JP3419439B2 - Method for cleaning semiconductor substrate - Google Patents

Method for cleaning semiconductor substrate

Info

Publication number
JP3419439B2
JP3419439B2 JP21714898A JP21714898A JP3419439B2 JP 3419439 B2 JP3419439 B2 JP 3419439B2 JP 21714898 A JP21714898 A JP 21714898A JP 21714898 A JP21714898 A JP 21714898A JP 3419439 B2 JP3419439 B2 JP 3419439B2
Authority
JP
Japan
Prior art keywords
acid
semiconductor substrate
organic
solution
immersing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21714898A
Other languages
Japanese (ja)
Other versions
JP2000049133A (en
Inventor
涼子 高田
和成 高石
繁成 柳
Original Assignee
三菱住友シリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱住友シリコン株式会社 filed Critical 三菱住友シリコン株式会社
Priority to JP21714898A priority Critical patent/JP3419439B2/en
Publication of JP2000049133A publication Critical patent/JP2000049133A/en
Application granted granted Critical
Publication of JP3419439B2 publication Critical patent/JP3419439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はシリコンウェーハの
ような半導体基板の表面を洗浄する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning the surface of a semiconductor substrate such as a silicon wafer.

【0002】[0002]

【従来の技術】この種の半導体基板の表面には、その製
造工程中に金属不純物や粒径が1μm以下の微粒子、有
機物等が付着し、かつ加工ダメージが形成される。半導
体デバイスの高集積化、高機能化に伴って、半導体基板
の表面がこれらの金属不純物や微粒子、有機物で汚染さ
れておらず、かつ加工ダメージがないことが益々要求さ
れ、そのための半導体基板の洗浄技術は半導体デバイス
技術全体の中で極めて重要なものとなってきている。
2. Description of the Related Art On the surface of a semiconductor substrate of this type, metal impurities, fine particles having a particle size of 1 μm or less, organic substances, etc. adhere to the surface of the semiconductor substrate, and processing damage is formed. With higher integration and higher functionality of semiconductor devices, it is increasingly required that the surface of the semiconductor substrate is not contaminated with these metal impurities, fine particles, and organic substances, and there is no processing damage. Cleaning technology has become extremely important in the overall semiconductor device technology.

【0003】従来の半導体基板の洗浄方法として、過酸
化水素と水酸化アンモニウムのSC1溶液と、過酸化水
素と希塩酸のSC2溶液を用いたRCA洗浄法が知られ
ている。このRCA洗浄法では、先ず半導体基板をSC
1溶液に浸漬して、この溶液の酸化性及びアルカリ性の
性質により基板から微粒子及び有機物を除去する。即
ち、このSC1溶液中では酸化と還元の両反応が同時に
行われ、アンモニアによる還元と過酸化水素による酸化
が同一槽で競合して起こり、同時に水酸化アンモニウム
溶液のエッチング作用によって微粒子及び有機物を基板
表面からリフトオフすることにより除去する。また半導
体基板の加工により生じた機械的な微小ダメージを除去
する。次いで半導体基板をフッ酸水溶液に浸漬して基板
表面の自然酸化膜を除去した後、この半導体基板をSC
2溶液の酸性溶液に浸漬して、SC1溶液で不溶のアル
カリイオンや金属不純物を除去する。このため、RCA
洗浄は水酸化アンモニウム溶液のエッチング作用により
清浄化された基板表面を酸性溶液の洗浄によって再清浄
化することになる。
As a conventional method of cleaning a semiconductor substrate, an RCA cleaning method using an SC1 solution of hydrogen peroxide and ammonium hydroxide and an SC2 solution of hydrogen peroxide and dilute hydrochloric acid is known. In this RCA cleaning method, the semiconductor substrate is first SC
Immerse in one solution to remove particulates and organics from the substrate due to the oxidizing and alkaline nature of this solution. That is, in the SC1 solution, both oxidation and reduction reactions are performed at the same time, and ammonia reduction and hydrogen peroxide oxidation compete in the same tank. At the same time, the etching action of the ammonium hydroxide solution causes the fine particles and the organic substance to come into contact with the substrate. Remove by lifting off from the surface. Further, mechanical minute damage caused by processing the semiconductor substrate is removed. Then, the semiconductor substrate is immersed in an aqueous solution of hydrofluoric acid to remove the natural oxide film on the substrate surface, and then the semiconductor substrate is SC.
It is immersed in an acidic solution of 2 solutions to remove insoluble alkali ions and metal impurities with the SC1 solution. Therefore, RCA
The cleaning is to reclean the substrate surface cleaned by the etching action of the ammonium hydroxide solution by cleaning the acidic solution.

【0004】[0004]

【発明が解決しようとする課題】RCA洗浄における金
属不純物の除去効率を上げる方法として、水酸化アンモ
ニウム溶液中に金属を捕捉する錯化剤を添加する方法が
開示されている(特開平10−12584)。しかしこ
の方法では、錯化剤を添加した水酸化アンモニウム溶液
に過酸化水素水を加えると、過酸化水素水の酸化力によ
り錯化剤自身が分解してしまい、その効力が低下すると
いう問題がある。本発明の目的は、半導体基板の加工に
より生じた微小ダメージを除去し、また半導体基板表面
に付着する微粒子を少ない工程数で良好に除去する半導
体基板を洗浄する方法を提供することにある。本発明の
別の目的は、半導体基板表面に付着する金属不純物を良
好に除去する半導体基板を洗浄する方法を提供すること
にある。
As a method for increasing the efficiency of removing metal impurities in RCA cleaning, a method of adding a complexing agent for trapping a metal in an ammonium hydroxide solution has been disclosed (JP-A-10-12584). ). However, in this method, when hydrogen peroxide solution is added to the ammonium hydroxide solution to which the complexing agent is added, the complexing agent itself is decomposed by the oxidizing power of the hydrogen peroxide solution, resulting in a problem that the efficacy is reduced. is there. An object of the present invention is to provide a method for cleaning a semiconductor substrate, which removes minute damage caused by processing of the semiconductor substrate and also favorably removes fine particles adhering to the surface of the semiconductor substrate with a small number of steps. Another object of the present invention is to provide a method of cleaning a semiconductor substrate, which is capable of satisfactorily removing metal impurities attached to the surface of the semiconductor substrate.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように半導体基板を過酸化水素と水酸化アン
モニウムを混合した混合液に浸漬する工程(a)と、こ
の混合液に浸漬した半導体基板を溶存オゾン水に浸漬す
る工程(b)と、この溶存オゾン水に浸漬した半導体基
板を0.005〜0.25重量%のフッ酸を含む液に浸
漬する工程(c)とを含む半導体基板を洗浄する方法で
ある。半導体基板表面に微粒子、有機物及び金属不純物
が付着し加工ダメージが形成されている場合に、半導体
基板を過酸化水素と水酸化アンモニウムを混合した混合
液に浸漬すると、酸化と還元の両反応が同時に行われ、
アンモニアによる還元と過酸化水素による酸化が同一槽
で競合して起こり、同時に水酸化アンモニウム溶液のエ
ッチング作用によって微粒子及び有機物が基板表面から
除去され、かつ半導体基板の加工により生じた微小ダメ
ージが除去される。続いて溶存オゾン水に基板を浸漬す
ることにより、基板の酸化が行われ、次のフッ酸による
還元処理を効果的に行うことができる。即ち、半導体基
板をフッ酸を含む液中に浸漬すると、基板の表面に形成
されていた自然酸化膜が除去され、自然酸化膜上の微粒
子及び金属不純物、並びに自然酸化膜中に含まれた金属
不純物がフッ酸を含む液中に移行するが、溶存オゾン水
で基板の酸化処理を十分に行っておくと、微粒子が基板
表面から離脱し易くなる。またフッ酸により自然酸化膜
の除去とともに、自然酸化膜中の金属不純物をも洗浄す
ることもできる。
The invention according to claim 1 is
As shown in FIG. 1, a step (a) of immersing the semiconductor substrate in a mixed solution of hydrogen peroxide and ammonium hydroxide, and a step (b) of immersing the semiconductor substrate in this mixed solution in dissolved ozone water. And a step (c) of immersing the semiconductor substrate in the dissolved ozone water in a liquid containing 0.005 to 0.25% by weight of hydrofluoric acid. When fine particles, organic substances, and metal impurities are attached to the surface of the semiconductor substrate and processing damage is formed, if the semiconductor substrate is immersed in a mixed solution of hydrogen peroxide and ammonium hydroxide, both oxidation and reduction reactions occur simultaneously. Done,
Reduction by ammonia and oxidation by hydrogen peroxide compete in the same tank, and at the same time, the etching action of ammonium hydroxide solution removes fine particles and organic substances from the substrate surface, and also removes minute damage caused by processing of the semiconductor substrate. It Then, by immersing the substrate in the dissolved ozone water, the substrate is oxidized and the subsequent reduction treatment with hydrofluoric acid can be effectively performed. That is, when the semiconductor substrate is immersed in a liquid containing hydrofluoric acid, the natural oxide film formed on the surface of the substrate is removed, and the fine particles and metal impurities on the natural oxide film and the metal contained in the natural oxide film are removed. The impurities move into the liquid containing hydrofluoric acid, but if the substrate is sufficiently oxidized with the dissolved ozone water, the fine particles are easily separated from the substrate surface. In addition to removing the natural oxide film with hydrofluoric acid, metal impurities in the natural oxide film can be cleaned.

【0006】請求項2に係る発明は、請求項1に係る発
明であって、工程(c)の後で、半導体基板を酸化液に
浸漬する工程(d)を更に含む方法である。半導体基板
を酸化液に浸漬すると、基板表面に酸化膜が形成され、
この酸化膜の形成により酸化液から取出した基板表面へ
の空気中の微粒子の付着が防止される。工程(c)の液
が有機酸又は有機酸塩を含む場合には、金属不純物を錯
化しないで基板表面に付着していた有機酸又は有機物を
分解除去する。請求項3に係る発明は、請求項1又は2
に係る発明であって、工程(c)の液がフッ酸に加えて
更に0.0001重量%以上の有機酸又は有機酸塩を含
む方法である。フッ酸に加えて有機酸又は有機酸塩を含
む液に半導体基板を浸漬すると、この液は酸性溶液であ
るため、基板表面、金属不純物周面及び微粒子周面はそ
れぞれマイナスに荷電される。基板の表面電位と、金属
不純物及び微粒子の各表面電位が同一のため、金属不純
物及び微粒子は基板に対して反発する作用を生じ、基板
から液中に移行する。液中に移行した金属不純物は有機
酸の分子と錯体形成する。この金属錯塩の錯イオンも基
板の表面電位と同じマイナスである。この結果、液中に
移行した、それぞれマイナスに荷電された微粒子及び金
属錯体は、表面電位がマイナスである基板には再付着せ
ず、半導体基板表面に付着していた金属不純物及び微粒
子の双方が良好に除去される。
The invention according to claim 2 is the invention according to claim 1, which further comprises a step (d) of immersing the semiconductor substrate in an oxidizing solution after the step (c). When a semiconductor substrate is immersed in an oxidizing solution, an oxide film is formed on the substrate surface,
The formation of this oxide film prevents the particles in the air from adhering to the surface of the substrate taken out from the oxidizing solution. When the liquid of the step (c) contains an organic acid or an organic acid salt, the organic acid or organic matter adhering to the substrate surface is decomposed and removed without complexing metal impurities. The invention according to claim 3 is the invention according to claim 1 or 2.
The method according to claim 1, wherein the liquid in step (c) further contains 0.0001% by weight or more of an organic acid or an organic acid salt in addition to hydrofluoric acid. When a semiconductor substrate is dipped in a liquid containing an organic acid or an organic acid salt in addition to hydrofluoric acid, this liquid is an acidic solution, so that the substrate surface, the metal impurity peripheral surface and the fine particle peripheral surface are each negatively charged. Since the surface potential of the substrate and the surface potentials of the metal impurities and the fine particles are the same, the metal impurities and the fine particles have a repulsive action with respect to the substrate and are transferred from the substrate into the liquid. The metal impurities transferred into the liquid form a complex with a molecule of the organic acid. The complex ion of this metal complex salt is also the same minus as the surface potential of the substrate. As a result, the negatively charged fine particles and the metal complex that have migrated into the liquid do not redeposit on the substrate having a negative surface potential, and both the metal impurities and the fine particles that have adhered to the semiconductor substrate surface are not removed. Good removal.

【0007】請求項4に係る発明は、請求項3に係る発
明であって、工程(c)の有機酸又は有機酸塩がシュウ
酸、クエン酸、コハク酸、エチレンジアミン四酢酸、酒
石酸、サリチル酸、ギ酸、酢酸、プロピオン酸、酪酸、
吉草酸、カプロン酸、カプリル酸、ラウリン酸、ミリス
チン酸、パルミチン酸、ステアリン酸、アラキン酸、安
息香酸、アクリル酸、アジピン酸、マロン酸、リンゴ
酸、グリコール酸、フタル酸、テレフタル酸、ピメリン
酸及びフマル酸からなる群より選ばれた1種又は2種以
上の有機酸又はその塩である方法である。上記列挙した
有機酸又は有機酸塩は基板を汚染する不純物の金属イオ
ンの錯化作用がある。請求項5に係る発明は、請求項2
ないし4いずれかに係る発明であって、工程(d)の酸
化液が溶存オゾン水溶液、過酸化水素水又は硝酸である
洗浄方法である。上記列挙した酸化液は基板表面の酸化
膜の形成及び基板に付着した有機酸又は有機物の分解除
去作用がある。
The invention according to claim 4 is the invention according to claim 3, wherein the organic acid or organic acid salt in step (c) is oxalic acid, citric acid, succinic acid, ethylenediaminetetraacetic acid, tartaric acid, salicylic acid, Formic acid, acetic acid, propionic acid, butyric acid,
Valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, benzoic acid, acrylic acid, adipic acid, malonic acid, malic acid, glycolic acid, phthalic acid, terephthalic acid, pimelic acid And one or more organic acids selected from the group consisting of fumaric acid and salts thereof. The above-listed organic acid or organic acid salt has a complexing effect on metal ions of impurities that contaminate the substrate. The invention according to claim 5 is claim 2
The invention according to any one of claims 1 to 4, wherein the oxidizing solution in step (d) is a dissolved ozone aqueous solution, hydrogen peroxide solution or nitric acid. The above-listed oxidizing solutions have the action of forming an oxide film on the surface of the substrate and decomposing and removing the organic acid or organic matter attached to the substrate.

【0008】[0008]

【発明の実施の形態】本発明の好ましい実施の形態の洗
浄方法は、図1に示すように半導体基板を過酸化水素と
水酸化アンモニウムを混合した混合液に浸漬する工程
(a)と、この混合液に浸漬した半導体基板を溶存オゾ
ン水でリンスする工程(b)と、この溶存オゾン水でリ
ンスした半導体基板を0.005〜0.25重量%のフ
ッ酸を含む液に浸漬する工程(c)と、このフッ酸を含
む液に浸漬した半導体基板を酸化液に浸漬する工程
(d)とを含む。上記工程(a)で用いられる混合液は
過酸化水素(H22)と水酸化アンモニウム(NH4
H)との混合液であって、RCA洗浄法で使用されるS
C1溶液に相当する溶液である。この混合液は前述した
ように、微粒子、有機物及び半導体基板の加工により生
じた微小ダメージの除去作用がある。上記工程(b)で
用いられる溶存オゾン水溶液のオゾン濃度は0.5pp
m以上であることが好ましい。0.5ppm未満である
と基板の酸化が不十分であり、工程(c)において微粒
子が基板表面から離脱しにくくなる。純水へのオゾンの
溶解限界は約25ppmであるため、溶存オゾン水溶液
のオゾン濃度は2〜25ppmがより好ましく、2〜1
0ppmが更に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION A cleaning method according to a preferred embodiment of the present invention comprises a step (a) of immersing a semiconductor substrate in a mixed solution of hydrogen peroxide and ammonium hydroxide as shown in FIG. A step (b) of rinsing the semiconductor substrate immersed in the mixed solution with dissolved ozone water, and a step of immersing the semiconductor substrate rinsed with the dissolved ozone water in a solution containing 0.005 to 0.25% by weight of hydrofluoric acid ( c) and a step (d) of immersing the semiconductor substrate immersed in the solution containing hydrofluoric acid in an oxidizing solution. The mixed solution used in the step (a) is hydrogen peroxide (H 2 O 2 ) and ammonium hydroxide (NH 4 O).
S) used in the RCA cleaning method as a mixed solution with H).
It is a solution corresponding to the C1 solution. As described above, this mixed liquid has an action of removing minute damage caused by processing of the fine particles, the organic substance, and the semiconductor substrate. The ozone concentration of the dissolved ozone aqueous solution used in the above step (b) is 0.5 pp
It is preferably m or more. If it is less than 0.5 ppm, the oxidation of the substrate is insufficient, and it becomes difficult for the fine particles to separate from the substrate surface in the step (c). Since the dissolution limit of ozone in pure water is about 25 ppm, the ozone concentration of the dissolved ozone aqueous solution is more preferably 2 to 25 ppm,
0 ppm is more preferable.

【0009】上記工程(c)で用いられる液中のフッ酸
の濃度は0.005〜0.25重量%である。特に0.
005〜0.10重量%が好ましく、0.05〜0.1
0重量%が更に好ましい。0.005重量%未満では、
半導体基板表面の自然酸化膜の剥離作用に乏しく、また
0.25重量%を越えると、この液が強酸となり微粒子
の表面電位がプラスになり、微粒子が基板表面に再付着
するようになる。また有機酸又は有機酸塩を加えた場合
に、液中の有機酸の解離が抑制され、その錯化作用が低
下する。
The concentration of hydrofluoric acid in the liquid used in the above step (c) is 0.005 to 0.25% by weight. Especially 0.
005 to 0.10% by weight is preferable, and 0.05 to 0.1
0% by weight is more preferable. Below 0.005% by weight,
The natural oxide film on the surface of the semiconductor substrate is poor in peeling action, and when it exceeds 0.25% by weight, this solution becomes a strong acid, the surface potential of the fine particles becomes positive, and the fine particles reattach to the surface of the substrate. Further, when an organic acid or an organic acid salt is added, dissociation of the organic acid in the liquid is suppressed and its complexing action is reduced.

【0010】この工程(c)で用いられる液に加える有
機酸又は有機酸塩の種類及びその濃度は、除去しようと
する金属不純物の種類に応じて決められる。この工程の
液中の有機酸又は有機酸塩の濃度は0.0001重量%
以上である。好ましくは0.003〜10重量%であ
る。0.0001重量%未満では基板表面から遊離した
金属不純物イオンの錯化作用が十分でない不具合があ
る。上記有機酸又は有機酸塩としては、シュウ酸、クエ
ン酸、コハク酸、エチレンジアミン四酢酸(EDT
A)、酒石酸、サリチル酸、ギ酸、酢酸、プロピオン
酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン
酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラ
キン酸、安息香酸、アクリル酸、アジピン酸、マロン
酸、リンゴ酸、グリコール酸、フタル酸、テレフタル
酸、ピメリン酸及びフマル酸等の有機酸又はその塩が挙
げられる。金属不純物を構成する金属元素に応じて、上
記有機酸又はその塩が適宜選定される。工程(d)の酸
化液としては、溶存オゾン水溶液、過酸化水素水又は硝
酸が挙げられる。この中で溶存オゾン水溶液が高純度で
あるうえ、低濃度で酸化力に富み、入手しやすいため好
ましい。この溶存オゾン水溶液のオゾン濃度は0.5p
pm以上であることが好ましい。0.5ppm未満であ
ると基板表面に親水性の酸化膜を形成することが困難と
なり、また基板表面に付着していた有機酸や有機物の分
解除去作用が低下する。純水へのオゾンの溶解限界は約
25ppmであるため、溶存オゾン水溶液のオゾン濃度
は2〜25ppmがより好ましい。
The type and concentration of the organic acid or organic acid salt added to the liquid used in step (c) are determined according to the type of metal impurities to be removed. The concentration of organic acid or acid salt in the liquid in this step is 0.0001% by weight.
That is all. It is preferably 0.003 to 10% by weight. If it is less than 0.0001% by weight, there is a problem that the complexing action of metal impurity ions released from the substrate surface is not sufficient. Examples of the organic acid or organic acid salt include oxalic acid, citric acid, succinic acid, ethylenediaminetetraacetic acid (EDT
A), tartaric acid, salicylic acid, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, benzoic acid, acrylic acid, adipic acid, malon Examples thereof include organic acids such as acids, malic acid, glycolic acid, phthalic acid, terephthalic acid, pimelic acid, and fumaric acid, or salts thereof. The organic acid or a salt thereof is appropriately selected according to the metal element constituting the metal impurities. Examples of the oxidizing solution in the step (d) include a dissolved ozone aqueous solution, hydrogen peroxide solution, and nitric acid. Of these, the dissolved ozone aqueous solution is preferred because it has high purity, is rich in oxidizing power at a low concentration, and is easily available. The ozone concentration of this dissolved ozone aqueous solution is 0.5 p
It is preferably at least pm. If it is less than 0.5 ppm, it becomes difficult to form a hydrophilic oxide film on the surface of the substrate, and the action of decomposing and removing the organic acids and organic substances attached to the surface of the substrate is reduced. Since the dissolution limit of ozone in pure water is about 25 ppm, the ozone concentration of the dissolved ozone aqueous solution is more preferably 2 to 25 ppm.

【0011】[0011]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>通常の研磨工程を経た未洗浄のシリコンウ
エーハを下記の条件にて洗浄処理した。工程(a)とし
て、上記シリコンウエーハをSC1溶液(H2O:H2
2(30%):NH4OH(29%)=5:1:0.5の混合液)に
浸漬し、80℃で10分間処理した。次いで工程(b)
として、このシリコンウエーハをオゾン濃度が5ppm
の室温の溶存オゾン水に10分間浸漬した。次に工程
(c)として、純水に対してフッ酸を0.05重量%添
加した液に有機酸としてクエン酸を0.06重%混合し
た液を用意し、この室温の液に上記溶存オゾン水に浸漬
していたシリコンウェーハを5分間浸漬した。次に工程
(d)として、このシリコンウェーハをオゾン濃度が5
ppmの室温の溶存オゾン水溶液に10分間浸漬した。
EXAMPLES Next, examples of the present invention will be described together with comparative examples. <Example 1> An unwashed silicon wafer that has undergone a normal polishing process was washed under the following conditions. In the step (a), the silicon wafer was treated with SC1 solution (H 2 O: H 2 O).
2 (30%): NH 4 OH (29%) = 5: 1: 0.5 mixed solution) and treated at 80 ° C. for 10 minutes. Then step (b)
This silicon wafer has an ozone concentration of 5 ppm
It was immersed for 10 minutes in the dissolved ozone water at room temperature. Next, in the step (c), a liquid prepared by adding 0.05% by weight of hydrofluoric acid to pure water and 0.06% by weight of citric acid as an organic acid is prepared and dissolved in the liquid at room temperature. The silicon wafer that had been immersed in ozone water was immersed for 5 minutes. Next, as a step (d), the ozone concentration of the silicon wafer is adjusted to 5
It was immersed for 10 minutes in a dissolved ozone aqueous solution of ppm at room temperature.

【0012】<比較例1>従来のRCA洗浄法を比較例
1の洗浄法として採用した。即ち、実施例1と同様に通
常の研磨工程を経た未洗浄のシリコンウエーハをSC1
溶液(H2O:H22(30%):NH4OH(29%)=5:1:
0.5の混合液)に浸漬し、80℃で10分間処理した
後、このシリコンウエーハを超純水で10分間リンスし
た。次にこのシリコンウエーハをH2O:HF(49%)=5
0:1の混合液に15秒間浸漬し、更に超純水でリンス
した。続いてリンスしたシリコンウェーハをSC2溶液
(H2O:H22(30%):HCl(37%)=6:1:1の混
合液)に浸漬し、80℃に熱し、80℃で10分間処理
した。その後このシリコンウェーハを超純水で10分間
リンスした。
Comparative Example 1 A conventional RCA cleaning method was adopted as the cleaning method of Comparative Example 1. That is, as in Example 1, an uncleaned silicon wafer that had been subjected to a normal polishing process was replaced with SC1.
Solution (H 2 O: H 2 O 2 (30%): NH 4 OH (29%) = 5: 1:
After being immersed in a mixed solution of 0.5) and treated at 80 ° C. for 10 minutes, this silicon wafer was rinsed with ultrapure water for 10 minutes. Next, this silicon wafer is treated with H 2 O: HF (49%) = 5.
It was immersed in a 0: 1 mixed solution for 15 seconds and further rinsed with ultrapure water. Subsequently, the rinsed silicon wafer was immersed in an SC2 solution (mixed solution of H 2 O: H 2 O 2 (30%): HCl (37%) = 6: 1: 1), heated to 80 ° C., and heated at 80 ° C. It was treated for 10 minutes. Then, this silicon wafer was rinsed with ultrapure water for 10 minutes.

【0013】<比較試験と評価>実施例1と比較例1の
それぞれ洗浄した後のシリコンウェーハ表面の残留した
粒径が0.12μm以上の大きさの微粒子の数をパーテ
ィクルカウンタでカウントすることにより、ウェーハ上
の残留した微粒子の数を算出した。その結果を図2に示
す。図2から明らかなように、実施例1の方法で洗浄さ
れたウェーハに残留した微粒子の数は29個と少なかっ
た。これに対して比較例1の方法で洗浄されたウェーハ
に残留した微粒子の数は420個と極めて多かった。こ
のことから、実施例1の洗浄方法は比較例1の洗浄方法
より微粒子を良く洗浄することが判明した。
<Comparative Test and Evaluation> By counting the number of fine particles having a residual particle size of 0.12 μm or more on the surface of the silicon wafer after cleaning in Example 1 and Comparative Example 1, respectively, with a particle counter. The number of fine particles remaining on the wafer was calculated. The result is shown in FIG. As is clear from FIG. 2, the number of fine particles remaining on the wafer cleaned by the method of Example 1 was as small as 29 particles. On the other hand, the number of fine particles remaining on the wafer cleaned by the method of Comparative Example 1 was 420, which was extremely large. From this, it was found that the cleaning method of Example 1 was better in cleaning fine particles than the cleaning method of Comparative Example 1.

【0014】[0014]

【発明の効果】以上述べたように、本発明の洗浄方法で
は、半導体基板を過酸化水素と水酸化アンモニウムの混
合液に浸漬し、更に溶存オゾン水に浸漬した後、フッ酸
を含む液に浸漬することにより、半導体基板から加工ダ
メージを除去し、また半導体基板表面に付着する微粒子
を良好に除去することができる。特にフッ酸を含む液に
有機酸又は有機酸塩を添加することにより、基板表面に
付着する金属不純物をも良好に除去することができる。
As described above, according to the cleaning method of the present invention, the semiconductor substrate is dipped in a mixed solution of hydrogen peroxide and ammonium hydroxide, further dipped in dissolved ozone water, and then dipped in a solution containing hydrofluoric acid. By dipping, it is possible to remove the processing damage from the semiconductor substrate and to satisfactorily remove the fine particles adhering to the surface of the semiconductor substrate. In particular, by adding an organic acid or an organic acid salt to a liquid containing hydrofluoric acid, it is possible to satisfactorily remove metal impurities attached to the substrate surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の洗浄工程を示す図。FIG. 1 is a diagram showing a cleaning process according to an embodiment of the present invention.

【図2】実施例1と比較例1の洗浄後のシリコンウェー
ハ表面に残留した微粒子の数を示す図。
FIG. 2 is a diagram showing the number of fine particles remaining on the surface of a silicon wafer after cleaning in Example 1 and Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C11D 7/60 C11D 7/60 (56)参考文献 特開 平7−142438(JP,A) 特開 平10−98018(JP,A) 特開 平8−48996(JP,A) 特開 平6−216098(JP,A) 特開 平11−274129(JP,A) 特開 平11−233476(JP,A) 特開 平10−275795(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 B08B 3/08 C11D 7/00 - 7/60 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 identification code FI C11D 7/60 C11D 7/60 (56) References JP-A-7-142438 (JP, A) JP-A-10-98018 (JP , A) JP 8-48996 (JP, A) JP 6-216098 (JP, A) JP 11-274129 (JP, A) JP 11-233476 (JP, A) JP 10-275795 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/304 B08B 3/08 C11D 7 /00-7/60

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板を過酸化水素と水酸化アンモ
ニウムを混合した混合液に浸漬する工程(a)と、この混
合液に浸漬した半導体基板を溶存オゾン水に浸漬する工
程(b)と、この溶存オゾン水に浸漬した半導体基板を
0.005〜0.25重量%のフッ酸を含む液に浸漬す
る工程(c)とを含む半導体基板を洗浄する方法。
1. A step (a) of immersing a semiconductor substrate in a mixed solution of hydrogen peroxide and ammonium hydroxide; a step (b) of immersing the semiconductor substrate in this mixed solution in dissolved ozone water; And a step (c) of immersing the semiconductor substrate immersed in the dissolved ozone water in a liquid containing 0.005 to 0.25% by weight of hydrofluoric acid.
【請求項2】 工程(c)の後で、半導体基板を酸化液に
浸漬する工程(d)を更に含む請求項1記載の方法。
2. The method according to claim 1, further comprising a step (d) of immersing the semiconductor substrate in an oxidizing solution after the step (c).
【請求項3】 工程(c)の液がフッ酸に加えて更に0.
0001重量%以上の有機酸又は有機酸塩を含む請求項
1又は2記載の方法。
3. The liquid of step (c) is further added to hydrofluoric acid in an amount of 0.1.
The method according to claim 1 or 2, which comprises 0001% by weight or more of an organic acid or an organic acid salt.
【請求項4】 工程(c)の有機酸又は有機酸塩がシュウ
酸、クエン酸、コハク酸、エチレンジアミン四酢酸、酒
石酸、サリチル酸、ギ酸、酢酸、プロピオン酸、酪酸、
吉草酸、カプロン酸、カプリル酸、ラウリン酸、ミリス
チン酸、パルミチン酸、ステアリン酸、アラキン酸、安
息香酸、アクリル酸、アジピン酸、マロン酸、リンゴ
酸、グリコール酸、フタル酸、テレフタル酸、ピメリン
酸及びフマル酸からなる群より選ばれた1種又は2種以
上の有機酸又はその塩である請求項3記載の方法。
4. The organic acid or organic acid salt of step (c) is oxalic acid, citric acid, succinic acid, ethylenediaminetetraacetic acid, tartaric acid, salicylic acid, formic acid, acetic acid, propionic acid, butyric acid,
Valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, benzoic acid, acrylic acid, adipic acid, malonic acid, malic acid, glycolic acid, phthalic acid, terephthalic acid, pimelic acid The method according to claim 3, which is one or more organic acids selected from the group consisting of and fumaric acid or salts thereof.
【請求項5】 工程(d)の酸化液が溶存オゾン水溶液、
過酸化水素水又は硝酸である請求項2ないし4いずれか
記載の方法。
5. The oxidizing solution in step (d) is a dissolved ozone aqueous solution,
The method according to any one of claims 2 to 4, which is hydrogen peroxide water or nitric acid.
JP21714898A 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate Expired - Lifetime JP3419439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21714898A JP3419439B2 (en) 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21714898A JP3419439B2 (en) 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2000049133A JP2000049133A (en) 2000-02-18
JP3419439B2 true JP3419439B2 (en) 2003-06-23

Family

ID=16699619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21714898A Expired - Lifetime JP3419439B2 (en) 1998-07-31 1998-07-31 Method for cleaning semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3419439B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094462A1 (en) * 2001-05-22 2002-11-28 Mitsubishi Chemical Corporation Method for cleaning surface of substrate
JP4162211B2 (en) * 2002-09-05 2008-10-08 コバレントマテリアル株式会社 Method for cleaning silicon wafer and cleaned silicon wafer
JP4831216B2 (en) 2009-07-28 2011-12-07 株式会社Sumco Wafer surface treatment method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3174823B2 (en) * 1992-12-01 2001-06-11 株式会社ピュアレックス Silicon wafer cleaning method
JPH07142438A (en) * 1993-11-22 1995-06-02 Tadahiro Omi Cleaning equipment, production system and line for semiconductor
US5853491A (en) * 1994-06-27 1998-12-29 Siemens Aktiengesellschaft Method for reducing metal contamination of silicon wafers during semiconductor manufacturing
JP3046208B2 (en) * 1994-08-05 2000-05-29 新日本製鐵株式会社 Cleaning liquid for silicon wafer and silicon oxide
JP3649534B2 (en) * 1996-09-19 2005-05-18 シルトロニック・ジャパン株式会社 Silicon wafer and silicon oxide cleaning solution
JPH11233476A (en) * 1997-12-01 1999-08-27 Mitsubishi Electric Corp Treatment of semiconductor substrate
JPH11274129A (en) * 1998-03-25 1999-10-08 Mitsubishi Materials Silicon Corp Cleaning of semiconductor substrate

Also Published As

Publication number Publication date
JP2000049133A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
KR100340274B1 (en) Cleaning Method of Semiconductor Substrate
EP0859404B1 (en) Washing solution of semiconductor substrate and washing method using the same
JP2007165935A (en) Method of removing metals in scrubber
JP2002509355A (en) Cleaning method after silicon wafer lapping
JPH08264500A (en) Cleaning of substrate
JP3239998B2 (en) Semiconductor substrate cleaning method
WO1999062110A1 (en) Post-etching alkaline treatment process
CN112928017A (en) Cleaning method for effectively removing metal on surface of silicon wafer
JP3419439B2 (en) Method for cleaning semiconductor substrate
JP3454302B2 (en) Semiconductor substrate cleaning method
JPH08264498A (en) Silicon wafer cleaning method
JP2002100599A (en) Washing method for silicon wafer
JP3185732B2 (en) Substrate surface metal contamination removal method
JPH09321009A (en) Method for manufacturing semiconductor device
JP4026384B2 (en) Semiconductor substrate cleaning method
JP2001326209A (en) Method for treating surface of silicon substrate
JPH11274129A (en) Cleaning of semiconductor substrate
CN109427543B (en) Method for cleaning silicon wafer
JP2000277473A (en) Cleaning method of silicon wafer
JP3539469B2 (en) Semiconductor substrate cleaning solution and method for cleaning the same
JPH10209100A (en) Cleaning method of semiconductor substrate
JP2004140128A (en) Method of cleaning semiconductor substrate
JP3198878B2 (en) Surface treatment composition and substrate surface treatment method using the same
JP3354822B2 (en) Semiconductor substrate cleaning method
JP3669419B2 (en) Semiconductor substrate cleaning method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term