JP3669419B2 - Semiconductor substrate cleaning method - Google Patents

Semiconductor substrate cleaning method Download PDF

Info

Publication number
JP3669419B2
JP3669419B2 JP2000063186A JP2000063186A JP3669419B2 JP 3669419 B2 JP3669419 B2 JP 3669419B2 JP 2000063186 A JP2000063186 A JP 2000063186A JP 2000063186 A JP2000063186 A JP 2000063186A JP 3669419 B2 JP3669419 B2 JP 3669419B2
Authority
JP
Japan
Prior art keywords
cleaning
semiconductor substrate
cleaning liquid
organic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000063186A
Other languages
Japanese (ja)
Other versions
JP2001250801A (en
Inventor
直哉 山口
涼子 高田
和成 高石
Original Assignee
三菱住友シリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱住友シリコン株式会社 filed Critical 三菱住友シリコン株式会社
Priority to JP2000063186A priority Critical patent/JP3669419B2/en
Publication of JP2001250801A publication Critical patent/JP2001250801A/en
Application granted granted Critical
Publication of JP3669419B2 publication Critical patent/JP3669419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェーハのような半導体基板の表面を洗浄する方法に関するものである。
【0002】
【従来の技術】
この種の半導体基板の表面には、その製造工程中に金属不純物や微粒子等が付着する。半導体デバイスの高集積化、高機能化に伴って、半導体基板の表面がこれらの微粒子等で汚染されていないことが益々要求され、そのための半導体基板の洗浄技術は半導体デバイス技術全体の中で極めて重要なものとなってきている。従来の半導体基板の洗浄方法として、過酸化水素と水酸化アンモニウムのSC−1溶液と、過酸化水素と希塩酸のSC−2溶液を用いたRCA洗浄法が知られている。このRCA洗浄法では、先ず半導体基板をSC−1溶液に浸漬して、この溶液の酸化性及びアルカリ性の性質により基板から微粒子及び有機残留物を除去する。即ち、このSC−1溶液中では酸化と還元の両反応が同時に行われ、アンモニアによる還元と過酸化水素による酸化が同一槽で競合して起こり、同時に水酸化アンモニウム溶液のエッチング作用によって基板表面からリフトオフすることにより除去する。次いで半導体基板をフッ酸水溶液に浸漬して基板表面の自然酸化膜を除去した後、この半導体基板をSC−2溶液の酸性溶液に浸漬して、SC−1溶液で不溶のアルカリイオンや金属不純物を除去する。このため、RCA洗浄は水酸化アンモニウム溶液のエッチング作用により清浄化された基板表面を酸性溶液の洗浄によって再清浄化することになる。
【0003】
しかしながら上記RCA洗浄法のSC−1溶液で洗浄したウェーハには水酸化アンモニウム溶液のエッチング作用により、COPが数多く出現する不具合があった。ここでCOP(crystal-originated particles)とは、ウェーハ表面に現れる底の浅いエッチピットをいう。このCOPはシリコン融液から引き上げられて成長した結晶に起因した一種の欠陥であって、市販のレーザパーティクルカウンタでカウントすることにより検出されるものである。また、酸化物等からなる微粒子を十分に除去できないという問題もあった。
【0004】
そこで本出願人は、洗浄後にCOPの出現が少なく、半導体基板表面に付着する金属不純物及び微粒子の双方を良好に除去する半導体基板の洗浄方法を提案した(特開平11−274128)。この方法は0.0001重量%以上の有機酸又は有機酸塩又は更に0.005〜0.25重量%のフッ酸を含む洗浄液を用いて半導体基板を洗浄する。この洗浄方法によれば、洗浄液中に基板を浸漬すると、基板表面、金属不純物周面及び微粒子周面はそれぞれマイナスに荷電される。基板の表面電位と金属不純物及び微粒子の各表面電位が同一のため、金属不純物及び微粒子は洗浄液中に移行する。洗浄液中に移行した金属不純物は金属錯塩を形成し、この金属錯塩もマイナスに荷電されるため微粒子及び金属錯塩の基板への再付着が防止される。従って洗浄液より基板を引上げると金属不純物及び微粒子の双方を良好に除去でき、清浄化した基板が得られる。
【0005】
【発明が解決しようとする課題】
しかし、特開平11−274128号公報に示される洗浄法では、有機酸又は有機酸塩は種類によって除去することができる微粒子の粒径範囲が限られているため、除去できる粒径範囲外の微粒子が基板表面に残存してしまう問題があった。
本発明の目的は、半導体基板表面に付着する微粒子を良好に除去する半導体基板の洗浄方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、有機酸又は有機酸塩を含む洗浄液により半導体基板を洗浄する工程を連続して2つ以上含む半導体基板の洗浄方法において、クエン酸、エチレンジアミン四酢酸又はその塩を含む洗浄液を第1洗浄液とし、シュウ酸又はその塩を含む洗浄液を第2洗浄液とするとき、第1洗浄液及び第2洗浄液により半導体基板をそれぞれ別々に洗浄し、かつそれぞれの洗浄回数が1回以上であることを特徴とする半導体基板の洗浄方法である。
請求項1に係る発明では、2つ以上の洗浄工程のそれぞれの洗浄液に含まれる有機酸又は有機酸塩を互いに異なる種類にすることにより、有機酸又は有機酸塩により除去される微粒子の粒径範囲が拡大し、広い粒径範囲の微粒子を除去することができる。特にそれぞれ除去する微粒子の粒径範囲が異なる有機酸又は有機酸塩を含む第1洗浄液及び第2洗浄液で洗浄することにより、高い除去効果が得られる。上記方法ではクエン酸、エチレンジアミン四酢酸又はその塩を含む第1洗浄液を用いることで粒径の大きい微粒子を除去し、シュウ酸又はその塩を含む第2洗浄液を用いることで小さい微粒子を除去する。
【0007】
請求項2に係る発明は、請求項1に係る発明であって、2つ以上の洗浄工程のそれぞれの洗浄液に含まれる有機酸又は有機酸塩の全モル濃度が1×10-6〜1×10-3mol/lである半導体基板の洗浄方法である。
請求項2に係る発明では、微粒子の基板への再付着を防止するために、上記濃度範囲の有機酸又は有機酸塩が好ましい。
【0008】
請求項に係る発明は、請求項1又は2に係る発明であって、最初の洗浄工程で半導体基板を洗浄する前にフッ酸と有機酸又は有機酸塩を1種又は2種以上を含む洗浄液により半導体基板を洗浄する予備洗浄工程を更に含む半導体基板の洗浄方法である。
請求項に係る発明では、予備工程の洗浄液に含まれるフッ酸により半導体基板の表面に形成されていた自然酸化膜を除去し、自然酸化膜上の微粒子を洗浄液中に移行できる。
【0009】
請求項に係る発明は、請求項に係る発明であって、最初の洗浄工程と予備洗浄工程で使用する洗浄液に含まれる有機酸又は有機酸塩が同種である半導体基板の洗浄方法である。
請求項に係る発明では、最初の洗浄工程と予備洗浄工程で使用する洗浄液に含まれる有機酸又は有機酸塩を同種にすることにより、予備工程で洗浄液中に遊離した自然酸化膜上の微粒子の基板表面への再付着を防止できる。
【0010】
【発明の実施の形態】
本発明の半導体基板の洗浄方法は、有機酸又は有機酸塩を含む洗浄液により半導体基板を洗浄する工程を連続して2つ以上含む洗浄方法である。2つ以上の洗浄工程に用いる洗浄液は、除去しようとする微粒子の粒径に応じて、有機酸又は有機酸塩の種類及び濃度が決められる。この有機酸又は有機酸塩の洗浄液中の濃度は1×10-6〜1×10-3mol/lである。好ましくは1×10-5〜5×10-4mol/lである。1×10-6mol/l未満では、基板表面及び微粒子周面が十分にマイナスに荷電されず、1×10-3mol/lを越えると微粒子の基板への付着量が増加する不具合がある。本発明の有機酸又は有機酸塩としては、2つ以上の洗浄工程の第1洗浄液にはクエン酸、エチレンジアミン四酢酸又はその塩が、第2洗浄液にはシュウ酸又はその塩がそれぞれ使用される。微粒子の粒径に応じて上記有機酸から1種又は2種以上の酸が適宜選定される。
【0011】
また、本発明の半導体基板の洗浄方法では、最初の洗浄工程を施す前に予備洗浄工程を行うことが好ましい。この予備洗浄工程では、フッ酸と有機酸又は有機酸塩を1種又は2種以上を含む洗浄液により基板を洗浄する。予備洗浄工程の洗浄液に用いられるフッ酸の濃度は2.5×10-3〜1.25×10-1mol/lである。特に2.5×10-3〜5×10-2mol/lが好ましく、2.5×10-2〜5×10-2mol/lが更に好ましい。2.5×10-3mol/l未満では、半導体基板表面の自然酸化膜の剥離作用が乏しく、また1.25×10-1mol/lを越えると洗浄液が強酸となり洗浄液中の有機酸又は有機酸塩の解離が抑制され、微粒子の表面電位がプラスになり、また基板表面の酸化膜が完全に除去されるので微粒子が基板表面に再付着するようになる。また、予備洗浄工程の洗浄液に含まれる有機酸又は有機酸塩としては、ギ酸、酢酸、酪酸、シュウ酸、マロン酸、コハク酸、クエン酸及びエチレンジアミン四酢酸等の有機酸又はその塩が挙げられる。
【0012】
請求項1に係る洗浄方法では、図1(a)〜(e)に示すように、半導体基板11表面に微粒子12が付着している場合(図1(a))に、最初の工程であるクエン酸、エチレンジアミン四酢酸又はその塩を含む第1洗浄液13を貯えた第1洗浄槽14に半導体基板11を浸漬すると(図1(b))、第1洗浄液13は酸性溶液であるため、基板表面及び微粒子周面はそれぞれマイナスに荷電される。基板11の表面電位と微粒子12の各表面電位が同一のため、微粒子12は基板11に対して反発する作用を生じ、基板11から洗浄液13中に移行する。この結果、微粒子12の表面電位が基板11の表面電位と同じマイナスになるため、基板11への付着又は再付着が防止される。この第1洗浄液14を用いることで粒径の大きい微粒子が除去される。第1洗浄液13を貯えた第1洗浄槽14から半導体基板11を引上げると(図1(c))、基板11表面にはこの洗浄液13では除去しきれなかった微粒子12が残る。そこで引き続いてシュウ酸又はその塩を含む第2洗浄液16を貯えた第2洗浄槽17に半導体基板11を浸漬する(図1(d))。ここで第2洗浄槽での洗浄液中の微粒子の挙動は、図1(b)の洗浄での挙動と同様である。この第2洗浄槽17では第1洗浄槽14と同様に微粒子12を基板11表面より遊離させる。この第2洗浄液16を用いることで粒径の小さい微粒子が除去される。第2洗浄液16を貯えた第2洗浄槽17から半導体基板11を引上げると、微粒子12が除去され清浄化された基板11が得られる(図1(e))。
【0013】
請求項5に係る洗浄方法では、図2(a)〜(d)に示すように、半導体基板11表面に微粒子12が付着している場合に(図2(a))、最初の洗浄工程で洗浄する前にフッ酸と有機酸を含む洗浄液18に半導体基板11を浸漬すると(図2(b))、フッ酸18aにより半導体基板11の表面に形成されていた自然酸化膜11aが除去され、自然酸化膜11a上の微粒子12が洗浄液18中に移行する。即ち、フッ酸が添加されている予備工程により自然酸化膜11aの除去とともに、自然酸化膜11a上の微粒子12をも洗浄することができる。微粒子12の表面電位が基板11の表面電位と同じマイナスになるため、基板11への付着又は再付着が防止される(図2(c))。この予備工程に続いて請求項1に係わる洗浄方法で基板を洗浄すると、微粒子が除去され、より一層清浄化された基板が得られる(図2(d))。
【0014】
【実施例】
次に本発明の実施例を説明する。
<実施例1>
有機酸としてギ酸、酢酸、シュウ酸、マロン酸、コハク酸及びクエン酸を用意した。純水に対してギ酸を3×10-7mol/l、3×10-6mol/l、3×10-5mol/l、3×10-4mol/l及び3×10-3mol/lそれぞれ混合して洗浄液を用意した。また、純水に対して酢酸を3×10-7mol/l、3×10-6mol/l、3×10-5mol/l、3×10-4mol/l及び3×10-3mol/lそれぞれ混合して洗浄液を用意した。また、純水に対してシュウ酸を3×10-7mol/l、3×10-6mol/l、3×10-5mol/l、3×10-4mol/l及び3×10-3mol/lそれぞれ混合して洗浄液を用意した。また、純水に対してマロン酸を3×10-7mol/l、3×10-6mol/l、3×10-5mol/l、3×10-4mol/l及び3×10-3mol/lそれぞれ混合して洗浄液を用意した。また、純水に対してコハク酸を3×10-7mol/l、3×10-6mol/l、3×10-5mol/l、3×10-4mol/l及び3×10-3mol/lそれぞれ混合して洗浄液を用意した。更に、純水に対してクエン酸を3×10-7mol/l、3×10-6mol/l、3×10-5mol/l、3×10-4mol/l及び3×10-3mol/lそれぞれ混合して洗浄液を用意した。これらの洗浄液に更に粒径が0.1μmのポリスチレンラテックス粒子(以下、PSL粒子という。)を洗浄液1リットルに対して8×10-11重量%の割合で強制的に添加した。次に清浄なシリコンウェーハを用意し、このウェーハを上記洗浄液に10分間浸漬した後、超純水で1分間リンスを行い、遠心力によりウェーハ表面の液滴を除去し乾燥させた。それぞれ洗浄した後の各ウェーハにおけるPSL粒子の付着量をパーティクルカウンタ(KLA−Tencor社製、SP1)により測定した。図3に各洗浄液での洗浄における付着指数を示す。なお、付着指数とはPSL粒子を強制的に添加した純水を洗浄液としてウェーハの洗浄を行った際の付着量を1として相対的にPSL粒子の付着量の大小を示したものである。図3より明らかなように有機酸の種類に係わらず1×10-6〜1×10-3mol/lの濃度範囲で付着抑制効果が得られることが判る。
【0015】
<実施例2>
有機酸としてシュウ酸、マロン酸、コハク酸及びクエン酸を用意し、純水に対して各有機酸を3×10-5mol/l混合してそれぞれ洗浄液を用意した。更に粒径が0.1μm、0.178μm及び0.294μmのPSL粒子を洗浄液1リットルに対して8×10-11重量%の割合でそれぞれ強制的に添加した。次に清浄なシリコンウェーハを用意し、このウェーハを上記洗浄液に10分間浸漬した後、超純水で1分間リンスを行い、遠心力によりウェーハ表面の液滴を除去し乾燥させた。それぞれ洗浄した後の各ウェーハにおけるPSL粒子の付着量を実施例1と同一のパーティクルカウンタにより測定した。図4に各洗浄液での洗浄における付着指数を示す。図4より明らかなようにPSL粒子の粒径によって付着抑制効果の高い有機酸種に違いがあることが判る。シュウ酸は粒径0.1μm程度のPSL粒子に対して最も効果的である反面、粒径が大きくなるにしたがい付着抑制効果が低減していることが判る。
【0016】
<実施例
純水に3×10-5mol/lのクエン酸を混合して調製されたクエン酸洗浄液と、純水に3×10 -5 mol/lのシュウ酸を混合して調製されたシュウ酸洗浄液をそれぞれ用意した。第1槽にクエン酸洗浄液を、第2槽にシュウ酸洗浄液をそれぞれ貯え、第1槽に粒径が0.1μm及び0.294μmのPSL粒子を洗浄液1リットルに対してそれぞれ8×10-11重量%の割合で強制的に添加した。次に清浄なシリコンウェーハを用意し、このウェーハを上記第1槽に5分間浸漬した後、引き続き第2槽に5分間浸漬した。続いて 洗浄を終えたウェーハに対して超純水で1分間リンスを行い、遠心力によりウェーハ表面の液滴を除去し乾燥させた。それぞれ洗浄した後の各ウェーハにおけるPSL粒子の付着量を実施例1と同一のパーティクルカウンタにより測定した。
【0017】
<実施例
純水に3×10-5mol/lのクエン酸を混合して調製されたクエン酸洗浄液と、純水に3×10 -5 mol/lのシュウ酸を混合して調製されたシュウ酸洗浄液をそれぞれ用意した。第1槽にシュウ酸洗浄液、第2槽にクエン酸洗浄液をそれぞれ貯え、第1槽に粒径が0.1μm及び0.294μmのPSL粒子を洗浄液1リットルに対してそれぞれ8×10-11重量%の割合で強制的に添加した。清浄なシリコンウェーハを用意し、このウェーハを実施例3と同様の方法で洗浄を行い、PSL粒子の付着量を実施例1と同一のパーティクルカウンタにより測定した
【0018】
<比較例1>
純水をそのまま洗浄液とし、第1槽、第2槽に純水をそれぞれ貯え、第1槽に粒径が0.1μm及び0.294μmのPSL粒子を洗浄液1リットルに対してそれぞれ8×10-11重量%の割合で強制的に添加した。清浄なシリコンウェーハを用意し、このウェーハを実施例3と同様の方法で洗浄を行い、PSL粒子の付着量を実施例1と同一のパーティクルカウンタにより測定した。
<比較例2>
純水に3×10-5mol/lのシュウ酸を混合して洗浄液を用意した。第1槽にシュウ酸を貯え、第1槽に粒径が0.1μm及び0.294μmのPSL粒子を洗浄液1リットルに対してそれぞれ8×10-11重量%の割合で強制的に添加した。清浄なシリコンウェーハを用意し、このウェーハを上記第1槽に10分間浸漬した後、超純水で1分間リンスを行い、遠心力によりウェーハ表面の液滴を除去し乾燥させた。洗浄後のPSL粒子の付着量を実施例1と同一のパーティクルカウンタにより測定した。
【0019】
<比較例3>
純水に3×10-5mol/lのクエン酸を混合して洗浄液を用意した。第1槽にクエン酸を貯え、第1槽に粒径が0.1μm及び0.294μmのPSL粒子を洗浄液1リットルに対してそれぞれ8×10-11重量%の割合で強制的に添加した。清浄なシリコンウェーハを用意し、このウェーハを比較例2と同様の方法で洗浄を行い、PSL粒子の付着量を実施例1と同一のパーティクルカウンタにより測定した。
<比較評価>
比較例1の各PSL粒子の付着量を1としたときの実施例3,4及び比較例2、3における付着指数を表1に示す。
【0020】
【表1】

Figure 0003669419
【0021】
表1より明らかなように、比較例2では粒径の小さい粒子の抑制に適していることが判ったが、粒径が大きいPSL粒子ではあまり効果がなかった。また比較例3では粒径による抑制効果に違いはなかったが、それぞれ抑制する効果は十分とは言えなかった。これら比較例2、3に対し実施例3,4では1つの工程で洗浄を行うよりも抑制効果が高く、各粒径のPSL粒子の付着を抑制する効果が見られた
【0022】
【発明の効果】
以上述べたように、本発明によれば、有機酸又は有機酸塩を含む洗浄液で半導体基板を洗浄する工程を2つ以上含むことにより以下の効果を有する。2つ以上の洗浄工程のそれぞれの洗浄液に含まれる有機酸又は有機酸塩が互いに異なる種類であり、かつ特定の洗浄液により洗浄を行うと、半導体基板表面より付着する微粒子を良好に除去することができる。
【図面の簡単な説明】
【図1】 本発明の洗浄方法で洗浄したときの洗浄機構を示す図。
【図2】 本発明の予備工程で洗浄したときの洗浄機構を示す図。
【図3】 実施例1における洗浄後のウェーハ表面の微粒子付着指数を示す図。
【図4】 実施例2における洗浄後のウェーハ表面の微粒子付着指数を示す図。
【符号の説明】
11 半導体基板
12 微粒子
13 有機酸を含む洗浄液
14 第1洗浄槽
16 有機酸を含む洗浄液
17 第2洗浄槽
18 フッ酸と有機酸を含む洗浄液
18a フッ酸[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cleaning the surface of a semiconductor substrate such as a silicon wafer.
[0002]
[Prior art]
Metal impurities and fine particles adhere to the surface of this type of semiconductor substrate during the manufacturing process. As semiconductor devices are highly integrated and highly functional, it is increasingly required that the surface of the semiconductor substrate is not contaminated with these fine particles, and the cleaning technology for the semiconductor substrate for that purpose is extremely high in the entire semiconductor device technology. It has become important. As a conventional semiconductor substrate cleaning method, an RCA cleaning method using an SC-1 solution of hydrogen peroxide and ammonium hydroxide and an SC-2 solution of hydrogen peroxide and dilute hydrochloric acid is known. In this RCA cleaning method, a semiconductor substrate is first immersed in an SC-1 solution, and fine particles and organic residues are removed from the substrate due to the oxidizing and alkaline properties of this solution. That is, in the SC-1 solution, both oxidation and reduction reactions occur simultaneously, and ammonia reduction and hydrogen peroxide oxidation compete in the same tank, and at the same time, from the substrate surface by the etching action of the ammonium hydroxide solution. Remove by lifting off. Next, the semiconductor substrate is immersed in a hydrofluoric acid aqueous solution to remove the natural oxide film on the surface of the substrate, and then the semiconductor substrate is immersed in an acidic solution of the SC-2 solution so that alkali ions and metal impurities insoluble in the SC-1 solution are obtained. Remove. For this reason, in the RCA cleaning, the substrate surface cleaned by the etching action of the ammonium hydroxide solution is recleaned by cleaning the acidic solution.
[0003]
However, the wafer cleaned with the SC-1 solution of the RCA cleaning method has a problem that many COPs appear due to the etching action of the ammonium hydroxide solution. Here, COP (crystal-originated particles) refers to a shallow bottom etch pit that appears on the wafer surface. This COP is a kind of defect caused by a crystal grown by pulling up from a silicon melt, and is detected by counting with a commercially available laser particle counter. There is also a problem that fine particles made of oxide or the like cannot be sufficiently removed.
[0004]
Therefore, the present applicant has proposed a semiconductor substrate cleaning method in which COP is less likely to appear after cleaning, and both metal impurities and fine particles adhering to the surface of the semiconductor substrate are well removed (Japanese Patent Laid-Open No. 11-274128). In this method, a semiconductor substrate is cleaned using a cleaning solution containing 0.0001% by weight or more of an organic acid or organic acid salt or further 0.005 to 0.25% by weight of hydrofluoric acid. According to this cleaning method, when the substrate is immersed in the cleaning liquid, the substrate surface, the metal impurity peripheral surface, and the fine particle peripheral surface are each negatively charged. Since the surface potential of the substrate and the surface potentials of the metal impurities and fine particles are the same, the metal impurities and fine particles move into the cleaning liquid. The metal impurities that have migrated into the cleaning liquid form a metal complex salt, and this metal complex salt is also negatively charged, so that reattachment of the fine particles and the metal complex salt to the substrate is prevented. Therefore, when the substrate is pulled up from the cleaning liquid, both metal impurities and fine particles can be removed well, and a cleaned substrate can be obtained.
[0005]
[Problems to be solved by the invention]
However, in the cleaning method disclosed in Japanese Patent Application Laid-Open No. 11-274128, the organic acid or the organic acid salt has a limited particle size range that can be removed depending on the type, so the fine particles outside the particle size range that can be removed. Remains on the substrate surface.
It is an object of the present invention to provide a method for cleaning a semiconductor substrate that satisfactorily removes fine particles adhering to the surface of the semiconductor substrate.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 includes a citric acid, ethylenediaminetetraacetic acid or a salt thereof in a semiconductor substrate cleaning method including two or more steps of successively cleaning a semiconductor substrate with a cleaning liquid containing an organic acid or an organic acid salt. When the cleaning liquid is the first cleaning liquid and the cleaning liquid containing oxalic acid or a salt thereof is the second cleaning liquid, the semiconductor substrate is separately cleaned with the first cleaning liquid and the second cleaning liquid, and each cleaning is performed one or more times . A method for cleaning a semiconductor substrate is provided.
In the invention according to claim 1, by the two or more respective organic acid or organic acid salt contained in the cleaning liquid in the cleaning step to the different kinds each other physician, the fine particles to be removed with an organic acid or an organic acid salt The particle size range is expanded, and fine particles having a wide particle size range can be removed. In particular, a high removal effect can be obtained by washing with the first washing liquid and the second washing liquid containing organic acids or organic acid salts having different particle size ranges of the fine particles to be removed. In the above method, fine particles having a large particle diameter are removed by using a first cleaning liquid containing citric acid, ethylenediaminetetraacetic acid or a salt thereof, and small fine particles are removed by using a second cleaning liquid containing oxalic acid or a salt thereof.
[0007]
The invention according to claim 2 is the invention according to claim 1, wherein the total molar concentration of the organic acid or the organic acid salt contained in each of the two or more cleaning steps is from 1 × 10 −6 to 1 ×. This is a method for cleaning a semiconductor substrate at 10 −3 mol / l.
In the invention which concerns on Claim 2, in order to prevent the reattachment of microparticles | fine-particles to the board | substrate, the organic acid or organic acid salt of the said density | concentration range is preferable.
[0008]
The invention according to claim 3 is the invention according to claim 1 or 2 , and includes one or more of hydrofluoric acid and organic acid or organic acid salt before cleaning the semiconductor substrate in the first cleaning step. The semiconductor substrate cleaning method further includes a preliminary cleaning step of cleaning the semiconductor substrate with a cleaning liquid.
In the invention according to claim 3 , the natural oxide film formed on the surface of the semiconductor substrate can be removed by the hydrofluoric acid contained in the cleaning liquid in the preliminary process, and the fine particles on the natural oxide film can be transferred into the cleaning liquid.
[0009]
Invention is the invention according to claim 3, the first washing step and a method of cleaning a semi conductor substrate organic acid or an organic acid salt Ru allogeneic der contained in the cleaning liquid used in the preliminary washing process according to claim 4 It is.
In the invention according to claim 4 , the organic acid or the organic acid salt contained in the cleaning liquid used in the first cleaning process and the preliminary cleaning process is made the same type, so that the fine particles on the natural oxide film released in the cleaning liquid in the preliminary process. Can be prevented from reattaching to the substrate surface.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The method for cleaning a semiconductor substrate of the present invention is a cleaning method including two or more steps of successively cleaning a semiconductor substrate with a cleaning liquid containing an organic acid or an organic acid salt. In the cleaning liquid used in two or more cleaning steps, the type and concentration of the organic acid or organic acid salt are determined according to the particle size of the fine particles to be removed. The concentration of the organic acid or organic acid salt in the cleaning liquid is 1 × 10 −6 to 1 × 10 −3 mol / l. Preferably, it is 1 × 10 −5 to 5 × 10 −4 mol / l. If it is less than 1 × 10 −6 mol / l, the substrate surface and the peripheral surface of the fine particles are not sufficiently negatively charged, and if it exceeds 1 × 10 −3 mol / l, the amount of fine particles attached to the substrate increases. . As the organic acid or organic acid salt of the present invention, citric acid, ethylenediaminetetraacetic acid or a salt thereof is used for the first cleaning liquid in two or more cleaning steps, and oxalic acid or a salt thereof is used for the second cleaning liquid. . One or more acids are appropriately selected from the above organic acids according to the particle size of the fine particles.
[0011]
In the method for cleaning a semiconductor substrate of the present invention, it is preferable to perform a preliminary cleaning step before the first cleaning step . In this preliminary cleaning step, the substrate is cleaned with a cleaning solution containing one or more of hydrofluoric acid and organic acid or organic acid salt. The concentration of hydrofluoric acid used for the cleaning liquid in the preliminary cleaning step is 2.5 × 10 −3 to 1.25 × 10 −1 mol / l. In particular, 2.5 × 10 −3 to 5 × 10 −2 mol / l is preferable, and 2.5 × 10 −2 to 5 × 10 −2 mol / l is more preferable. If it is less than 2.5 × 10 −3 mol / l, the peeling action of the natural oxide film on the surface of the semiconductor substrate is poor, and if it exceeds 1.25 × 10 −1 mol / l, the cleaning liquid becomes a strong acid and the organic acid in the cleaning liquid or The dissociation of the organic acid salt is suppressed, the surface potential of the fine particles becomes positive, and the oxide film on the substrate surface is completely removed, so that the fine particles are reattached to the substrate surface. Examples of the organic acid or organic acid salt contained in the cleaning liquid in the preliminary cleaning step include organic acids such as formic acid, acetic acid, butyric acid, oxalic acid, malonic acid, succinic acid, citric acid, and ethylenediaminetetraacetic acid, or salts thereof. .
[0012]
The cleaning method according to claim 1 is the first step when fine particles 12 are attached to the surface of the semiconductor substrate 11 (FIG. 1A) as shown in FIGS. When the semiconductor substrate 11 is immersed in the first cleaning tank 14 in which the first cleaning liquid 13 containing citric acid, ethylenediaminetetraacetic acid or a salt thereof is stored (FIG. 1B), the first cleaning liquid 13 is an acidic solution. The surface and the fine particle peripheral surface are each negatively charged. Since the surface potential of the substrate 11 and each surface potential of the fine particles 12 are the same, the fine particles 12 repel the substrate 11 and move from the substrate 11 into the cleaning liquid 13. As a result, the surface potential of the fine particles 12 becomes the same minus as the surface potential of the substrate 11, so that the adhesion or reattachment to the substrate 11 is prevented. By using the first cleaning liquid 14, fine particles having a large particle diameter are removed. When the semiconductor substrate 11 is pulled up from the first cleaning tank 14 storing the first cleaning liquid 13 (FIG. 1C), fine particles 12 that could not be removed by the cleaning liquid 13 remain on the surface of the substrate 11. Then, the semiconductor substrate 11 is subsequently immersed in the second cleaning tank 17 in which the second cleaning liquid 16 containing oxalic acid or a salt thereof is stored (FIG. 1D). Here, the behavior of the fine particles in the cleaning liquid in the second cleaning tank is the same as the behavior in the cleaning in FIG. In the second cleaning tank 17, the fine particles 12 are released from the surface of the substrate 11 as in the first cleaning tank 14. By using the second cleaning liquid 16, fine particles having a small particle diameter are removed. When the semiconductor substrate 11 is pulled up from the second cleaning tank 17 in which the second cleaning liquid 16 is stored, the fine substrate 12 is removed and the cleaned substrate 11 is obtained (FIG. 1E).
[0013]
In the cleaning method according to the fifth aspect, as shown in FIGS. 2A to 2D, when the fine particles 12 are attached to the surface of the semiconductor substrate 11 (FIG. 2A), the first cleaning step is performed. When the semiconductor substrate 11 is immersed in a cleaning solution 18 containing hydrofluoric acid and an organic acid before cleaning (FIG. 2B), the natural oxide film 11a formed on the surface of the semiconductor substrate 11 is removed by the hydrofluoric acid 18a. The fine particles 12 on the natural oxide film 11 a move into the cleaning liquid 18. In other words, the natural oxide film 11a can be removed and the fine particles 12 on the natural oxide film 11a can be cleaned by a preliminary process in which hydrofluoric acid is added. Since the surface potential of the fine particles 12 becomes the same minus as the surface potential of the substrate 11, adhesion or reattachment to the substrate 11 is prevented (FIG. 2C). Subsequent to this preliminary step, the substrate is cleaned by the cleaning method according to the first aspect, whereby the fine particles are removed and a further cleaned substrate is obtained (FIG. 2D).
[0014]
【Example】
Next, examples of the present invention will be described.
<Example 1>
Formic acid, acetic acid, oxalic acid, malonic acid, succinic acid and citric acid were prepared as organic acids. Formic acid is 3 × 10 −7 mol / l, 3 × 10 −6 mol / l, 3 × 10 −5 mol / l, 3 × 10 −4 mol / l and 3 × 10 −3 mol / l with respect to pure water. l Each was mixed to prepare a cleaning solution. Also, acetic acid is 3 × 10 −7 mol / l, 3 × 10 −6 mol / l, 3 × 10 −5 mol / l, 3 × 10 −4 mol / l and 3 × 10 −3 with respect to pure water. A cleaning solution was prepared by mixing each mol / l. Also, oxalic acid was added to pure water at 3 × 10 −7 mol / l, 3 × 10 −6 mol / l, 3 × 10 −5 mol / l, 3 × 10 −4 mol / l and 3 × 10 − A cleaning solution was prepared by mixing 3 mol / l each. Further, malonic acid was added to pure water at 3 × 10 −7 mol / l, 3 × 10 −6 mol / l, 3 × 10 −5 mol / l, 3 × 10 −4 mol / l and 3 × 10 − A cleaning solution was prepared by mixing 3 mol / l each. In addition, succinic acid was added to pure water at 3 × 10 −7 mol / l, 3 × 10 −6 mol / l, 3 × 10 −5 mol / l, 3 × 10 −4 mol / l and 3 × 10 − A cleaning solution was prepared by mixing 3 mol / l each. Furthermore, citric acid was added to pure water at 3 × 10 −7 mol / l, 3 × 10 −6 mol / l, 3 × 10 −5 mol / l, 3 × 10 −4 mol / l and 3 × 10 − A cleaning solution was prepared by mixing 3 mol / l each. Further, polystyrene latex particles having a particle size of 0.1 μm (hereinafter referred to as PSL particles) were forcibly added to these cleaning liquids at a rate of 8 × 10 −11 wt% with respect to 1 liter of the cleaning liquid. Next, a clean silicon wafer was prepared, and the wafer was immersed in the cleaning solution for 10 minutes, rinsed with ultrapure water for 1 minute, and the droplets on the wafer surface were removed by centrifugal force and dried. The adhesion amount of PSL particles on each wafer after each cleaning was measured by a particle counter (SP1 manufactured by KLA-Tencor). FIG. 3 shows the adhesion index in cleaning with each cleaning solution. The adhesion index indicates the relative amount of adhesion of the PSL particles, with the adhesion amount when the wafer is cleaned using pure water to which PSL particles are forcibly added as the cleaning liquid. As can be seen from FIG. 3, the adhesion suppressing effect can be obtained in the concentration range of 1 × 10 −6 to 1 × 10 −3 mol / l regardless of the type of organic acid.
[0015]
<Example 2>
As organic acids, oxalic acid, malonic acid, succinic acid and citric acid were prepared, and 3 × 10 −5 mol / l of each organic acid was mixed with pure water to prepare a cleaning solution. Further, PSL particles having particle diameters of 0.1 μm, 0.178 μm, and 0.294 μm were forcibly added at a rate of 8 × 10 −11 wt% with respect to 1 liter of the cleaning liquid. Next, a clean silicon wafer was prepared, and the wafer was immersed in the cleaning solution for 10 minutes, rinsed with ultrapure water for 1 minute, and the droplets on the wafer surface were removed by centrifugal force and dried. The amount of PSL particles adhering to each wafer after being cleaned was measured using the same particle counter as in Example 1. FIG. 4 shows the adhesion index in cleaning with each cleaning solution. As apparent from FIG. 4, it can be seen that there is a difference in organic acid species having a high adhesion suppressing effect depending on the particle size of the PSL particles. It can be seen that oxalic acid is most effective for PSL particles having a particle size of about 0.1 μm, but the adhesion suppressing effect is reduced as the particle size is increased.
[0016]
<Example 3 >
Citric acid cleaning solution prepared by mixing 3 × 10 −5 mol / l citric acid with pure water, and oxalic acid cleaning solution prepared by mixing 3 × 10 −5 mol / l oxalic acid with pure water They were respectively prepared. A citric acid cleaning solution is stored in the first tank and an oxalic acid cleaning liquid is stored in the second tank, and PSL particles having particle diameters of 0.1 μm and 0.294 μm are stored in the first tank at 8 × 10 −11 for each liter of the cleaning liquid. It was forcibly added at a ratio by weight. Next, a clean silicon wafer was prepared, and this wafer was immersed in the first tank for 5 minutes and then immersed in the second tank for 5 minutes. Subsequently, the cleaned wafer was rinsed with ultrapure water for 1 minute, and the droplets on the wafer surface were removed by a centrifugal force and dried. The amount of PSL particles adhering to each wafer after being cleaned was measured using the same particle counter as in Example 1.
[0017]
<Example 4 >
Citric acid cleaning solution prepared by mixing 3 × 10 −5 mol / l citric acid with pure water, and oxalic acid cleaning solution prepared by mixing 3 × 10 −5 mol / l oxalic acid with pure water They were respectively prepared. Oxalic acid cleaning liquid is stored in the first tank and citric acid cleaning liquid is stored in the second tank, respectively, and PSL particles having particle diameters of 0.1 μm and 0.294 μm are stored in the first tank at 8 × 10 −11 weight per 1 liter of cleaning liquid, respectively. % Was forcibly added. A clean silicon wafer was prepared, this wafer was cleaned in the same manner as in Example 3, and the amount of PSL particles adhered was measured using the same particle counter as in Example 1 .
[0018]
<Comparative Example 1>
Pure water as a cleaning liquid, first tank, second tank stored respectively pure water, the first vessel respectively 8 × 10 particle size of the PSL particles 0.1μm and 0.294μm against washing liquid 1 liter - It was forcibly added at a rate of 11 % by weight. A clean silicon wafer was prepared, this wafer was cleaned in the same manner as in Example 3, and the amount of PSL particles adhered was measured using the same particle counter as in Example 1.
<Comparative example 2>
A cleaning solution was prepared by mixing 3 × 10 −5 mol / l oxalic acid with pure water. Oxalic acid was stored in the first tank, and PSL particles having a particle size of 0.1 μm and 0.294 μm were forcibly added to the first tank at a rate of 8 × 10 −11 wt% with respect to 1 liter of the cleaning liquid. A clean silicon wafer was prepared, this wafer was immersed in the first tank for 10 minutes, rinsed with ultrapure water for 1 minute, and the droplets on the wafer surface were removed by centrifugal force and dried. The adhesion amount of PSL particles after washing was measured using the same particle counter as in Example 1.
[0019]
<Comparative Example 3>
A washing solution was prepared by mixing pure water with 3 × 10 −5 mol / l citric acid. Citric acid was stored in the first tank, and PSL particles having a particle size of 0.1 μm and 0.294 μm were forcibly added to the first tank at a rate of 8 × 10 −11 wt% with respect to 1 liter of the cleaning liquid. A clean silicon wafer was prepared, this wafer was cleaned in the same manner as in Comparative Example 2, and the amount of PSL particles adhered was measured using the same particle counter as in Example 1.
<Comparison evaluation>
Table 1 shows the adhesion index in Examples 3 and 4 and Comparative Examples 2 and 3 when the adhesion amount of each PSL particle in Comparative Example 1 is 1.
[0020]
[Table 1]
Figure 0003669419
[0021]
As is apparent from Table 1, it was found that Comparative Example 2 was suitable for suppressing particles having a small particle size, but PSL particles having a large particle size were not very effective. Further, in Comparative Example 3, there was no difference in the suppression effect due to the particle size, but the suppression effect was not sufficient. Compared to these Comparative Examples 2 and 3 , Examples 3 and 4 showed a higher suppression effect than cleaning in one step, and an effect of suppressing the adhesion of PSL particles of each particle size was observed .
[0022]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained by including two or more steps of cleaning a semiconductor substrate with a cleaning liquid containing an organic acid or an organic acid salt . The organic acid or organic acid salt contained in each of the cleaning liquids of two or more cleaning steps is different from each other , and fine particles adhering from the surface of the semiconductor substrate can be satisfactorily removed by cleaning with a specific cleaning liquid. it can.
[Brief description of the drawings]
FIG. 1 is a view showing a cleaning mechanism when cleaning is performed by the cleaning method of the present invention.
FIG. 2 is a view showing a cleaning mechanism when cleaning is performed in a preliminary process of the present invention.
3 is a graph showing a particle adhesion index on the wafer surface after cleaning in Example 1. FIG.
4 is a graph showing a particle adhesion index on a wafer surface after cleaning in Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Semiconductor substrate 12 Fine particle 13 Cleaning liquid containing organic acid 14 First cleaning tank 16 Cleaning liquid containing organic acid 17 Second cleaning tank 18 Cleaning liquid containing hydrofluoric acid and organic acid 18a Hydrofluoric acid

Claims (4)

有機酸又は有機酸塩を含む洗浄液により半導体基板を洗浄する工程を連続して2つ以上含む半導体基板の洗浄方法において、
クエン酸、エチレンジアミン四酢酸又はその塩を含む洗浄液を第1洗浄液とし、シュウ酸又はその塩を含む洗浄液を第2洗浄液とするとき、
前記第1洗浄液及び前記第2洗浄液により半導体基板をそれぞれ別々に洗浄し、かつそれぞれの洗浄回数が1回以上であることを特徴とする半導体基板の洗浄方法。
In a method for cleaning a semiconductor substrate comprising two or more steps of successively cleaning a semiconductor substrate with a cleaning liquid containing an organic acid or an organic acid salt,
When a cleaning liquid containing citric acid, ethylenediaminetetraacetic acid or a salt thereof is used as the first cleaning liquid, and a cleaning liquid containing oxalic acid or a salt thereof is used as the second cleaning liquid,
A method of cleaning a semiconductor substrate, wherein the semiconductor substrate is separately cleaned with the first cleaning liquid and the second cleaning liquid, and each cleaning is performed one or more times .
2つ以上の洗浄工程のそれぞれの洗浄液に含まれる有機酸又は有機酸塩の全モル濃度が1×10-6〜1×10-3mol/lである請求項1記載の半導体基板の洗浄方法 The method for cleaning a semiconductor substrate according to claim 1, wherein the total molar concentration of the organic acid or the organic acid salt contained in each of the cleaning liquids in two or more cleaning steps is 1 × 10 −6 to 1 × 10 −3 mol / l. . 最初の洗浄工程で半導体基板を洗浄する前にフッ酸と有機酸又は有機酸塩を1種又は2種以上を含む洗浄液により半導体基板を洗浄する予備洗浄工程を更に含む請求項1又は2記載の半導体基板の洗浄方法。The first washing step further comprises claim 1 or 2, wherein the pre-cleaning step of cleaning the semiconductor substrate with the cleaning liquid containing one or more of hydrofluoric acid and an organic acid or an organic acid salt before washing the semiconductor substrate with A method for cleaning a semiconductor substrate. 最初の洗浄工程と予備洗浄工程で使用する洗浄液に含まれる有機酸又は有機酸塩が同種である請求項記載の半導体基板の洗浄方法。The method for cleaning a semiconductor substrate according to claim 3 , wherein the organic acid or the organic acid salt contained in the cleaning liquid used in the first cleaning step and the preliminary cleaning step is the same.
JP2000063186A 2000-03-08 2000-03-08 Semiconductor substrate cleaning method Expired - Lifetime JP3669419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063186A JP3669419B2 (en) 2000-03-08 2000-03-08 Semiconductor substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063186A JP3669419B2 (en) 2000-03-08 2000-03-08 Semiconductor substrate cleaning method

Publications (2)

Publication Number Publication Date
JP2001250801A JP2001250801A (en) 2001-09-14
JP3669419B2 true JP3669419B2 (en) 2005-07-06

Family

ID=18583090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063186A Expired - Lifetime JP3669419B2 (en) 2000-03-08 2000-03-08 Semiconductor substrate cleaning method

Country Status (1)

Country Link
JP (1) JP3669419B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5832468B2 (en) * 2013-03-26 2015-12-16 AvanStrate株式会社 Manufacturing method of glass substrate, manufacturing method of glass substrate for display, and cleaning method of end surface of glass substrate for display
KR101647586B1 (en) * 2015-02-24 2016-08-10 강원대학교산학협력단 Method for Cleaning Semiconductor Substrate Using Gas-Liquid Hybrid Atmospheric Pressure Plasma
CN112725814B (en) * 2020-12-23 2023-09-05 富联裕展科技(深圳)有限公司 cleaning method

Also Published As

Publication number Publication date
JP2001250801A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
KR100340274B1 (en) Cleaning Method of Semiconductor Substrate
TWI302950B (en) Cleaning solution and method of cleanimg board of semiconductor device
JP2586304B2 (en) Semiconductor substrate cleaning solution and cleaning method
US20040099290A1 (en) Method for cleaning a surface of a substrate
JP2003221600A (en) Substrate surface-cleaning solution and method of cleaning the same
JP2010109384A (en) Method of removing metal in scrubber
JP2003289060A (en) Cleaning liquid for substrate for semiconductor device and cleaning method
WO2004042811A1 (en) Cleaning composition and method of cleaning therewith
JPH08195369A (en) Cleaning method of substrate
WO2004076605B1 (en) Dilute sulfuric peroxide at point-of-use
JP3669419B2 (en) Semiconductor substrate cleaning method
JP3239998B2 (en) Semiconductor substrate cleaning method
JP2003068696A (en) Method for cleaning substrate surface
JPH1187281A (en) Cleaning of silicon wafer
JP2003088817A (en) Method for cleaning surface of substrate
JP2002100599A (en) Washing method for silicon wafer
JPH0786220A (en) Method of cleaning semiconductor wafer
JP3539469B2 (en) Semiconductor substrate cleaning solution and method for cleaning the same
JP2001217215A (en) Composition and method for treating surface of semiconductor substrate
JPH0831781A (en) Washing chemicals
JP3454302B2 (en) Semiconductor substrate cleaning method
JP4026384B2 (en) Semiconductor substrate cleaning method
JP2001326209A (en) Method for treating surface of silicon substrate
WO1998001897A1 (en) Method of cleaning semiconductor device
JP2000277473A (en) Cleaning method of silicon wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Ref document number: 3669419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term