JP2000049133A - Method of cleaning semiconductor substrate - Google Patents

Method of cleaning semiconductor substrate

Info

Publication number
JP2000049133A
JP2000049133A JP10217148A JP21714898A JP2000049133A JP 2000049133 A JP2000049133 A JP 2000049133A JP 10217148 A JP10217148 A JP 10217148A JP 21714898 A JP21714898 A JP 21714898A JP 2000049133 A JP2000049133 A JP 2000049133A
Authority
JP
Japan
Prior art keywords
acid
semiconductor substrate
solution
organic
dissolved ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10217148A
Other languages
Japanese (ja)
Other versions
JP3419439B2 (en
Inventor
Ryoko Takada
涼子 高田
Kazunari Takaishi
和成 高石
Shigenari Yanagi
繁成 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP21714898A priority Critical patent/JP3419439B2/en
Publication of JP2000049133A publication Critical patent/JP2000049133A/en
Application granted granted Critical
Publication of JP3419439B2 publication Critical patent/JP3419439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove microscopic damages caused by processing a semiconductor substrate, satisfactorily removing fine particles adhered to the surface of the semiconductor substrate, using the reduced number of processes and remove metallic impurity adhered to the surface of the semiconductor substrate. SOLUTION: After impregnating a semiconductor substrate in a mixture of hydrogen peroxide and ammonium hydroxide and then in dissolved ozone water, the semiconductor substrate is impregnated in a liquid containing hydrofluoric acid at 0.005-0.25 weight%. After this, it is preferably soaked in oxidizing liquid. Organic acid or organic salt at 0.0001 weight% or more is further preferably added to hydrofluoric acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコンウェーハの
ような半導体基板の表面を洗浄する方法に関するもので
ある。
The present invention relates to a method for cleaning a surface of a semiconductor substrate such as a silicon wafer.

【0002】[0002]

【従来の技術】この種の半導体基板の表面には、その製
造工程中に金属不純物や粒径が1μm以下の微粒子、有
機物等が付着し、かつ加工ダメージが形成される。半導
体デバイスの高集積化、高機能化に伴って、半導体基板
の表面がこれらの金属不純物や微粒子、有機物で汚染さ
れておらず、かつ加工ダメージがないことが益々要求さ
れ、そのための半導体基板の洗浄技術は半導体デバイス
技術全体の中で極めて重要なものとなってきている。
2. Description of the Related Art Metal impurities, fine particles having a particle diameter of 1 μm or less, organic substances, and the like adhere to the surface of a semiconductor substrate of this type during the manufacturing process, and processing damage is formed. As semiconductor devices become more highly integrated and more sophisticated, it is increasingly required that the surface of the semiconductor substrate is not contaminated with these metallic impurities, fine particles, and organic substances, and that there is no processing damage. Cleaning technology has become extremely important in the overall semiconductor device technology.

【0003】従来の半導体基板の洗浄方法として、過酸
化水素と水酸化アンモニウムのSC1溶液と、過酸化水
素と希塩酸のSC2溶液を用いたRCA洗浄法が知られ
ている。このRCA洗浄法では、先ず半導体基板をSC
1溶液に浸漬して、この溶液の酸化性及びアルカリ性の
性質により基板から微粒子及び有機物を除去する。即
ち、このSC1溶液中では酸化と還元の両反応が同時に
行われ、アンモニアによる還元と過酸化水素による酸化
が同一槽で競合して起こり、同時に水酸化アンモニウム
溶液のエッチング作用によって微粒子及び有機物を基板
表面からリフトオフすることにより除去する。また半導
体基板の加工により生じた機械的な微小ダメージを除去
する。次いで半導体基板をフッ酸水溶液に浸漬して基板
表面の自然酸化膜を除去した後、この半導体基板をSC
2溶液の酸性溶液に浸漬して、SC1溶液で不溶のアル
カリイオンや金属不純物を除去する。このため、RCA
洗浄は水酸化アンモニウム溶液のエッチング作用により
清浄化された基板表面を酸性溶液の洗浄によって再清浄
化することになる。
As a conventional semiconductor substrate cleaning method, an RCA cleaning method using an SC1 solution of hydrogen peroxide and ammonium hydroxide and an SC2 solution of hydrogen peroxide and dilute hydrochloric acid is known. In this RCA cleaning method, first, a semiconductor substrate is SC
The substrate is immersed in one solution to remove fine particles and organic substances from the substrate due to the oxidizing and alkaline properties of the solution. That is, in this SC1 solution, both oxidation and reduction reactions are performed simultaneously, and reduction with ammonia and oxidation with hydrogen peroxide compete in the same tank. At the same time, fine particles and organic substances are removed from the substrate by the etching action of the ammonium hydroxide solution. Remove by lifting off from surface. Also, mechanical minute damage caused by processing of the semiconductor substrate is removed. Next, the semiconductor substrate is immersed in a hydrofluoric acid aqueous solution to remove a natural oxide film on the substrate surface.
It is immersed in two acidic solutions to remove alkali ions and metal impurities insoluble in the SC1 solution. Therefore, RCA
In the cleaning, the substrate surface cleaned by the etching action of the ammonium hydroxide solution is re-cleaned by cleaning with an acidic solution.

【0004】[0004]

【発明が解決しようとする課題】RCA洗浄における金
属不純物の除去効率を上げる方法として、水酸化アンモ
ニウム溶液中に金属を捕捉する錯化剤を添加する方法が
開示されている(特開平10−12584)。しかしこ
の方法では、錯化剤を添加した水酸化アンモニウム溶液
に過酸化水素水を加えると、過酸化水素水の酸化力によ
り錯化剤自身が分解してしまい、その効力が低下すると
いう問題がある。本発明の目的は、半導体基板の加工に
より生じた微小ダメージを除去し、また半導体基板表面
に付着する微粒子を少ない工程数で良好に除去する半導
体基板を洗浄する方法を提供することにある。本発明の
別の目的は、半導体基板表面に付着する金属不純物を良
好に除去する半導体基板を洗浄する方法を提供すること
にある。
As a method for increasing the efficiency of removing metal impurities in RCA cleaning, a method of adding a complexing agent for trapping a metal in an ammonium hydroxide solution has been disclosed (Japanese Patent Laid-Open No. 10-12584). ). However, in this method, when hydrogen peroxide solution is added to the ammonium hydroxide solution to which the complexing agent has been added, the complexing agent itself is decomposed by the oxidizing power of the hydrogen peroxide solution, and the effect is reduced. is there. An object of the present invention is to provide a method for cleaning a semiconductor substrate, which removes minute damage caused by processing of the semiconductor substrate and removes fine particles adhering to the surface of the semiconductor substrate satisfactorily in a small number of steps. Another object of the present invention is to provide a method for cleaning a semiconductor substrate, which satisfactorily removes metal impurities attached to the surface of the semiconductor substrate.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように半導体基板を過酸化水素と水酸化アン
モニウムを混合した混合液に浸漬する工程(a)と、こ
の混合液に浸漬した半導体基板を溶存オゾン水に浸漬す
る工程(b)と、この溶存オゾン水に浸漬した半導体基
板を0.005〜0.25重量%のフッ酸を含む液に浸
漬する工程(c)とを含む半導体基板を洗浄する方法で
ある。半導体基板表面に微粒子、有機物及び金属不純物
が付着し加工ダメージが形成されている場合に、半導体
基板を過酸化水素と水酸化アンモニウムを混合した混合
液に浸漬すると、酸化と還元の両反応が同時に行われ、
アンモニアによる還元と過酸化水素による酸化が同一槽
で競合して起こり、同時に水酸化アンモニウム溶液のエ
ッチング作用によって微粒子及び有機物が基板表面から
除去され、かつ半導体基板の加工により生じた微小ダメ
ージが除去される。続いて溶存オゾン水に基板を浸漬す
ることにより、基板の酸化が行われ、次のフッ酸による
還元処理を効果的に行うことができる。即ち、半導体基
板をフッ酸を含む液中に浸漬すると、基板の表面に形成
されていた自然酸化膜が除去され、自然酸化膜上の微粒
子及び金属不純物、並びに自然酸化膜中に含まれた金属
不純物がフッ酸を含む液中に移行するが、溶存オゾン水
で基板の酸化処理を十分に行っておくと、微粒子が基板
表面から離脱し易くなる。またフッ酸により自然酸化膜
の除去とともに、自然酸化膜中の金属不純物をも洗浄す
ることもできる。
The invention according to claim 1 is
As shown in FIG. 1, a step (a) of immersing a semiconductor substrate in a mixed solution of hydrogen peroxide and ammonium hydroxide, and a step (b) of immersing a semiconductor substrate immersed in the mixed solution in dissolved ozone water (C) immersing the semiconductor substrate immersed in the dissolved ozone water in a solution containing 0.005 to 0.25% by weight of hydrofluoric acid. When fine particles, organic substances and metal impurities are attached to the surface of the semiconductor substrate and processing damage is formed, when the semiconductor substrate is immersed in a mixed solution of hydrogen peroxide and ammonium hydroxide, both oxidation and reduction reactions occur simultaneously. Done,
The reduction by ammonia and the oxidation by hydrogen peroxide compete in the same tank, and at the same time, the fine particles and organic substances are removed from the substrate surface by the etching action of the ammonium hydroxide solution, and the minute damage caused by the processing of the semiconductor substrate is removed. You. Subsequently, by immersing the substrate in dissolved ozone water, the substrate is oxidized, and the subsequent reduction treatment with hydrofluoric acid can be performed effectively. That is, when the semiconductor substrate is immersed in a solution containing hydrofluoric acid, the natural oxide film formed on the surface of the substrate is removed, and the fine particles and metal impurities on the natural oxide film and the metal contained in the natural oxide film are removed. The impurities migrate into the liquid containing hydrofluoric acid. However, if the substrate is sufficiently oxidized with dissolved ozone water, the fine particles are easily separated from the substrate surface. In addition to removing the natural oxide film with hydrofluoric acid, it is also possible to clean metal impurities in the natural oxide film.

【0006】請求項2に係る発明は、請求項1に係る発
明であって、工程(c)の後で、半導体基板を酸化液に
浸漬する工程(d)を更に含む方法である。半導体基板
を酸化液に浸漬すると、基板表面に酸化膜が形成され、
この酸化膜の形成により酸化液から取出した基板表面へ
の空気中の微粒子の付着が防止される。工程(c)の液
が有機酸又は有機酸塩を含む場合には、金属不純物を錯
化しないで基板表面に付着していた有機酸又は有機物を
分解除去する。請求項3に係る発明は、請求項1又は2
に係る発明であって、工程(c)の液がフッ酸に加えて
更に0.0001重量%以上の有機酸又は有機酸塩を含
む方法である。フッ酸に加えて有機酸又は有機酸塩を含
む液に半導体基板を浸漬すると、この液は酸性溶液であ
るため、基板表面、金属不純物周面及び微粒子周面はそ
れぞれマイナスに荷電される。基板の表面電位と、金属
不純物及び微粒子の各表面電位が同一のため、金属不純
物及び微粒子は基板に対して反発する作用を生じ、基板
から液中に移行する。液中に移行した金属不純物は有機
酸の分子と錯体形成する。この金属錯塩の錯イオンも基
板の表面電位と同じマイナスである。この結果、液中に
移行した、それぞれマイナスに荷電された微粒子及び金
属錯体は、表面電位がマイナスである基板には再付着せ
ず、半導体基板表面に付着していた金属不純物及び微粒
子の双方が良好に除去される。
A second aspect of the present invention is the method according to the first aspect, further comprising a step (d) of immersing the semiconductor substrate in an oxidizing solution after the step (c). When a semiconductor substrate is immersed in an oxidizing solution, an oxide film is formed on the substrate surface,
The formation of the oxide film prevents adhesion of fine particles in the air to the surface of the substrate taken out of the oxidizing solution. When the liquid in step (c) contains an organic acid or an organic acid salt, the organic acid or organic substance attached to the substrate surface is decomposed and removed without complexing metal impurities. The invention according to claim 3 is the invention according to claim 1 or 2
The method according to claim 1, wherein the liquid in step (c) further contains 0.0001% by weight or more of an organic acid or an organic acid salt in addition to hydrofluoric acid. When a semiconductor substrate is immersed in a solution containing an organic acid or an organic acid salt in addition to hydrofluoric acid, the surface of the substrate, the peripheral surface of the metal impurities, and the peripheral surface of the fine particles are each negatively charged because this solution is an acidic solution. Since the surface potential of the substrate and the respective surface potentials of the metal impurities and the fine particles are the same, the metal impurities and the fine particles have an action of repelling the substrate, and migrate from the substrate into the liquid. The metal impurities transferred into the liquid form a complex with the molecules of the organic acid. The complex ion of this metal complex salt is also the same minus the surface potential of the substrate. As a result, the negatively charged fine particles and the metal complex, which have moved into the liquid, respectively, do not adhere again to the substrate having the negative surface potential, and both the metal impurities and the fine particles that have adhered to the semiconductor substrate surface are removed. Removed well.

【0007】請求項4に係る発明は、請求項3に係る発
明であって、工程(c)の有機酸又は有機酸塩がシュウ
酸、クエン酸、コハク酸、エチレンジアミン四酢酸、酒
石酸、サリチル酸、ギ酸、酢酸、プロピオン酸、酪酸、
吉草酸、カプロン酸、カプリル酸、ラウリン酸、ミリス
チン酸、パルミチン酸、ステアリン酸、アラキン酸、安
息香酸、アクリル酸、アジピン酸、マロン酸、リンゴ
酸、グリコール酸、フタル酸、テレフタル酸、ピメリン
酸及びフマル酸からなる群より選ばれた1種又は2種以
上の有機酸又はその塩である方法である。上記列挙した
有機酸又は有機酸塩は基板を汚染する不純物の金属イオ
ンの錯化作用がある。請求項5に係る発明は、請求項2
ないし4いずれかに係る発明であって、工程(d)の酸
化液が溶存オゾン水溶液、過酸化水素水又は硝酸である
洗浄方法である。上記列挙した酸化液は基板表面の酸化
膜の形成及び基板に付着した有機酸又は有機物の分解除
去作用がある。
The invention according to claim 4 is the invention according to claim 3, wherein the organic acid or organic acid salt in step (c) is oxalic acid, citric acid, succinic acid, ethylenediaminetetraacetic acid, tartaric acid, salicylic acid, Formic acid, acetic acid, propionic acid, butyric acid,
Valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachinic acid, benzoic acid, acrylic acid, adipic acid, malonic acid, malic acid, glycolic acid, phthalic acid, terephthalic acid, pimelic acid And one or more organic acids or salts thereof selected from the group consisting of fumaric acid. The above-listed organic acids or organic acid salts have a function of complexing metal ions of impurities that contaminate the substrate. The invention according to claim 5 is the invention according to claim 2.
4. The cleaning method according to any one of the above items (4) to (4), wherein the oxidizing solution in the step (d) is a dissolved ozone aqueous solution, a hydrogen peroxide solution or nitric acid. The oxidizing liquids listed above have an action of forming an oxide film on the substrate surface and decomposing and removing organic acids or organic substances attached to the substrate.

【0008】[0008]

【発明の実施の形態】本発明の好ましい実施の形態の洗
浄方法は、図1に示すように半導体基板を過酸化水素と
水酸化アンモニウムを混合した混合液に浸漬する工程
(a)と、この混合液に浸漬した半導体基板を溶存オゾ
ン水でリンスする工程(b)と、この溶存オゾン水でリ
ンスした半導体基板を0.005〜0.25重量%のフ
ッ酸を含む液に浸漬する工程(c)と、このフッ酸を含
む液に浸漬した半導体基板を酸化液に浸漬する工程
(d)とを含む。上記工程(a)で用いられる混合液は
過酸化水素(H22)と水酸化アンモニウム(NH4
H)との混合液であって、RCA洗浄法で使用されるS
C1溶液に相当する溶液である。この混合液は前述した
ように、微粒子、有機物及び半導体基板の加工により生
じた微小ダメージの除去作用がある。上記工程(b)で
用いられる溶存オゾン水溶液のオゾン濃度は0.5pp
m以上であることが好ましい。0.5ppm未満である
と基板の酸化が不十分であり、工程(c)において微粒
子が基板表面から離脱しにくくなる。純水へのオゾンの
溶解限界は約25ppmであるため、溶存オゾン水溶液
のオゾン濃度は2〜25ppmがより好ましく、2〜1
0ppmが更に好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cleaning method according to a preferred embodiment of the present invention comprises a step (a) of immersing a semiconductor substrate in a mixed solution of hydrogen peroxide and ammonium hydroxide as shown in FIG. (B) rinsing the semiconductor substrate immersed in the mixed solution with dissolved ozone water, and immersing the semiconductor substrate rinsed with the dissolved ozone water in a solution containing 0.005 to 0.25% by weight of hydrofluoric acid ( c) and a step (d) of immersing the semiconductor substrate immersed in the solution containing hydrofluoric acid in an oxidizing solution. The mixed solution used in the above step (a) is composed of hydrogen peroxide (H 2 O 2 ) and ammonium hydroxide (NH 4 O 2 ).
H), which is used in the RCA cleaning method.
This is a solution corresponding to the C1 solution. As described above, this mixed liquid has an action of removing fine particles, organic matter, and minute damage caused by processing of the semiconductor substrate. The ozone concentration of the dissolved ozone aqueous solution used in the above step (b) is 0.5 pp
m or more. When the amount is less than 0.5 ppm, the oxidation of the substrate is insufficient, and the fine particles are less likely to be separated from the substrate surface in the step (c). Since the solubility limit of ozone in pure water is about 25 ppm, the ozone concentration of the dissolved ozone aqueous solution is more preferably 2 to 25 ppm, and 2 to 1 ppm.
0 ppm is more preferred.

【0009】上記工程(c)で用いられる液中のフッ酸
の濃度は0.005〜0.25重量%である。特に0.
005〜0.10重量%が好ましく、0.05〜0.1
0重量%が更に好ましい。0.005重量%未満では、
半導体基板表面の自然酸化膜の剥離作用に乏しく、また
0.25重量%を越えると、この液が強酸となり微粒子
の表面電位がプラスになり、微粒子が基板表面に再付着
するようになる。また有機酸又は有機酸塩を加えた場合
に、液中の有機酸の解離が抑制され、その錯化作用が低
下する。
The concentration of hydrofluoric acid in the liquid used in the step (c) is 0.005 to 0.25% by weight. Especially 0.
005 to 0.10% by weight, preferably 0.05 to 0.1% by weight.
0% by weight is more preferred. If it is less than 0.005% by weight,
If the natural oxide film on the surface of the semiconductor substrate is poorly stripped, and if it exceeds 0.25% by weight, this solution becomes a strong acid, the surface potential of the fine particles becomes positive, and the fine particles adhere again to the substrate surface. Further, when an organic acid or an organic acid salt is added, dissociation of the organic acid in the liquid is suppressed, and the complexing action is reduced.

【0010】この工程(c)で用いられる液に加える有
機酸又は有機酸塩の種類及びその濃度は、除去しようと
する金属不純物の種類に応じて決められる。この工程の
液中の有機酸又は有機酸塩の濃度は0.0001重量%
以上である。好ましくは0.003〜10重量%であ
る。0.0001重量%未満では基板表面から遊離した
金属不純物イオンの錯化作用が十分でない不具合があ
る。上記有機酸又は有機酸塩としては、シュウ酸、クエ
ン酸、コハク酸、エチレンジアミン四酢酸(EDT
A)、酒石酸、サリチル酸、ギ酸、酢酸、プロピオン
酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン
酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラ
キン酸、安息香酸、アクリル酸、アジピン酸、マロン
酸、リンゴ酸、グリコール酸、フタル酸、テレフタル
酸、ピメリン酸及びフマル酸等の有機酸又はその塩が挙
げられる。金属不純物を構成する金属元素に応じて、上
記有機酸又はその塩が適宜選定される。工程(d)の酸
化液としては、溶存オゾン水溶液、過酸化水素水又は硝
酸が挙げられる。この中で溶存オゾン水溶液が高純度で
あるうえ、低濃度で酸化力に富み、入手しやすいため好
ましい。この溶存オゾン水溶液のオゾン濃度は0.5p
pm以上であることが好ましい。0.5ppm未満であ
ると基板表面に親水性の酸化膜を形成することが困難と
なり、また基板表面に付着していた有機酸や有機物の分
解除去作用が低下する。純水へのオゾンの溶解限界は約
25ppmであるため、溶存オゾン水溶液のオゾン濃度
は2〜25ppmがより好ましい。
The type and concentration of the organic acid or organic acid salt to be added to the solution used in the step (c) are determined according to the type of the metal impurity to be removed. The concentration of organic acid or organic acid salt in the liquid in this step is 0.0001% by weight.
That is all. Preferably it is 0.003 to 10% by weight. If it is less than 0.0001% by weight, there is a problem that the complexing action of metal impurity ions released from the substrate surface is not sufficient. Examples of the organic acid or organic acid salt include oxalic acid, citric acid, succinic acid, ethylenediaminetetraacetic acid (EDT
A), tartaric acid, salicylic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachiic acid, benzoic acid, acrylic acid, adipic acid, malon Organic acids such as acid, malic acid, glycolic acid, phthalic acid, terephthalic acid, pimelic acid, and fumaric acid, and salts thereof. The above-mentioned organic acid or its salt is appropriately selected according to the metal element constituting the metal impurity. Examples of the oxidizing solution in the step (d) include a dissolved ozone aqueous solution, a hydrogen peroxide solution, and nitric acid. Among them, a dissolved ozone aqueous solution is preferable because it has high purity, low concentration, high oxidizing power, and easy availability. The dissolved ozone aqueous solution has an ozone concentration of 0.5 p
pm or more. If it is less than 0.5 ppm, it is difficult to form a hydrophilic oxide film on the substrate surface, and the action of decomposing and removing organic acids and organic substances attached to the substrate surface is reduced. Since the solubility limit of ozone in pure water is about 25 ppm, the dissolved ozone aqueous solution preferably has an ozone concentration of 2 to 25 ppm.

【0011】[0011]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>通常の研磨工程を経た未洗浄のシリコンウ
エーハを下記の条件にて洗浄処理した。工程(a)とし
て、上記シリコンウエーハをSC1溶液(H2O:H2
2(30%):NH4OH(29%)=5:1:0.5の混合液)に
浸漬し、80℃で10分間処理した。次いで工程(b)
として、このシリコンウエーハをオゾン濃度が5ppm
の室温の溶存オゾン水に10分間浸漬した。次に工程
(c)として、純水に対してフッ酸を0.05重量%添
加した液に有機酸としてクエン酸を0.06重%混合し
た液を用意し、この室温の液に上記溶存オゾン水に浸漬
していたシリコンウェーハを5分間浸漬した。次に工程
(d)として、このシリコンウェーハをオゾン濃度が5
ppmの室温の溶存オゾン水溶液に10分間浸漬した。
Next, examples of the present invention will be described together with comparative examples. <Example 1> An uncleaned silicon wafer having undergone a normal polishing step was subjected to a cleaning treatment under the following conditions. In the step (a), the above silicon wafer is subjected to SC1 solution (H 2 O: H 2 O).
2 (30%): NH 4 OH (29%) = 5: 1: 0.5) and treated at 80 ° C. for 10 minutes. Then, step (b)
The silicon wafer has an ozone concentration of 5 ppm
For 10 minutes in dissolved ozone water at room temperature. Next, as a step (c), a solution prepared by adding 0.06% by weight of citric acid as an organic acid to a solution in which 0.05% by weight of hydrofluoric acid is added to pure water is prepared. The silicon wafer immersed in ozone water was immersed for 5 minutes. Next, as a step (d), the silicon wafer is treated with an ozone concentration of 5%.
It was immersed in a dissolved ozone aqueous solution at room temperature for 10 minutes for 10 minutes.

【0012】<比較例1>従来のRCA洗浄法を比較例
1の洗浄法として採用した。即ち、実施例1と同様に通
常の研磨工程を経た未洗浄のシリコンウエーハをSC1
溶液(H2O:H22(30%):NH4OH(29%)=5:1:
0.5の混合液)に浸漬し、80℃で10分間処理した
後、このシリコンウエーハを超純水で10分間リンスし
た。次にこのシリコンウエーハをH2O:HF(49%)=5
0:1の混合液に15秒間浸漬し、更に超純水でリンス
した。続いてリンスしたシリコンウェーハをSC2溶液
(H2O:H22(30%):HCl(37%)=6:1:1の混
合液)に浸漬し、80℃に熱し、80℃で10分間処理
した。その後このシリコンウェーハを超純水で10分間
リンスした。
Comparative Example 1 A conventional RCA cleaning method was employed as the cleaning method of Comparative Example 1. That is, an uncleaned silicon wafer that has been subjected to a normal polishing process in the same manner as in Example 1 is SC1.
Solution (H 2 O: H 2 O 2 (30%): NH 4 OH (29%) = 5: 1:
0.5 mixed solution) and treated at 80 ° C. for 10 minutes, and then the silicon wafer was rinsed with ultrapure water for 10 minutes. Next, this silicon wafer was subjected to H 2 O: HF (49%) = 5.
It was immersed in a 0: 1 mixture for 15 seconds, and rinsed with ultrapure water. Subsequently, the rinsed silicon wafer was immersed in an SC2 solution (mixture of H 2 O: H 2 O 2 (30%): HCl (37%) = 6: 1: 1), heated to 80 ° C., and heated at 80 ° C. Treated for 10 minutes. Thereafter, the silicon wafer was rinsed with ultrapure water for 10 minutes.

【0013】<比較試験と評価>実施例1と比較例1の
それぞれ洗浄した後のシリコンウェーハ表面の残留した
粒径が0.12μm以上の大きさの微粒子の数をパーテ
ィクルカウンタでカウントすることにより、ウェーハ上
の残留した微粒子の数を算出した。その結果を図2に示
す。図2から明らかなように、実施例1の方法で洗浄さ
れたウェーハに残留した微粒子の数は29個と少なかっ
た。これに対して比較例1の方法で洗浄されたウェーハ
に残留した微粒子の数は420個と極めて多かった。こ
のことから、実施例1の洗浄方法は比較例1の洗浄方法
より微粒子を良く洗浄することが判明した。
<Comparative Test and Evaluation> The number of fine particles having a particle size of 0.12 μm or more remaining on the silicon wafer surface after cleaning in Example 1 and Comparative Example 1 was counted by a particle counter. The number of fine particles remaining on the wafer was calculated. The result is shown in FIG. As is clear from FIG. 2, the number of fine particles remaining on the wafer cleaned by the method of Example 1 was as small as 29. On the other hand, the number of fine particles remaining on the wafer cleaned by the method of Comparative Example 1 was extremely large at 420. From this, it was found that the cleaning method of Example 1 cleans fine particles better than the cleaning method of Comparative Example 1.

【0014】[0014]

【発明の効果】以上述べたように、本発明の洗浄方法で
は、半導体基板を過酸化水素と水酸化アンモニウムの混
合液に浸漬し、更に溶存オゾン水に浸漬した後、フッ酸
を含む液に浸漬することにより、半導体基板から加工ダ
メージを除去し、また半導体基板表面に付着する微粒子
を良好に除去することができる。特にフッ酸を含む液に
有機酸又は有機酸塩を添加することにより、基板表面に
付着する金属不純物をも良好に除去することができる。
As described above, in the cleaning method of the present invention, the semiconductor substrate is immersed in a mixed solution of hydrogen peroxide and ammonium hydroxide, further immersed in dissolved ozone water, and then immersed in a solution containing hydrofluoric acid. By immersion, processing damage can be removed from the semiconductor substrate, and fine particles adhering to the surface of the semiconductor substrate can be satisfactorily removed. In particular, by adding an organic acid or an organic acid salt to a solution containing hydrofluoric acid, metal impurities adhering to the substrate surface can also be satisfactorily removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の洗浄工程を示す図。FIG. 1 is a diagram showing a cleaning step according to an embodiment of the present invention.

【図2】実施例1と比較例1の洗浄後のシリコンウェー
ハ表面に残留した微粒子の数を示す図。
FIG. 2 is a view showing the number of fine particles remaining on the surface of a silicon wafer after cleaning in Example 1 and Comparative Example 1.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C11D 7/60 C11D 7/60 (72)発明者 柳 繁成 東京都千代田区大手町1丁目5番1号 三 菱マテリアル株式会社内 Fターム(参考) 3B201 AA03 AB01 BB01 BB92 BB96 4H003 BA12 DA15 DC02 EA05 EA23 EA31 EB07 EB08 ED02 EE03 EE04 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C11D 7/60 C11D 7/60 (72) Inventor Shigenari Yanagi 1-5-1 Otemachi, Chiyoda-ku, Tokyo Material Co., Ltd. F term (reference) 3B201 AA03 AB01 BB01 BB92 BB96 4H003 BA12 DA15 DC02 EA05 EA23 EA31 EB07 EB08 ED02 EE03 EE04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板を過酸化水素と水酸化アンモ
ニウムを混合した混合液に浸漬する工程(a)と、この混
合液に浸漬した半導体基板を溶存オゾン水に浸漬する工
程(b)と、この溶存オゾン水に浸漬した半導体基板を
0.005〜0.25重量%のフッ酸を含む液に浸漬す
る工程(c)とを含む半導体基板を洗浄する方法。
A step of immersing the semiconductor substrate in a mixed solution of hydrogen peroxide and ammonium hydroxide (a); and a step of immersing the semiconductor substrate in the mixed solution in dissolved ozone water (b). (C) immersing the semiconductor substrate immersed in the dissolved ozone water in a solution containing 0.005 to 0.25% by weight of hydrofluoric acid.
【請求項2】 工程(c)の後で、半導体基板を酸化液に
浸漬する工程(d)を更に含む請求項1記載の方法。
2. The method according to claim 1, further comprising a step (d) of dipping the semiconductor substrate in an oxidizing solution after the step (c).
【請求項3】 工程(c)の液がフッ酸に加えて更に0.
0001重量%以上の有機酸又は有機酸塩を含む請求項
1又は2記載の方法。
3. The solution of step (c) is further added to hydrofluoric acid in addition to 0.1%.
3. The method according to claim 1, comprising at least 0001% by weight of an organic acid or an organic acid salt.
【請求項4】 工程(c)の有機酸又は有機酸塩がシュウ
酸、クエン酸、コハク酸、エチレンジアミン四酢酸、酒
石酸、サリチル酸、ギ酸、酢酸、プロピオン酸、酪酸、
吉草酸、カプロン酸、カプリル酸、ラウリン酸、ミリス
チン酸、パルミチン酸、ステアリン酸、アラキン酸、安
息香酸、アクリル酸、アジピン酸、マロン酸、リンゴ
酸、グリコール酸、フタル酸、テレフタル酸、ピメリン
酸及びフマル酸からなる群より選ばれた1種又は2種以
上の有機酸又はその塩である請求項3記載の方法。
4. The method according to claim 1, wherein the organic acid or organic acid salt of step (c) is oxalic acid, citric acid, succinic acid, ethylenediaminetetraacetic acid, tartaric acid, salicylic acid, formic acid, acetic acid, propionic acid, butyric acid,
Valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachinic acid, benzoic acid, acrylic acid, adipic acid, malonic acid, malic acid, glycolic acid, phthalic acid, terephthalic acid, pimelic acid 4. The method according to claim 3, which is one or more organic acids or salts thereof selected from the group consisting of: and fumaric acid.
【請求項5】 工程(d)の酸化液が溶存オゾン水溶液、
過酸化水素水又は硝酸である請求項2ないし4いずれか
記載の方法。
5. The method according to claim 1, wherein the oxidizing solution in step (d) is a dissolved ozone aqueous solution,
The method according to any one of claims 2 to 4, wherein the method is hydrogen peroxide or nitric acid.
JP21714898A 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate Expired - Lifetime JP3419439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21714898A JP3419439B2 (en) 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21714898A JP3419439B2 (en) 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2000049133A true JP2000049133A (en) 2000-02-18
JP3419439B2 JP3419439B2 (en) 2003-06-23

Family

ID=16699619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21714898A Expired - Lifetime JP3419439B2 (en) 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3419439B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094462A1 (en) * 2001-05-22 2002-11-28 Mitsubishi Chemical Corporation Method for cleaning surface of substrate
WO2011013356A1 (en) * 2009-07-28 2011-02-03 株式会社Sumco Wafer surface processing method
DE10340882B4 (en) * 2002-09-05 2012-04-19 Covalent Materials Corp. Silicon wafer cleaning method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216098A (en) * 1992-12-01 1994-08-05 N T T Electron Technol Kk Cleaning method for silicon wafer
JPH07142438A (en) * 1993-11-22 1995-06-02 Tadahiro Omi Cleaning equipment, production system and line for semiconductor
JPH0848996A (en) * 1994-08-05 1996-02-20 Nippon Steel Corp Cleaning fluid for silicon wafer and silicon oxide
JPH1098018A (en) * 1996-09-19 1998-04-14 Nippon Steel Corp Silicon wafer and silicon oxide cleaning liquid
JPH10275795A (en) * 1997-03-27 1998-10-13 Siemens Ag Method for reducing metal contamination on silicon wafer surface and modified cleaning solution
JPH11233476A (en) * 1997-12-01 1999-08-27 Mitsubishi Electric Corp Treatment of semiconductor substrate
JPH11274129A (en) * 1998-03-25 1999-10-08 Mitsubishi Materials Silicon Corp Cleaning of semiconductor substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216098A (en) * 1992-12-01 1994-08-05 N T T Electron Technol Kk Cleaning method for silicon wafer
JPH07142438A (en) * 1993-11-22 1995-06-02 Tadahiro Omi Cleaning equipment, production system and line for semiconductor
JPH0848996A (en) * 1994-08-05 1996-02-20 Nippon Steel Corp Cleaning fluid for silicon wafer and silicon oxide
JPH1098018A (en) * 1996-09-19 1998-04-14 Nippon Steel Corp Silicon wafer and silicon oxide cleaning liquid
JPH10275795A (en) * 1997-03-27 1998-10-13 Siemens Ag Method for reducing metal contamination on silicon wafer surface and modified cleaning solution
JPH11233476A (en) * 1997-12-01 1999-08-27 Mitsubishi Electric Corp Treatment of semiconductor substrate
JPH11274129A (en) * 1998-03-25 1999-10-08 Mitsubishi Materials Silicon Corp Cleaning of semiconductor substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094462A1 (en) * 2001-05-22 2002-11-28 Mitsubishi Chemical Corporation Method for cleaning surface of substrate
US6896744B2 (en) 2001-05-22 2005-05-24 Mitsubishi Chemical Corporation Method for cleaning a surface of a substrate
DE10340882B4 (en) * 2002-09-05 2012-04-19 Covalent Materials Corp. Silicon wafer cleaning method
WO2011013356A1 (en) * 2009-07-28 2011-02-03 株式会社Sumco Wafer surface processing method
JP2011029486A (en) * 2009-07-28 2011-02-10 Sumco Corp Wafer surface processing method
DE112010003101T5 (en) 2009-07-28 2012-10-04 Sumco Corp. Process for the surface treatment of a wafer

Also Published As

Publication number Publication date
JP3419439B2 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
KR100340274B1 (en) Cleaning Method of Semiconductor Substrate
US6274059B1 (en) Method to remove metals in a scrubber
US5837662A (en) Post-lapping cleaning process for silicon wafers
US5489557A (en) Methods for processing semiconductors to reduce surface particles
EP0859404B1 (en) Washing solution of semiconductor substrate and washing method using the same
WO2001013418A1 (en) A single-operation method of cleaning semiconductors after final polishing
JPH08264500A (en) Cleaning of substrate
WO1996021942A1 (en) Method of cleaning substrates
US5964953A (en) Post-etching alkaline treatment process
JP3239998B2 (en) Semiconductor substrate cleaning method
JP3419439B2 (en) Method for cleaning semiconductor substrate
JP3454302B2 (en) Semiconductor substrate cleaning method
JPH09321009A (en) Method for manufacturing semiconductor device
JP2002100599A (en) Washing method for silicon wafer
JP2001326209A (en) Method for treating surface of silicon substrate
JP4026384B2 (en) Semiconductor substrate cleaning method
JPH11274129A (en) Cleaning of semiconductor substrate
CN109427543B (en) Method for cleaning silicon wafer
JP2000277473A (en) Cleaning method of silicon wafer
JPH11154659A (en) Method of removing surface contaminants on substrate and semiconductor substrate
JP3539469B2 (en) Semiconductor substrate cleaning solution and method for cleaning the same
JPH10209100A (en) Cleaning method of semiconductor substrate
JP2001217215A (en) Composition and method for treating surface of semiconductor substrate
EP1132951A1 (en) Process of cleaning silicon prior to formation of the gate oxide
JP3669419B2 (en) Semiconductor substrate cleaning method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term