets
When SC-1 added with 10 ppm of O was washed at 70 ° C. for 10 minutes and the same analysis was conducted, it was 1.04 × 1 on average.
It was 0 11 atoms / cm 2 . The cleaning effect of the chelating agent-added SC-1 used in the present invention is rather bad against Al contamination, and in this example, about 10% remains after cleaning.

【0038】実施例5 SC−1洗浄で吸着した本発明のキレート化剤を後続す
るフッ酸添加水のリンスどの位除去できるかについてR
Iトレーサ法で検討した。キレート化剤NTPOはC原
子の数とP原子の数で同じであり、かつ塩化アンモンと
ホルムアルデヒドと亜リン酸から比較的容易に合成でき
るので、この検討の対象に選び、中性子照射によって32
Pで標識したNTPOを合成した。14Cを使わず32Pを
選んだのは、後者の方がはるかに高い非放射能のものが
得られ、かつβ線についてもはるかにエネルギーが強い
からである。NTPO 100ppm を含むSC−1を用いて
シリコンウェーハを70℃×10分処理し、数回純水リ
ンスして自然乾燥し、32P即ちCの吸着量を調べたとこ
ろ、略5×1015atoms/cm2 のウェーハへの吸着が認め
られた。これをHF 10ppm、50℃の純水でリンスした
ところ、検出限界の5×1013atoms/cm2 以下となっ
た。NTPO 10ppmを含むSC−1で洗浄したウェーハ
は、HF 1ppm を添加した室温の純水でリンスしてもP
即ちCの吸着は検出限界以下であった。本発明のHF添
加純水は、ウェーハに吸着したキレート化剤を実害のな
いレベルまで低減できる。
Example 5 Rinse on how much the chelating agent of the present invention adsorbed by SC-1 washing can be removed by rinsing the subsequent hydrofluoric acid-added water R
It was examined by the I tracer method. Chelating agents NTPO is the same the number of the number of P atoms C atoms, and so can be relatively easily synthesized from ammonium chloride, formaldehyde and phosphorous acid, choose the subject of this study, by neutron irradiation 32
NPO labeled with P was synthesized. I chose 32 P without using 14 C because the latter gives much higher non-radioactive activity and also has much stronger energy for β rays. A silicon wafer was treated with SC-1 containing 100 ppm of NTPO at 70 ° C. for 10 minutes, rinsed with pure water several times and naturally dried, and the adsorption amount of 32 P, that is, C was found to be about 5 × 10 15 atoms. Adsorption to the wafer of / cm 2 was observed. When this was rinsed with HF 10 ppm and pure water at 50 ° C., the detection limit was 5 × 10 13 atoms / cm 2 or less. Wafers washed with SC-1 containing 10 ppm of NTPO have P even if rinsed with pure water at room temperature containing 1 ppm of HF.
That is, the adsorption of C was below the detection limit. The HF-added pure water of the present invention can reduce the chelating agent adsorbed on the wafer to a level without causing any actual damage.

【0039】実施例6 実施例4と同じ条件で、塩化アルミニウムの微量を添加
したSC−1液を用いて表面Al濃度1〜2×1011at
oms/cm2 のテストウェーハを作成し、HF添加純水リン
スでのAl洗浄効果を調べた。結果を表4に示す。尚、
分析法は実施例4と同じである。Alに対しては、リン
ス純水のHF添加量の増量と加温が有効であることが認
められた。
Example 6 Under the same conditions as in Example 4, a SC-1 solution added with a trace amount of aluminum chloride was used to obtain a surface Al concentration of 1 to 2 × 10 11 at.
A test wafer of oms / cm 2 was prepared, and the Al cleaning effect by the HF-added pure water rinse was examined. The results are shown in Table 4. still,
The analysis method is the same as in Example 4. For Al, it was confirmed that increasing the amount of HF added to the rinse pure water and heating were effective.

【0040】[0040]

【表4】 [Table 4]

【0041】実施例7 キレート化剤TTHAを添加したSC−1を用いて70
℃×10分の洗浄を行ったウェーハに対し、100 ppm の
HFを添加した純水を50℃に加熱してリンスを行い、
リンス時間に対する水滴接触角の変化を表5に示す。H
F100ppm, 50℃の純水リンスでは、リンス時間10分
でもおそらく自然酸化膜表面の数Åがエッチングで除去
されていると推定される。
Example 7 70 using SC-1 with the addition of the chelating agent TTHA
The wafer that has been washed at ℃ × 10 minutes, rinsed by heating pure water containing 100 ppm HF to 50 ℃,
Table 5 shows changes in the contact angle of water droplets with respect to the rinse time. H
It is estimated that the pure water rinse of F100ppm, 50 ° C probably removed a few Å of the natural oxide film surface even by the rinse time of 10 minutes.

【0042】[0042]

【表5】 [Table 5]

【0043】実施例859 Feを含むSC−1液で処理した後、1〜3×1010
atoms/cm2 59Feが残存しているウェーハに対して、
HFを添加した純水を加温して10分リンスした時の59
Feの残存率を表6に示す。汚染レベルを2桁下げ、1
8 atoms/cm2のレベルに低減できることが認められ
る。
Example 8 1 to 3 × 10 10 after being treated with SC-1 solution containing 59 Fe
For a wafer with atoms / cm 2 of 59 Fe remaining,
59 when pure water containing HF was heated and rinsed for 10 minutes
Table 6 shows the residual ratio of Fe. Decrease pollution level by 2 digits, 1
Is observed can be reduced to a level of 0 8 atoms / cm 2.

【0044】[0044]

【表6】 [Table 6]

【0045】実施例964 Cuについても実施例8と同様に加温したHF添加純
水リンスの洗浄効果を調べた。結果を表7に示す。Cu
についてはHF添加純水リンスの洗浄効果が弱い。従っ
て、SC−1に添加するキレート化剤は、Cuに対して
洗浄効果の強いものを使用することが必要であるが、一
般にコンプレクサンにはCuに対してキレート化効果の
あるものが多い。
Example 9 With respect to 64 Cu, the cleaning effect of the HF-added pure water rinse heated in the same manner as in Example 8 was examined. The results are shown in Table 7. Cu
For, the cleaning effect of the HF-added pure water rinse is weak. Therefore, it is necessary to use a chelating agent having a strong cleaning effect on Cu as the chelating agent added to SC-1, but in general, many complexants have a chelating effect on Cu.

【0046】[0046]

【表7】 [Table 7]

【0047】実施例10 フッ酸添加純水リンスでの微粒子除去作用を評価するた
め、放射性元素で標識した塵埃を用い、RIトレーサ法
を行なった。即ち、99Tcで標識した炭素微粒子を吸着
させた室内塵埃を、DHF処理した疎水性シリコンウェ
ーハ表面とEDTA添加SC−1液で処理した親水性シ
リコン表面とへ、それぞれ放射能計数値(5,000 〜10,0
00)cpmとなるように付着させた。これらを純水で10分
リンスした所、前者が約30%、後者が約35%計数値
が減少した。同様の付着を行なったこれらウェーハに対
し、HF10ppm 添加純水リンスを50℃に加熱して1
0分リンスした所、前者の計数値は略半分となったのに
対し、親水性シリコン面では残存計数値は数十cpm とな
り、99%以上の付着塵埃を除くことができた。SC−
1処理後の本発明のリンスでは、原則的には自然酸化膜
を残した親水性面でのリンスなので、HF添加純水には
極めて良好な微粒子除去が期待できる。
Example 10 In order to evaluate the effect of removing fine particles in a pure water rinse containing hydrofluoric acid, an RI tracer method was performed using dust labeled with a radioactive element. That is, the indoor dust adsorbed with 99 Tc-labeled carbon fine particles was transferred to a DHF-treated hydrophobic silicon wafer surface and a hydrophilic silicon surface treated with the EDTA-added SC-1 solution, respectively, to obtain radioactivity count values (5,000- 10,0
(00) cpm was applied. When these were rinsed with pure water for 10 minutes, the count value of the former decreased by about 30% and that of the latter decreased by about 35%. HF 10 ppm added pure water rinse was heated to 50 ° C. on these wafers that had been similarly deposited, and
After rinsing for 0 minutes, the former count value was halved, while the remaining count value on the hydrophilic silicon surface was several tens cpm, and 99% or more of the adhered dust could be removed. SC-
In the rinse of the present invention after 1 treatment, since it is a rinse on the hydrophilic surface in which the natural oxide film is left in principle, it is expected that HF-added pure water can remove extremely fine particles.

【0048】実施例11 クリーンブース内に6槽の石英ガラス製実験槽があり、
奇数番目を薬液槽、偶数番目をクイック・ダンプのでき
る流水リンス槽とし、薬液槽の上縁には十分な排気機構
が設けられている洗浄実験装置において、薬品は分析値
において市販の最高レベルのもの、リンス水は18MΩ
cmの超純水を使用し、工業用薬品に浸漬して意識的に化
学汚染・微粒子汚染させた5" ウェーハをフッ素樹脂P
FAのキャリヤに入れて洗浄実験を行なった。まず一連
のRCA方式での洗浄実験を1週間繰り返し、1か月
後、第5槽と第6槽とを用いて本発明の洗浄方法を1週
間繰り返した。乾燥はスピンナーを用い、キャリャから
の洗浄済ウェーハを1枚抜取りフッ酸による気相分解を
行なって原子吸光法で表面分析し、他のウェーハではレ
ーザ散乱表面検査装置で0.2μm 以上の微粒子を数え
た。結果を表8に示す。この結果から、微粒子除去につ
いてはいずれのRCA方式よりも、2槽方式の本発明の
洗浄方法が優れていることが理解される。またRCA方
式の場合、おそらくはSC−2のHClに基づく環境汚
染、SC−1槽の不純物管理不足等が原因と思われる若
干の金属汚染を含んだウェーハ表面分析結果がでてお
り、本発明の洗浄システムの方が安定した表面清浄度が
得られる。
Example 11 There were six quartz glass experimental tanks in the clean booth,
In the cleaning experiment equipment where the odd number is the chemical solution tank, the even number is the running water rinse tank capable of quick dump, and a sufficient exhaust mechanism is installed at the upper edge of the chemical solution tank, the chemicals have the highest commercially available analytical values. 18 MΩ for rinse water
Fluorine resin P is used for 5 "wafers that have been intentionally contaminated with chemicals and fine particles by being immersed in industrial chemicals using ultrapure water of cm.
A cleaning experiment was carried out by placing the carrier in FA carrier. First, a series of cleaning experiments by the RCA method was repeated for 1 week, and after 1 month, the cleaning method of the present invention was repeated for 1 week using the fifth tank and the sixth tank. For drying, use a spinner to extract one cleaned wafer from the carrier, perform gas phase decomposition with hydrofluoric acid, and analyze the surface by atomic absorption method. On other wafers, a laser scattering surface inspection device detects fine particles of 0.2 μm or more. I counted. The results are shown in Table 8. From this result, it is understood that the two-tank system cleaning method of the present invention is superior to any of the RCA systems for removing fine particles. Further, in the case of the RCA method, the wafer surface analysis result containing a slight amount of metal contamination, which is considered to be caused by SC-2 environmental pollution due to HCl, insufficient control of impurities in the SC-1 tank, etc., was obtained. The cleaning system provides more stable surface cleanliness.

【0049】[0049]

【表8】 [Table 8]

【0050】尚、SC−1は1容:1容:12.5容、SC
−2は1容:1容:5容で、それぞれ70℃×10分の
浸漬処理を行なった。DHFは、1容:50容で30秒浸漬
した。キレート化剤はNTPO 3ppm 、HF添加純水リ
ンスとしては、HF 10ppm、50℃の加温水を用いた。
SC-1 is 1 volume: 1 volume: 12.5 volume, SC
-2 was 1 volume: 1 volume: 5 volumes, and each was dipped at 70 ° C. for 10 minutes. DHF was immersed in 1 volume: 50 volumes for 30 seconds. The chelating agent was NTPO 3 ppm, and the HF-added pure water rinse was HF 10 ppm and heated water at 50 ° C.

【0051】実施例12 本発明によれば、第1段階のキレート化剤添加SC−1
液による洗浄だけで、デバイス作成上ほぼ十分な清浄度
が得られることを、MOS ダイオード( 500mμ□) による
絶縁耐圧歩留りで確認した。無添加の高純度薬品による
SC−1液を用いた場合とを、70℃×10分の洗浄で
比較する。結果を図1に示す。尚、本発明方法において
使用したキレート化剤は、NTPO 1ppm であり、リン
スは共に超純水によった。
Example 12 In accordance with the present invention, the first stage chelating agent added SC-1
It was confirmed by the yield of dielectric strength with a MOS diode (500 mμ □) that the cleanliness sufficient for device fabrication can be obtained only by cleaning with a liquid. The case of using the SC-1 solution of the additive-free high-purity chemical is compared by washing at 70 ° C. for 10 minutes. The results are shown in Fig. 1. The chelating agent used in the method of the present invention was 1 ppm of NTPO, and the rinse was performed with ultrapure water.

【0052】実施例13 本発明のフッ酸添加純水リンスの効果を電気特性で確認
するために、上例のキレート化剤無添加SC−1液を用
いて洗浄され超純水でリンスされたウェーハと、これを
100ppmHF添加純水で50℃×10分リンスした場合
を、再結合ライフタイムで比較した。結果を図2に示
す。この結果より、加温HF添加水リンスの洗浄効果が
明らかであり、十分なライフタイムが得られることが理
解される。
Example 13 In order to confirm the effect of the hydrofluoric acid-added pure water rinse of the present invention on the electrical characteristics, it was washed with the chelating agent-free SC-1 liquid of the above example and rinsed with ultrapure water. Wafer and this
The recombination lifetime was compared when rinsed with 100 ppm HF-added pure water at 50 ° C. for 10 minutes. The results are shown in Figure 2. From these results, it is understood that the cleaning effect of the warm HF-added water rinse is clear and a sufficient lifetime can be obtained.

【0053】実施例14 標準組成のSC−1のアンモニア水をテトラメチルアン
モニウム(TMAH)の1重量%で置換した場合の本発
明における洗浄効果を、実施例11と同じキレート化
剤、同じ装置、同じ洗浄・リンス条件によって調べた。
結果を表9に示す。キレート化剤添加SC−1を用いた
場合と差のない良好な結果が得られる。
Example 14 The cleaning effect of the present invention when the ammonia water of SC-1 having a standard composition was replaced with 1% by weight of tetramethylammonium (TMAH) was used. It was examined under the same washing and rinsing conditions.
The results are shown in Table 9. Good results, which are not different from the case where the chelating agent-added SC-1 is used, are obtained.

【0054】[0054]

【表9】 [Table 9]

【0055】[0055]

【発明の効果】本発明によれば、最小でも6槽の洗浄槽
乃至リンス槽を必要としたRCA処理の洗浄システムに
対し、基本的に僅か2槽で全洗浄システムを構成するこ
とができ、装置価格、装置所要面積、稼働経費の点では
るかに有利となる。しかもRCA洗浄では、その薬液処
理順序を如何に変えても、化学汚染除去と微粒子汚染除
去との間に矛盾があるが、本発明の方法では、RCA処
理と同等の化学汚染除去能力と、この処理に勝る微粒子
除去能力を有する。また本発明に必要なキレート化剤
は、金属キレート化作用の強いもの程望ましいことは言
うまでもないが、特に高度な作用のある特別の物質でな
くとも、例えば入手の容易な市販のコンプレクサンキレ
ート化剤でも十分目的を達成できる。
According to the present invention, a cleaning system for RCA treatment which requires at least 6 cleaning tanks or rinsing tanks can be basically constructed with only 2 tanks. It is far more advantageous in terms of equipment price, equipment required area, and operating cost. Moreover, in the RCA cleaning, there is a contradiction between the chemical contamination removal and the particulate contamination removal, no matter how the chemical treatment order is changed. However, in the method of the present invention, the chemical contamination removal capability equivalent to that of the RCA treatment and Has the ability to remove fine particles that is superior to processing. Needless to say, the chelating agent required for the present invention is preferably as strong as the metal chelating action, but even if it is not a special substance having a particularly high action, for example, commercially available complex complex chelating agent is easily available. The purpose can be sufficiently achieved with a drug.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法におけるキレート化剤添加SC−1
液による洗浄前後におけるMOSダイオードの絶縁耐圧歩
留りを示す図。
FIG. 1 SC-1 with chelating agent added in the method of the present invention
The figure which shows the dielectric strength yield of a MOS diode before and after cleaning by a liquid.

【図2】キレート化剤無添加SC−1液を用いて洗浄さ
れ超純水でリンスされたウェーハと、これを100ppmHF
添加純水で50℃×10分リンスした場合の、再結合ラ
イフタイムとを比較して示す図。
[FIG. 2] Wafers washed with SC-1 liquid without chelating agent and rinsed with ultrapure water.
The figure which compares and shows the recombination lifetime at the time of rinsing with added pure water at 50 degreeC x 10 minute (s).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋谷 秀夫 東京都武蔵野市吉祥寺本町1−14−5 日 本興業銀行ビル8F エヌティティエレク トロニクステクノロジー株式会社内 (72)発明者 桑野 修治 東京都武蔵野市吉祥寺本町1−14−5 日 本興業銀行ビル8F エヌティティエレク トロニクステクノロジー株式会社内 (72)発明者 松本 徹 東京都武蔵野市吉祥寺本町1−14−5 日 本興業銀行ビル8F エヌティティエレク トロニクステクノロジー株式会社内 (72)発明者 村岡 久志 神奈川県横浜市緑区美しが丘3−15−2 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Akitani Hideo Akiya 1-14-5 Kichijojihonmachi, Musashino-shi, Tokyo Nihon Kogyo Bank Building 8F Inside NTT Electric Electronics Technology Co., Ltd. (72) Inventor Shuji Kuwano Tokyo Musashino City Kichijoji Honcho 1-14-5 Nihon Kogyo Bank Building 8F Entiti Electronicstronics Technology Co., Ltd. (72) Inventor Toru Matsumoto 1-14-5 Kichijoji Honcho, Musashino-shi Tokyo Metropolitan Bank Building 8F NTT Electronics Corp. Technologies Co., Ltd. (72) Inventor Hisashi Muraoka 3-15-2 Migaoka, Midori-ku, Yokohama-shi, Kanagawa

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ・過酸化水素・水より成る洗浄
液に、0.1乃至100ppm のコンプレクサン或いはその
カルボン酸基配位子を他の酸基で置換したキレート化剤
を添加してシリコンウェーハの洗浄を行い、次いで1pp
m 以上のフッ酸が添加された水を用いてリンスを行なう
ことを特徴とする半導体シリコンウェーハの洗浄方法。
1. A silicon wafer prepared by adding a chelating agent in which 0.1 to 100 ppm of complexan or its carboxylic acid group ligand is replaced with another acid group to a cleaning solution comprising alkali, hydrogen peroxide and water. Wash, then 1pp
A method for cleaning a semiconductor silicon wafer, which comprises rinsing with water to which hydrofluoric acid of m or more is added.
【請求項2】 フッ酸が添加された水を加温してリンス
を行なう請求項1に記載の洗浄方法。
2. The cleaning method according to claim 1, wherein the rinsing is performed by heating the water containing the hydrofluoric acid.
JP34988192A 1992-12-01 1992-12-01 Silicon wafer cleaning method Expired - Fee Related JP3174823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34988192A JP3174823B2 (en) 1992-12-01 1992-12-01 Silicon wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34988192A JP3174823B2 (en) 1992-12-01 1992-12-01 Silicon wafer cleaning method

Publications (2)

Publication Number Publication Date
JPH06216098A true JPH06216098A (en) 1994-08-05
JP3174823B2 JP3174823B2 (en) 2001-06-11

Family

ID=18406750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34988192A Expired - Fee Related JP3174823B2 (en) 1992-12-01 1992-12-01 Silicon wafer cleaning method

Country Status (1)

Country Link
JP (1) JP3174823B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005228A1 (en) * 1995-07-27 1997-02-13 Mitsubishi Chemical Corporation Method for treating surface of substrate and surface treatment composition therefor
JP2000049133A (en) * 1998-07-31 2000-02-18 Mitsubishi Materials Silicon Corp Method of cleaning semiconductor substrate
WO2000030162A1 (en) * 1998-11-12 2000-05-25 Sharp Kabushiki Kaisha Novel detergent and cleaning method using it
WO2002094462A1 (en) * 2001-05-22 2002-11-28 Mitsubishi Chemical Corporation Method for cleaning surface of substrate
JP2002353281A (en) * 2001-05-29 2002-12-06 Shin Etsu Handotai Co Ltd Method for evaluating silicon wafer surface-quality
JP2003068696A (en) * 2001-05-22 2003-03-07 Mitsubishi Chemicals Corp Method for cleaning substrate surface
WO2009102004A1 (en) * 2008-02-15 2009-08-20 Lion Corporation Cleaning composition and method for cleaning substrate for electronic device
US7671001B2 (en) 2003-10-29 2010-03-02 Mallinckrodt Baker, Inc. Alkaline, post plasma etch/ash residue removers and photoresist stripping compositions containing metal-halide corrosion inhibitors
JP2012023339A (en) * 2010-06-16 2012-02-02 Denso Corp Semiconductor device manufacturing method
JP5659152B2 (en) * 2009-04-30 2015-01-28 ライオン株式会社 Semiconductor substrate cleaning method and acidic solution
CN110712119A (en) * 2019-11-15 2020-01-21 河北工业大学 Method for post-cleaning silicon wafer by utilizing CMP (chemical mechanical polishing) equipment
KR20240007243A (en) 2021-08-12 2024-01-16 가부시키가이샤 사무코 Method for measuring contact angle of silicon wafer and method for evaluating surface condition of silicon wafer

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228823B1 (en) 1995-07-27 2001-05-08 Mitsubishi Chemical Corporation Method for treating surface of substrate and surface treatment composition used for the same
US6498132B2 (en) 1995-07-27 2002-12-24 Mitsubishi Chemical Corporation Method for treating surface of substrate and surface treatment composition used for the same
EP0789071A4 (en) * 1995-07-27 2004-07-28 Mitsubishi Chem Corp Method for treating surface of substrate and surface treatment composition therefor
WO1997005228A1 (en) * 1995-07-27 1997-02-13 Mitsubishi Chemical Corporation Method for treating surface of substrate and surface treatment composition therefor
JP2000049133A (en) * 1998-07-31 2000-02-18 Mitsubishi Materials Silicon Corp Method of cleaning semiconductor substrate
WO2000030162A1 (en) * 1998-11-12 2000-05-25 Sharp Kabushiki Kaisha Novel detergent and cleaning method using it
WO2002094462A1 (en) * 2001-05-22 2002-11-28 Mitsubishi Chemical Corporation Method for cleaning surface of substrate
JP2003068696A (en) * 2001-05-22 2003-03-07 Mitsubishi Chemicals Corp Method for cleaning substrate surface
US6896744B2 (en) 2001-05-22 2005-05-24 Mitsubishi Chemical Corporation Method for cleaning a surface of a substrate
JP2002353281A (en) * 2001-05-29 2002-12-06 Shin Etsu Handotai Co Ltd Method for evaluating silicon wafer surface-quality
US7671001B2 (en) 2003-10-29 2010-03-02 Mallinckrodt Baker, Inc. Alkaline, post plasma etch/ash residue removers and photoresist stripping compositions containing metal-halide corrosion inhibitors
WO2009102004A1 (en) * 2008-02-15 2009-08-20 Lion Corporation Cleaning composition and method for cleaning substrate for electronic device
EP2244283A1 (en) * 2008-02-15 2010-10-27 Lion Corporation Cleaning composition and method for cleaning substrate for electronic device
EP2244283A4 (en) * 2008-02-15 2012-01-04 Lion Corp Cleaning composition and method for cleaning substrate for electronic device
JP5286290B2 (en) * 2008-02-15 2013-09-11 ライオン株式会社 Cleaning composition, electronic device substrate cleaning method, and electronic device substrate
US8809247B2 (en) 2008-02-15 2014-08-19 Lion Corporation Cleaning composition and method for cleaning substrate for electronic device
JP5659152B2 (en) * 2009-04-30 2015-01-28 ライオン株式会社 Semiconductor substrate cleaning method and acidic solution
JP2012023339A (en) * 2010-06-16 2012-02-02 Denso Corp Semiconductor device manufacturing method
US9011604B2 (en) 2010-06-16 2015-04-21 Denso Corporation Manufacturing method of semiconductor device
CN110712119A (en) * 2019-11-15 2020-01-21 河北工业大学 Method for post-cleaning silicon wafer by utilizing CMP (chemical mechanical polishing) equipment
CN110712119B (en) * 2019-11-15 2021-04-13 河北工业大学 Method for post-cleaning silicon wafer by utilizing CMP (chemical mechanical polishing) equipment
KR20240007243A (en) 2021-08-12 2024-01-16 가부시키가이샤 사무코 Method for measuring contact angle of silicon wafer and method for evaluating surface condition of silicon wafer
DE112022003922T5 (en) 2021-08-12 2024-05-23 Sumco Corporation METHOD FOR MEASURING THE CONTACT ANGLE OF A SILICON WAFERS AND METHOD FOR EVALUATING THE SURFACE CONDITION OF A SILICON WAFERS

Also Published As

Publication number Publication date
JP3174823B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
Kern Overview and evolution of silicon wafer cleaning technology
US6146467A (en) Treatment method for semiconductor substrates
US6274059B1 (en) Method to remove metals in a scrubber
US7396806B2 (en) Semiconductor cleaner comprising a reducing agent, dispersant, and phosphonic acid-based chelant
JP3174823B2 (en) Silicon wafer cleaning method
US5695572A (en) Cleaning agent and method for cleaning semiconductor wafers
US20130174868A1 (en) Method for purifying alkaline treatment fluid for semiconductor substrate and a purification apparatus
JPH03219000A (en) Etching method and washing method for silicon wafer
JP3957264B2 (en) Semiconductor substrate cleaning method
JP3957268B2 (en) Semiconductor substrate cleaning method
JP3325739B2 (en) Silicon wafer cleaning method
DE4209865C2 (en) Process for improving the effectiveness of aqueous cleaning agents for removing metal-containing residues on semiconductor surfaces
CN1711349A (en) Semiconductor surface treatment and mixture used therein
Kurokawa et al. Cleaning by brush-scrubbing of chemical mechanical polished silicon surfaces using ozonized water and diluted HF
JPH0817776A (en) Method for washing silicon wafer
JP4344855B2 (en) Method for preventing organic contamination of substrate for electronic device and substrate for electronic device preventing organic contamination
JP4179098B2 (en) Semiconductor wafer cleaning method
KR20000029749A (en) Aqueous cleaning solution for a semiconductor substrate
JPH09255991A (en) Surface-treating solution and process for treating substrate surface
JPH0831781A (en) Washing chemicals
JP2001326209A (en) Method for treating surface of silicon substrate
JPH05109683A (en) Removal of metallic impurity in semiconductor silicon wafer cleaning fluid
JP2685596B2 (en) Silicon wafer etching method
JPH06163496A (en) Liquid for cleaning silicon wafer, and cleaning method
JPH0940997A (en) Surface treatment composition and surface treatment of substrate using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees