JPH0621561A - Fluoride glass optical waveguide - Google Patents

Fluoride glass optical waveguide

Info

Publication number
JPH0621561A
JPH0621561A JP4176952A JP17695292A JPH0621561A JP H0621561 A JPH0621561 A JP H0621561A JP 4176952 A JP4176952 A JP 4176952A JP 17695292 A JP17695292 A JP 17695292A JP H0621561 A JPH0621561 A JP H0621561A
Authority
JP
Japan
Prior art keywords
optical waveguide
glass
zblan
refractive index
fluoride glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4176952A
Other languages
Japanese (ja)
Inventor
Makoto Furuguchi
誠 古口
Hiroshi Takahashi
高橋  宏
Kunio Ogura
邦男 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4176952A priority Critical patent/JPH0621561A/en
Publication of JPH0621561A publication Critical patent/JPH0621561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To restrain generation of cracks, and obtain an optical waveguide having large specific refractive index difference, by using fluorine based resin for the clad part of a fluoride optical waveguide composed of core glass wherein Pr is added to ZBLAN based glass. CONSTITUTION:In a fluoride glass optical waveguide having a core part wherein ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) based fluoride glass is used as the main component and Pr is contained in it, the clad part of the fluoride glass optical waveguide is constituted of fluororesin. Fluorine based resin, e.g. tetrafluoroethylene based resin has a softening point approximate to that of the ZBLAN based glass, so that wire drawing is easy and an optical waveguide for optical amplification which has large specific refractive index difference can be obtained. Thereby an optical waveguide wherein cracks are hard to be generated and specific refractive index difference is large can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として光通信システ
ムの中継部に使用される光増幅用光導波路(光ファイバ
を含む)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplification optical waveguide (including an optical fiber) used mainly in a repeater section of an optical communication system.

【0002】[0002]

【従来技術】光通信システムは発光部、中継部および受
光部から構成され、これらの間は光導波路で結ばれてい
る。この中継部は伝送する信号光が光導波路中を伝搬す
る際の伝送損失およびパルスの広がりを補償するもので
あり、従来その構成は信号光を一度電気信号に変換して
補償した後、半導体レーザを用いて信号光に変換すると
いうものであった。しかし、この方法は装置の構成が極
めて複雑であるため高価である、という欠点があった。
そこで最近、発光源として希土類元素、例えばPrを用
い、これをホストガラスにドープしたものをコア部とし
て光導波路を作製し、この光導波路により波長が1.3μ
mまたは1.55μmの信号光を直接増幅することが試みら
れている。
2. Description of the Related Art An optical communication system comprises a light emitting section, a relay section and a light receiving section, and an optical waveguide is connected between them. This repeater is for compensating the transmission loss and the spread of the pulse when the signal light to be transmitted propagates in the optical waveguide. Conventionally, the configuration has been such that the signal light is once converted into an electric signal and compensated, and then the semiconductor laser is compensated. Was used to convert to signal light. However, this method has a drawback that it is expensive because the structure of the device is extremely complicated.
Therefore, recently, a rare earth element such as Pr was used as a light emitting source, and a host glass was doped with this to form an optical waveguide.
Attempts have been made to directly amplify signal light of m or 1.55 μm.

【0003】しかしながら、Pr、具体的には例えば PrF
3 をドープした ZBLAN系シングルモード型光導波路で
は、 1.3μmでの光増幅が可能であるものの、高出力の
大型レーザを用いて励起しなければ利得が低い、という
問題が生じている。これはPrが1.02μmの励起光を効率
よく吸収しないことが原因である。具体的には 1.3μm
で約10dBの利得を得るために、波長が1.02μmで 500〜
900mWという高出力の励起光をコア部に入れる必要があ
る。このために現在は光導波路のコア部の径を小さく
し、励起光をレンズ等を用いてこのコア部に集中的に入
れることが行われている。このように小さいコア径で、
所定のシングルモード条件を維持するためにはコア部と
クラッド部の比屈折率差Δを2%以上とすることが望まれ
ている。
However, Pr, specifically PrF, for example,
The ZBLAN single-mode optical waveguide doped with 3 is capable of optical amplification at 1.3 μm, but has a problem that the gain is low unless it is excited by a large laser with high output. This is because Pr does not absorb the 1.02 μm excitation light efficiently. Specifically, 1.3 μm
At a wavelength of 1.02 μm to obtain a gain of approx.
It is necessary to put high-power pumping light of 900 mW into the core. For this reason, it is currently practiced to reduce the diameter of the core portion of the optical waveguide and concentrate the excitation light into this core portion using a lens or the like. With such a small core diameter,
In order to maintain a predetermined single mode condition, it is desired that the relative refractive index difference Δ between the core portion and the cladding portion be 2% or more.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、比屈折
率差Δを大きくするためにはコア部用の ZBLAN系ガラス
に多量の鉛(Pb)をドープし、クラッド部用の ZBLAN系ガ
ラスに多量のハフニウム(Hf)をドープしなければならな
いが、この場合には、双方のガラスの熱膨張係数が大き
く異なってしまい、熱処理中にプリフォームが割れる
(クラックが発生する)という問題が生じることがわか
っている。
However, in order to increase the relative refractive index difference Δ, the ZBLAN glass for the core portion is doped with a large amount of lead (Pb), and the ZBLAN glass for the cladding portion is mixed with a large amount. Hafnium (Hf) must be doped, but in this case, the coefficient of thermal expansion of both glasses is significantly different, and it was found that the preform cracks (cracks occur) during heat treatment. ing.

【0005】[0005]

【目的】本発明の目的は、コア部とクラッド部の比屈折
率差Δを大きく取れ、しかもプリフォーム作製中にクラ
ックが生じない、光増幅用フッ化物ガラス光導波路を提
供することにある。
[Object] It is an object of the present invention to provide a fluoride glass optical waveguide for optical amplification, in which the relative refractive index difference Δ between the core portion and the cladding portion can be made large and cracks do not occur during the production of the preform.

【0006】[0006]

【課題を解決するための手段】本発明は、 ZBLAN系のフ
ッ化物ガラスを主成分とし、これにPrを含せしめたコア
部を有するフッ化物ガラス光導波路において、クラッド
部をフッ素系樹脂にて形成したことを特徴とする。
Means for Solving the Problems The present invention is based on a ZBLAN-based fluoride glass as a main component, and in a fluoride glass optical waveguide having a core portion containing Pr, the clad portion is made of a fluorine-based resin. It is characterized by being formed.

【0007】[0007]

【作用】これを見いだすに至った技術的背景を以下に述
べる。 比屈折率差Δを大きくしようと、ClやMg等の種々のド
ーパントをコア部用、クラッド部用それぞれの ZBLAN系
ガラスにドープし、熱膨張係数の差を少なくすることを
検討したが、Δを大きくし、かつクラックを完全に防止
することはできなかった。 光導波路が光増幅用として数mから20m程度の長さで
使われる場合には、比較的伝送損失が大きくてもよいこ
とからプラスチックをクラッド部形成用材料として用い
ることを考えた。しかし、 ZBLAN系ガラスの軟化点は約
300℃であるのに対して通常のプラスチックは約 200℃
以下で軟化するため、プリフォームは作製できても線引
が難しいことが予想された。 そこで種々のプラスチックを検討した結果、後述する実
施例に示すようにフッ素系樹脂をクラッド部に用いるこ
とが望ましいという結論を得た。理由は軟化点が ZBLAN
系ガラスのそれに近いため線引が容易であり、かつΔの
大きい光増幅用光導波路が得られるからである。尚、以
下の実施例ではテトラフルオロエチレン系樹脂を用いて
いるが、他のフッ素系樹脂を用いても同様の効果が見ら
れた。
[Function] The technical background that led to the finding is described below. In order to increase the relative refractive index difference Δ, various dopants such as Cl and Mg were doped into the ZBLAN glass for the core and the cladding to reduce the difference in thermal expansion coefficient. However, it was not possible to completely prevent cracks. When the optical waveguide is used for optical amplification with a length of several m to 20 m, it is considered that the plastic is used as the material for forming the clad portion because the transmission loss may be relatively large. However, the softening point of ZBLAN glass is about
Normal plastic is about 200 ℃, while it is 300 ℃
Since it softens below, it was expected that drawing would be difficult even if a preform could be produced. As a result of studying various plastics, it was concluded that it is desirable to use a fluorine-based resin in the clad portion as shown in Examples described later. The reason is that the softening point is ZBLAN
This is because drawing is easy because it is close to that of the system glass, and an optical amplification optical waveguide with a large Δ can be obtained. In addition, although a tetrafluoroethylene-based resin is used in the following examples, the same effect was observed even when another fluorine-based resin was used.

【0008】[0008]

【実施例】以下本発明の実施例を詳細に説明する。コア
部用ガラスとしてPrを 2000ppmドープした ZBLAN系ガラ
スを溶解し鋳型に鋳込むことにより、外径 8mmのコア部
用ロッドを作製した。この表面を研磨し不活性ガス中、
具体的には窒素ガス中で加熱することにより、外径 500
μmのコア部用ロッドを作製した。またクラッド部用ガ
ラスとしては外径32mm、内径 1.0mmのテトラフルオロエ
チレン−ヘキサフルオロプロピレン共重合体のパイプを
用いた。コア部をクラッド部に挿入し、この状態で両者
を真空中で約 150℃に加熱し、クラッド用パイプを軟化
させて一体化し、プリフォームとなし、これを線引する
ことによりファイバ型のシングルモード光導波路を得
た。この光導波路はコア部の径が 2μmで比屈折率差Δ
が4%であった。また、伝送損失を測定したところ波長
1.3μmで 1dB/mであった。
EXAMPLES Examples of the present invention will be described in detail below. ZBLAN-based glass doped with 2000 ppm of Pr was melted as glass for the core portion and cast into a mold to prepare a rod for the core portion having an outer diameter of 8 mm. Polish this surface in an inert gas,
Specifically, by heating in nitrogen gas, the outer diameter of 500
A μm core rod was produced. As the glass for the clad portion, a pipe of tetrafluoroethylene-hexafluoropropylene copolymer having an outer diameter of 32 mm and an inner diameter of 1.0 mm was used. The core part is inserted into the clad part, and in this state, both are heated to about 150 ° C in vacuum to soften the clad pipe and integrate it into a preform. A mode optical waveguide was obtained. This optical waveguide has a core diameter of 2 μm and a relative refractive index difference Δ
Was 4%. Also, when the transmission loss was measured, the wavelength
It was 1 dB / m at 1.3 μm.

【0009】この光導波路の光増幅特性を調べるため第
1図に示す装置を用いた。チタンサファイアレーザ1か
らの励起光 (波長約1.02μm) をレンズ2aを介してシ
ングルモードのダミーファイバ7aに入射し、他方に半
導体レーザ3から波長 1.3μmの信号光をダミーファイ
バ7bに入射して、これらをカップラー4を用いて合波
させた。この光をレンズ2bを用いて本発明の光導波
路、すなわちファイバ5に入射し、スペクトルアナライ
ザ6で測定した。その結果、表1に示すように波長 1.3
μmで15dBの利得が得られた。
The device shown in FIG. 1 was used to examine the optical amplification characteristics of this optical waveguide. Excitation light (wavelength: about 1.02 μm) from the titanium sapphire laser 1 is made incident on the single mode dummy fiber 7a via the lens 2a, and signal light having a wavelength of 1.3 μm is made incident on the dummy fiber 7b from the semiconductor laser 3 on the other side. , And these were multiplexed using the coupler 4. This light was made incident on the optical waveguide of the present invention, that is, the fiber 5 using the lens 2b, and was measured by the spectrum analyzer 6. As a result, as shown in Table 1, the wavelength of 1.3
A gain of 15 dB was obtained at μm.

【0010】[0010]

【表1】 [Table 1]

【0011】比較例として、実施例と同様に、外径 8mm
で 2000ppmのPrと 8mol%のPbをドープした ZBLAN系ロッ
ドを作製し、延伸して外径 3mmのコア部用ロッドを得
た。また屈折率を調節するためにHfを50mol%ドープした
ZBLAN系ガラスを溶解し鋳型に鋳込むことにより外径15
mmのロッドを作製し、これに超音波ドリルで穴開け加工
することによってクラッド部用パイプを得た。このパイ
プに前記ロッドを挿入した状態で両者を約 300℃に加熱
して一体化した後に、更に延伸することを繰り返してシ
ングルモード型光導波路用プリフォームの作製を試み
た。しかしながら、表2に示すように、ロッドとパイプ
を一体化した後にクラックが生じる確率が高く、クラッ
クのないプリフォームを得ることは極めて難しかった。
ようやくクラックのないプリフォームを1本得たので、
これを線引し、外径 125μm、コア径3μm、比屈折率
差Δ3%のファイバ型の光導波路を得た。この光導波路の
光増幅特性を調べたところ、表1に示すように波長 1.3
μmでの利得は11dBであった。
As a comparative example, the outer diameter is 8 mm as in the example.
Then, a ZBLAN rod doped with 2000 ppm of Pr and 8 mol% of Pb was prepared and stretched to obtain a core rod having an outer diameter of 3 mm. Also, Hf was doped with 50 mol% to adjust the refractive index.
Outer diameter of 15 by melting ZBLAN glass and casting in a mold
A mm-sized rod was produced, and an ultrasonic drill was used to make a hole in the rod to obtain a pipe for the clad portion. The rod was inserted into this pipe, both were heated to about 300 ° C. to be integrated, and then further stretched, and an attempt was made to produce a preform for a single-mode optical waveguide. However, as shown in Table 2, there is a high probability that cracks will occur after the rod and the pipe are integrated, and it was extremely difficult to obtain a preform without cracks.
I finally got one crack-free preform,
This was drawn to obtain a fiber type optical waveguide having an outer diameter of 125 μm, a core diameter of 3 μm, and a relative refractive index difference Δ3%. When the optical amplification characteristics of this optical waveguide were examined, as shown in Table 1, the wavelength of 1.3
The gain at μm was 11 dB.

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【発明の効果】本発明によれば、 ZBLAN系ガラスにPrを
加えたコアガラスから成るフッ化物光導波路のクラッド
部にフッ素系樹脂を用いたことにより、クラックを生じ
にくくしかも比屈折率差Δの大きな光導波路を得ること
ができる。
EFFECTS OF THE INVENTION According to the present invention, since the fluorine resin is used in the cladding portion of the fluoride optical waveguide made of the core glass obtained by adding Pr to the ZBLAN glass, cracks are less likely to occur and the relative refractive index difference Δ It is possible to obtain a large optical waveguide.

【図面の簡単な説明】[Brief description of drawings]

【図1】光増幅特性評価装置の模式図。FIG. 1 is a schematic diagram of an optical amplification characteristic evaluation device.

【符号の説明】[Explanation of symbols]

1 チタンサファイアレーザ 2 レンズ 3 半導体レーザ 4 カップラー 5 ファイバ 6 スペクトルアナライザ 7 ダミーファイバ 1 titanium sapphire laser 2 lens 3 semiconductor laser 4 coupler 5 fiber 6 spectrum analyzer 7 dummy fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/07 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01S 3/07 8934-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ZrF4 -BaF2 -LaF3 -AlF3 -NaF (ZBLAN)
系のフッ化物ガラスを主成分とし、これにプラセオジウ
ム (Pr) を含有せしめたコア部を有するフッ化物ガラス
光導波路において、該フッ化物ガラス光導波路のクラッ
ド部がフッ素系樹脂から成ることを特徴とするフッ化物
ガラス光導波路。
1. ZrF 4 -BaF 2 -LaF 3 -AlF 3 -NaF (ZBLAN)
In a fluoride glass optical waveguide having a core portion made of a system fluoride glass and containing praseodymium (Pr) therein, the cladding portion of the fluoride glass optical waveguide is made of a fluorine resin. Fluoride glass optical waveguide.
JP4176952A 1992-07-03 1992-07-03 Fluoride glass optical waveguide Pending JPH0621561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4176952A JPH0621561A (en) 1992-07-03 1992-07-03 Fluoride glass optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4176952A JPH0621561A (en) 1992-07-03 1992-07-03 Fluoride glass optical waveguide

Publications (1)

Publication Number Publication Date
JPH0621561A true JPH0621561A (en) 1994-01-28

Family

ID=16022597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4176952A Pending JPH0621561A (en) 1992-07-03 1992-07-03 Fluoride glass optical waveguide

Country Status (1)

Country Link
JP (1) JPH0621561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617040A (en) * 2010-12-10 2012-08-01 肖特公司 Glass optical waveguides incorporating materials of interest and methods of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617040A (en) * 2010-12-10 2012-08-01 肖特公司 Glass optical waveguides incorporating materials of interest and methods of fabricating the same

Similar Documents

Publication Publication Date Title
JP4755114B2 (en) Double clad optical fiber with glass core doped with rare earth metal
Stone et al. Neodymium‐doped silica lasers in end‐pumped fiber geometry
EP1147579B1 (en) Semiconductor-solid state laser optical waveguide pump device and method
US5251062A (en) Tellurite glass and fiber amplifier
EP0522201B1 (en) Optical fiber amplifier with filter
WO2013038794A1 (en) Optical fiber, optical fiber laser, optical fiber amplifier, and method for producing optical fiber
JP4723569B2 (en) Glass for optical amplifier fiber
JP2774963B2 (en) Functional optical waveguide medium
JP3461358B2 (en) Optical amplifier with doped active optical fiber
US6836356B2 (en) Alkali-metal-free phosphate glass with dn/dT ≈ 0 for use in fiber amplifiers
JPH0621561A (en) Fluoride glass optical waveguide
US5805332A (en) Optical fiber amplifier
Wang et al. All-glass high NA Yb-doped double-clad laser fibres made by outside-vapour deposition
JPH07147441A (en) Optical amplifier with doped fluoride glass optical fiber and its manufacture
EP1533634B1 (en) Optical fiber, optical fiber coupler including the same, erbium loaded optical fiber amplifier and light guide
Najafi Overview of Nd-and Er-doped glass integrated optics amplifiers and lasers
JP3078050B2 (en) Optical functional glass
JP3108210B2 (en) Fluoride glass optical waveguide
JPH0521874A (en) Optical active device
JP3154274B2 (en) Manufacturing method of fluoride glass optical waveguide base material
JP2931694B2 (en) Optical functional glass
JPH0621560A (en) Fluoride glass optical waveguide
JPH0692665A (en) Production of fluoride glass optical waveguide
JPH0529699A (en) Optical functional glass
JP2001185789A (en) Light amplifying medium and resin coat light amplifying medium and light amplifier and laser device