JPH06213821A - Foreign-matter inspecting apparatus for semiconductor wafer - Google Patents

Foreign-matter inspecting apparatus for semiconductor wafer

Info

Publication number
JPH06213821A
JPH06213821A JP799593A JP799593A JPH06213821A JP H06213821 A JPH06213821 A JP H06213821A JP 799593 A JP799593 A JP 799593A JP 799593 A JP799593 A JP 799593A JP H06213821 A JPH06213821 A JP H06213821A
Authority
JP
Japan
Prior art keywords
wafer
threshold value
chip
foreign matter
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP799593A
Other languages
Japanese (ja)
Inventor
Masami Ikoda
まさみ 井古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP799593A priority Critical patent/JPH06213821A/en
Publication of JPH06213821A publication Critical patent/JPH06213821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy in foreign-matter inspection by using a threshold value, which is to become the foreign-matter judging reference used in the foreign- matter inspection, as the optimum value for every wafer or every chip in the same wafer. CONSTITUTION:Laser is emitted from an laser emitting device 21 on the specified region of a semiconductor wafer 2 on an X-Y stage 11. The reflected light is detected with a reflected light detector 22. The detector 22 outputs the lightness signal having the value corresponding to the irregularities of the wafer surface based on the reflected light. The lightness signal of one chip is stored in a memory device 31. Then, the signal is compared with the lightness signal associated with the same pattern of the neighboring chip. The difference is computed in an operator 32. The difference is compared with a threshold value T in a comparator 34. It is judged that there is a foreign matter when the difference is larger than the threshold value. The processing for setting the threshold value is performed before the foreign-matter inspection. In this processing, the laser is cast on the specified sampling chip on the wafer. Based on the reflected light, a threshold-value setting and storing device 33 determines the threshold value T suitable for this wafer or the threshold value suitable for every chip.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造技術さらに
は半導体ウェハ表面の異物検査に適用して特に有効な技
術に関し、例えば、ウェハ内で互いに隣接するチップの
パターンデータを比較し、この差異により異物の有無を
判定する2チップ比較法による異物検査に利用して有用
な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing technique and a technique which is particularly effective when applied to a foreign matter inspection on a semiconductor wafer surface. The present invention relates to a technique useful for a foreign matter inspection by a two-chip comparison method for determining the presence or absence of a foreign matter by using.

【0002】[0002]

【従来の技術】半導体装置を製造するに当たり、その製
造歩留りを上げるために主要製造プロセス終了毎に、配
線の断線/短絡の原因となるウェハ表面の異物検査が行
われる。かかる検査に用いられる異物検査装置は、例え
ば「ジェイ・ジェイ・エイ・ピー・シリーズ3、マイク
ロプロセス89;第371頁〜第376頁」にて公知と
なっている。この検査装置による異物検査は、概ね以下
の手順で行われる。 被検査物たる半導体ウェハの、特定チップの全面に異
物検査用のレーザを照射してその反射光の明度を反射光
検出器(例えばCCD撮像デバイス)により検出する。
そして、これに隣接するチップの全面に同様にレーザを
照射しその反射光の明度を検出する。 2つのチップの同一パターンから反射された夫々の反
射光の明度を表す信号(明度信号)を互いに比較し、明
度の差分を表す検査信号を得る。 このようにして得られた検査信号が表わす明度の差分
が所定の閾値より低いか否かを判定し、閾値をより低い
ときには異物がないと判定し、閾値より高いならばウェ
ハ上に異物が付着していると判定する。 このような手法により異物の有無が判定できるのは、互
いに比較される2つのチップには同一のパターンが形成
され、同一箇所から得られた反射光の明度は略同一の値
となり、仮に異物が付着していないのであれば、上記差
分を表わす検査信号は、「0」又はこれに近い値を表す
はずだからである。
2. Description of the Related Art In manufacturing a semiconductor device, in order to increase the manufacturing yield, a foreign material inspection on the surface of a wafer that causes a disconnection / short circuit of wiring is carried out after each main manufacturing process. The foreign matter inspection apparatus used for such inspection is known, for example, in "JAP Series 3, Micro Process 89; pages 371 to 376". The foreign substance inspection by this inspection device is generally performed in the following procedure. A semiconductor chip, which is an object to be inspected, is irradiated with a laser for inspecting foreign matter on the entire surface of a specific chip, and the brightness of the reflected light is detected by a reflected light detector (for example, a CCD image pickup device).
Then, the entire surface of the chip adjacent thereto is similarly irradiated with laser to detect the brightness of the reflected light. The signals (brightness signals) representing the brightness of the respective reflected lights reflected from the same pattern of the two chips are compared with each other to obtain the inspection signal representing the difference in the brightness. It is determined whether or not the difference in lightness represented by the inspection signal obtained in this way is lower than a predetermined threshold value.If the threshold value is lower, it is determined that there is no foreign matter, and if it is higher than the threshold value, foreign matter adheres to the wafer. It is determined that The presence or absence of foreign matter can be determined by such a method because the same pattern is formed on two chips to be compared with each other, and the brightness of the reflected light obtained from the same location has substantially the same value. This is because the inspection signal representing the above difference should represent "0" or a value close thereto, if it is not attached.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た技術には、次のような問題のあることが本発明者らに
よってあきらかとされた。即ち、検査対象の半導体ウェ
ハは、各ウェハ毎に加工精度が異なる。更には、同一ウ
ェハに形成されたチップ間でも、形成される位置によっ
て加工精度も異なってくる。このようにウェハ毎に加工
精度が異なるとき、又は同一ウェハ内の異なるチップ毎
に加工精度が異なる時には、仮に同一パターンにレーザ
光を照射してもその反射光の明度が僅かに異なることと
なる。また、ウェハ表面に形成される配線層等の膜質
(例えば粗密さ)もウェハの中心部分と外周部分とでは
異なることも知られており、このような場合にも反射光
の明度が異なってくる。従って、上記従来の異物検査法
をそのまま利用した場合、上記加工精度又は膜質の違い
による反射光の明度の差異を誤って異物と判定する虞が
生じる。このため、2チップ比較法では、検査対象とな
るウェハの加工精度や、膜質の差異によって発生し得る
明度の最大値を考慮して、異物判定用の閾値をこの値よ
り大きく設定し、上記原因により生じた明度差を異物と
誤判定しないようにしていた。
However, the present inventors have clarified that the above-mentioned technique has the following problems. That is, the semiconductor wafer to be inspected has different processing accuracy for each wafer. Further, even between chips formed on the same wafer, the processing accuracy differs depending on the position where they are formed. In this way, when the processing accuracy is different for each wafer, or when the processing accuracy is different for each different chip in the same wafer, even if the same pattern is irradiated with laser light, the brightness of the reflected light will be slightly different. . It is also known that the film quality (for example, the roughness) of the wiring layer formed on the wafer surface is different between the central portion and the outer peripheral portion of the wafer, and in such a case, the brightness of the reflected light also differs. . Therefore, when the conventional foreign matter inspection method is used as it is, there is a possibility that the difference in the brightness of the reflected light due to the difference in the processing accuracy or the film quality is erroneously determined as the foreign matter. For this reason, in the two-chip comparison method, the threshold value for foreign matter determination is set to be larger than this value in consideration of the processing accuracy of the wafer to be inspected and the maximum value of lightness that can occur due to the difference in film quality, and Therefore, the difference in brightness caused by is not mistakenly determined as a foreign substance.

【0004】しかしながら、上記のように閾値を、下地
の加工精度や膜質の差異により生じ得る明度差の最大の
ものに合わせて設定すると、微細な異物により明度差が
生じても、これを異物と判定することができず、異物判
定の精度向上が図れない。本発明はかかる事情に鑑みて
なされたもので、異物の有無の判定基準となる閾値を、
検査対象となるウェハ毎、若くは同一ウェハの異なるチ
ップ毎に、最適の値とし、もって、精度の高い異物検査
を可能にした異物検査装置を提供することをその主たる
目的とする。
However, if the threshold value is set in accordance with the maximum difference in lightness that can occur due to the difference in the processing accuracy of the underlayer and the difference in film quality as described above, even if the difference in lightness occurs due to minute foreign matter, this is regarded as foreign matter. Since it cannot be determined, the accuracy of foreign matter determination cannot be improved. The present invention has been made in view of such circumstances, a threshold value as a criterion for the presence or absence of foreign matter,
It is a main object of the present invention to provide a foreign matter inspection apparatus that has an optimum value for each wafer to be inspected, or each different chip of the same wafer, and thus enables highly accurate foreign matter inspection.

【0005】[0005]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を説明すれば、下記のと
おりである。即ち、本発明の半導体ウェハの異物検査装
置は、試料台に搭載された半導体ウェハの所定領域に光
線を照射する光線発生源と、当該反射光を検出してウェ
ハ表面の凹凸に応じた値を有する検査信号を出力する反
射光検出手段と、前記検査信号が表す値が所定の閾値よ
り大きか否かに応じて当該ウェハ上の異物の有無を判定
する異物判定手段と、前記ウェハの特定領域で求められ
た前記検査信号に基いて前記閾値を決定する閾値決定手
段とを具えたものである。
The typical ones of the inventions disclosed in the present application will be outlined below. That is, the semiconductor wafer foreign matter inspection apparatus of the present invention, a light source for irradiating a predetermined area of the semiconductor wafer mounted on the sample table with a light source, and a value corresponding to the unevenness of the wafer surface by detecting the reflected light. Reflected light detection means for outputting an inspection signal, foreign matter determination means for determining the presence or absence of foreign matter on the wafer according to whether the value represented by the inspection signal is larger than a predetermined threshold, and a specific area of the wafer And a threshold value deciding means for deciding the threshold value based on the inspection signal obtained in step 1.

【0006】[0006]

【作用】異物の有無の判定に用いられる、反射光の明度
に係わる検査信号の閾値が、検査対象となるチップ、若
くはウェハの加工精度、製造時に生じる膜質のバラツキ
等に応じて適宜決定されるので、ウェハ上の異物の判定
を精度良く行なうことができる。
The threshold value of the inspection signal relating to the brightness of the reflected light, which is used to determine the presence or absence of foreign matter, is appropriately determined according to the processing accuracy of the chip to be inspected, that is, the processing accuracy of the wafer, the variation in film quality that occurs during manufacturing, etc. Therefore, the foreign matter on the wafer can be accurately determined.

【0007】[0007]

【実施例】以下、本発明の一実施例を添付図面を参照し
て説明する。図1は、本実施例の2チップ比較による異
物検査を行うための異物検査装置1の概略を示す説明図
である。この図に示すように、異物検査装置1は、試料
台(X−Yステージ)を移動させるための駆動系10
と、レーザ照射装置を中心とした光学系20と、レーザ
反射光を検出して検出結果を処理する信号処理系30と
に分けられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an explanatory diagram showing an outline of a foreign substance inspection apparatus 1 for performing a foreign substance inspection by two-chip comparison of the present embodiment. As shown in this figure, the foreign matter inspection apparatus 1 includes a drive system 10 for moving a sample stage (XY stage).
And an optical system 20 centering on the laser irradiation device and a signal processing system 30 for detecting the laser reflected light and processing the detection result.

【0008】このうち駆動系10は、搭載された検査対
象(ウェハ)2をX方向に高速スキャン,Y方向にステ
ップ移動させるためのX−Yステージ(試料台)11、
このステージの移動を実行するための駆動装置12、該
駆動装置12にステップ移動のための制御信号を出力す
るX−Yステージ制御装置13とを具えている。この駆
動系10の働きによって、例えばステージ11のレーザ
照射位置Aにある特定のチップに対する光線の照射/当
該反射光の測定が行われた後、X方向移動が行われて、
これに近接する他のチップが照射位置Aに移動され、こ
れに対する光線の照射/当該反射光の測定が行われるこ
ととなる。このような光線の照射/反射光の測定は、ウ
ェハ上の全チップに対して順次行われる。
Of these, the drive system 10 includes an XY stage (sample stage) 11 for performing high-speed scanning of the mounted inspection object (wafer) 2 in the X direction and step movement in the Y direction.
It comprises a drive unit 12 for executing this stage movement, and an XY stage control unit 13 for outputting a control signal for step movement to the drive unit 12. By the action of the drive system 10, for example, after irradiation of a specific chip at the laser irradiation position A of the stage 11 / irradiation of the specific chip / measurement of the reflected light is performed, movement in the X direction is performed,
Another chip in the vicinity of this is moved to the irradiation position A, and the irradiation of a light beam on this / measurement of the reflected light is performed. Such irradiation of light rays / measurement of reflected light is sequentially performed for all chips on the wafer.

【0009】前記光学系20は、X−Yステージ11上
のレーザ照射位置Aにあるチップに、レーザ光線を照射
する異物検査用レーザ照射装置21、このときの反射光
を検出してその明度に応じた値を有する電気信号(明度
信号)を出力する反射光検出器(例えばCCDからな
る)22、チップからの反射光を当該反射光検出器22
の検出部(図示省略)に集束させる対物レンズ23、対
物レンズ23と反射光検出器22との間に介在されて自
動焦点装置(図示省略)に焦点合わせのための反射光を
送るミラー24を具えてなる。
The optical system 20 irradiates a chip at the laser irradiation position A on the XY stage 11 with a laser beam for irradiating a foreign substance, and a laser irradiation device 21 for detecting a foreign substance. A reflected light detector (for example, a CCD) 22 that outputs an electric signal (brightness signal) having a value corresponding to the reflected light detector 22
An objective lens 23 for focusing on a detection unit (not shown), and a mirror 24 interposed between the objective lens 23 and the reflected light detector 22 for sending reflected light for focusing to an automatic focusing device (not shown). It will be equipped.

【0010】又、信号処理系30は、前記反射光検出器
22から送られてくる1チップ分の明度信号をまとめて
記憶することができる記憶器31、この記憶器に記憶さ
れた前回検出の1チップ分の明度信号と今回検出の隣接
チップの明度信号との差分を演算する演算器32、検査
の前段階で行われる後述の「閾値設定記憶処理」で得ら
れた閾値データを記憶する閾値設定記憶装置33、及
び、上記演算器32によって得られた差分を表す信号と
閾値設定記憶装置33から送られてくる閾値信号とを比
較して異物の大きさ、又はその有無の判定を行なう比較
器34を具えてなる。このうち、前記比較器34には、
検査結果出力装置40(表示制御装置41及び表示器
(CRT)42)が接続されており、この出力装置40
は、比較器34からの異物判定信号と、前述のX−Yス
テージ制御装置13から送られてくる、X−Yステージ
の位置データとに基いて、当該ウェハの何れの位置に異
物が付着しているか、更にはその大きさを判断し、これ
をCRT42に表示して作業者に知らしめるようになっ
ている。
Further, the signal processing system 30 is capable of collectively storing the brightness signals of one chip sent from the reflected light detector 22, and a memory 31 for storing the brightness signal of the previous detection stored in this memory. A calculator 32 that calculates the difference between the brightness signal of one chip and the brightness signal of the adjacent chip detected this time, a threshold value that stores the threshold value data obtained by the "threshold value setting storage process" described below performed before the inspection. A comparison that compares the signal representing the difference obtained by the setting storage device 33 and the calculator 32 with the threshold signal sent from the threshold setting storage device 33 to determine the size of the foreign matter or the presence / absence thereof. It is equipped with a container 34. Of these, the comparator 34
The inspection result output device 40 (display control device 41 and display device (CRT) 42) is connected to the output device 40.
Is based on the foreign matter determination signal from the comparator 34 and the XY stage position data sent from the XY stage controller 13 described above, and the foreign matter is attached to any position on the wafer. The size is determined, and the size is displayed and displayed on the CRT 42 to inform the operator.

【0011】次に、上記閾値設定記憶装置1によるウェ
ハ毎の「閾値設定記憶処理」の手順について説明する。
図2は、当該ウェハ2に固有の閾値を設定するためのサ
ンプリングチップC1〜C6の選択パターンを示す平面図
である。このサンプリングチップC1〜C6を用いた「閾
値設定記憶処理」は、異物検査実行前に行われる。この
処理を行うことによって、当該ウェハ2の下地の加工精
度や、ウェハ表面の膜質の粗密等によって生じる反射光
の明度の差異を、予め加味した閾値を設定することがで
きる。
Next, the procedure of "threshold setting storage processing" for each wafer by the threshold setting storage device 1 will be described.
FIG. 2 is a plan view showing a selection pattern of the sampling chips C 1 to C 6 for setting a threshold value specific to the wafer 2. The sampling tip with C 1 -C 6 "threshold setting storage process" is performed before the particle inspection run. By performing this process, it is possible to set a threshold value in which the difference in the brightness of the reflected light caused by the processing accuracy of the underlayer of the wafer 2 and the density of the film quality of the wafer surface is added in advance.

【0012】この閾値の決定は以下の手順で行われる。
即ち、閾値設定記憶装置33により検査対象となってい
るウェハ2からサンプリングチップC1〜C6が選択され
ると(図中斜線で示すチップ)、そのチップの位置を表
す信号が閾値設定記憶装置33からX−Yステージ制御
装置13に送られる。この信号を受けたX−Yステージ
制御装置13は、選択された1つのサンプリングチップ
(例えばC1)がレーザ照射位置となるように、駆動装
置12に制御信号を送ってX−Yステージ11の移動を
行う。その後、当該チップC1にレーザが照射され、そ
の反射光が、反射光検出器(CCD)22によって、そ
の明度を表わす信号(明度信号)として検出され、その
値が記憶器31に記憶される。
The determination of this threshold value is performed by the following procedure.
That is, when the sampling chips C 1 to C 6 are selected from the wafer 2 to be inspected by the threshold value setting storage device 33 (chips indicated by diagonal lines in the drawing), a signal indicating the position of the chip is a threshold value setting storage device. 33 to the XY stage controller 13. Upon receipt of this signal, the XY stage control device 13 sends a control signal to the drive device 12 so that the selected one sampling chip (for example, C 1 ) is at the laser irradiation position, and the XY stage 11 moves. Make a move. After that, the chip C 1 is irradiated with a laser, and the reflected light is detected by the reflected light detector (CCD) 22 as a signal representing the brightness (brightness signal), and the value is stored in the storage unit 31. .

【0013】当該サンプリングチップC1全面に対する
明度信号の検出及びその記憶が終了すると、記憶終了を
表わす信号が、設定記憶装置33を介してX−Yステー
ジ制御装置13に送られる。これを受けたX−Yステー
ジ制御装置33は、当該チップC1と比較すべきチップ
(例えば隣接するチップC11)が、レーザ照射位置Aに
来るように、駆動装置12に制御信号を出力する。この
一連の制御により比較されるチップC11がX−Yステー
ジの照射位置になると、上記と同様の手順で、該チップ
11全面に対する反射光の明度信号の検出/記憶が行わ
れる。
When the detection of the brightness signal for the entire surface of the sampling chip C 1 and its storage are completed, a signal indicating the end of storage is sent to the XY stage control device 13 via the setting storage device 33. Receiving this, the XY stage control device 33 outputs a control signal to the drive device 12 so that the chip (for example, the adjacent chip C 11 ) to be compared with the chip C 1 comes to the laser irradiation position A. . When the chip C 11 to be compared by this series of controls reaches the irradiation position of the XY stage, the brightness signal of the reflected light for the entire surface of the chip C 11 is detected / stored by the same procedure as described above.

【0014】上記サンプリングチップC1に係る明度信
号と、これと比較されるチップC11の明度信号は共に演
算器32に送られ、この中で2つの明度信号が比較され
る。尚、この明度信号の比較は、同一パターンに対する
反射光の明度信号について行われる。そして、チップ全
面に関しての2つの明度信号の比較が行われるとその差
分が平均化され、当該チップC1の差分L1が求められ
る。このような2チップ比較法では、仮に、両方のチッ
プC1,C11の反射の具合いが全面に亘って全く同一で
あるならば、2つの明度信号が相殺されその差分L1
「0」になる。しかしながら実際の検査では、チップの
位置に起因する2つのチップC1,C11の下地の差、或
は、形成された膜質の、ウェハ内での不均一さに起因す
る明度差が現れる。以下、同様に、サンプリングされた
全てのチップ(C2〜C6)に対して、隣接チップとの明
度信号の差分(L2〜L6)が演算され、その値が逐次、
閾値設定記憶装置33に記憶される。
The brightness signal of the sampling chip C 1 and the brightness signal of the chip C 11 to be compared with the sampling chip C 1 are both sent to the arithmetic unit 32, in which the two brightness signals are compared. It should be noted that the comparison of the brightness signals is performed with respect to the brightness signal of the reflected light with respect to the same pattern. Then, when the two lightness signals are compared with respect to the entire surface of the chip, the difference between them is averaged to obtain the difference L 1 of the chip C 1 . In such a two-chip comparison method, if the reflection conditions of both chips C 1 and C 11 are exactly the same over the entire surface, the two lightness signals are canceled and the difference L 1 thereof is “0”. become. However, in the actual inspection, a difference in the bases of the two chips C 1 and C 11 due to the position of the chips or a difference in brightness due to the nonuniformity of the formed film quality within the wafer appears. Hereinafter, similarly, for all the sampled chips (C 2 to C 6 ), the difference (L 2 to L 6 ) of the brightness signal with the adjacent chip is calculated, and the values are sequentially calculated.
It is stored in the threshold setting storage device 33.

【0015】閾値設定記憶装置33は、これらのチップ
毎に求められた差分L1,L2,L3…,Lnを例えば次式
に代入して算出し、これを当該ウェハ固有の閾値の基準
値TBとして設定/記憶する。 TB=(L1+L2+L3…+Ln)/n ここでnはサンプリング数(図2の例ではn=6)を表
わす。尚、基準値Tを算出する上記算出式では、サンプ
リングチップ自体には異物が付着していないものと想定
しているが、サンプリングチップに異物が付着してる場
合に備えて、著しく大きな差分Lが生じたときには、こ
れを演算から除外する等の演算処理を行ってもよい。
The threshold setting storage device 33 substitutes the differences L 1 , L 2 , L 3, ..., L n obtained for each of these chips into, for example, the following equation to calculate the threshold values peculiar to the wafer. Set / store as reference value TB. TB = (L 1 + L 2 + L 3 ... + L n ) / n where n represents the sampling number (n = 6 in the example of FIG. 2). In the above calculation formula for calculating the reference value T, it is assumed that no foreign matter is attached to the sampling chip itself, but in case the foreign matter is attached to the sampling chip, a significantly large difference L is generated. When it occurs, an arithmetic process such as excluding it from the arithmetic may be performed.

【0016】そして、実際にウェハ上の異物検査を行う
ときには、このようにして得られた基準値TBに一定マ
ージンΔTを加えたものが、閾値Tとしてその判定に用
いられる。尚、以上の説明では、1つのサンプリングチ
ップに係る明度信号の差分を、これに隣接するチップと
の比較により求めたが、サンプリングチップ同士を比較
して明度信号の差分を算出し、これに基いて閾値を決定
してもよい。
When actually inspecting a foreign substance on a wafer, a value obtained by adding a constant margin ΔT to the reference value TB thus obtained is used as the threshold value T for the determination. In the above description, the difference in the brightness signal of one sampling chip was obtained by comparing with the chip adjacent thereto. However, the differences of the brightness signal are calculated by comparing the sampling chips with each other, and the difference is calculated based on the difference. Alternatively, the threshold may be determined.

【0017】上記手法によれば、半導体ウェハ毎にその
閾値Tを決定するので(図3参照)、従来、製造時のロ
ットの中でその差分が一番大きいウェハ(図3のウェハ
No3)にの閾値TMAX1に合わせてたものを、夫々のウ
ェハ毎の最適値に置き換えて検査の精度を上げることが
できるようになる。
According to the above method, since the threshold value T is determined for each semiconductor wafer (see FIG. 3), conventionally, the wafer having the largest difference (lot No. 3 in FIG. 3) among the lots at the time of manufacturing is selected. It becomes possible to improve the accuracy of inspection by substituting the optimum value for each wafer for the threshold value TMAX1 of.

【0018】次に、閾値設定記憶装置33によってチッ
プ毎に最適の閾値を設定/記憶する手順について説明す
る。上記したウェハ毎の閾値の設定/記憶と同一の手順
で、所定のサンプリングチップ(例えばC1)全面に係
る明度信号が記憶され、その後、これに隣接したチップ
11全面に係る明度信号が記憶器31に記憶されると、
演算器32によって同一パターンについての反射光の明
度の比較が順次行われ、1つのチップの全面について演
算された差分L1が平均化される。閾値設定記憶装置3
3は、当該差分L1に所定のマージンを付加したものを
閾値T1とし、この値を、X−Yステージ制御装置13
から送られてくるチップC1の位置データに対応させて
記憶する。
Next, a procedure for setting / storing an optimum threshold value for each chip by the threshold value setting storage device 33 will be described. The brightness signal for the entire surface of a predetermined sampling chip (for example, C 1 ) is stored by the same procedure as the setting / storing of the threshold value for each wafer described above, and then the brightness signal for the entire surface of the chip C 11 adjacent thereto is stored. When stored in the container 31,
The brightness of reflected light for the same pattern is sequentially compared by the calculator 32, and the difference L 1 calculated for the entire surface of one chip is averaged. Threshold setting storage device 3
3 is a threshold value T 1 which is obtained by adding a predetermined margin to the difference L 1 and uses this value as the XY stage control device 13
It is stored in association with the position data of the chip C 1 sent from the device.

【0019】このように記憶されたチップ(C1〜C6
毎の閾値(T1〜T6)は、異物判定において以下のよう
に用いられる。例えば、図2のチップC31とこれに隣接
するチップC32とを比較して異物判定を行うときには、
これらのチップから得られた明度信号の差分を求め、当
該チップに一番近いサンプリングチップ(例えばC3
の閾値T3と比較し、この閾値より小さいときには異物
なし、閾値より大きいときには異物有りと判定するよう
になっている。尚、2チップ比較法では、明度信号の比
較を行った場合、異物が付着している側の明度信号が残
るため、2つのチップの何れに異物が生じているかを、
2つのチップの比較だけで判定することができる。上記
手法によれば、半導体ウェハ内のチップ毎にその閾値T
を決定するので(図4参照)、従来、ウェハ内でその差
分が一番大きいチップ(図4のウェハNo2)の閾値T
MAX2に合わせていたものを、異物検査される夫々のチッ
プに一番近いサンプリングチップの閾値に置き換えるこ
とで、異物検査の精度を向上させることができる。
Chips stored in this way (C 1 to C 6 )
The thresholds (T 1 to T 6 ) for each are used in the foreign matter determination as follows. For example, when the chip C 31 of FIG. 2 and the chip C 32 adjacent thereto are compared to determine the foreign matter,
The difference between the brightness signals obtained from these chips is calculated, and the sampling chip (for example, C 3 ) closest to the chip is obtained.
The threshold value T 3 is compared with the threshold value T 3 . In the two-chip comparison method, when the lightness signals are compared, the lightness signal on the side to which the foreign matter adheres remains, so it is determined which of the two chips the foreign matter occurs.
It can be determined only by comparing two chips. According to the above method, the threshold value T for each chip in the semiconductor wafer
(See FIG. 4), the threshold value T of the chip (wafer No. 2 in FIG. 4) having the largest difference in the wafer in the past is determined.
The accuracy of the foreign matter inspection can be improved by replacing the value matched with MAX2 with the threshold value of the sampling chip closest to each chip to be inspected for foreign matter.

【0020】以上説明したように、本実施例の異物検査
装置は、ウェハ上の一方のチップに照射されたレーザ光
線の反射光の明度を検出し、他方のチップの当該同一パ
ターンに照射されたレーザ光線の反射光の明度を検出
し、これらの検出結果を互いに比較し、その差分を所定
の閾値と比較してウェハ上に異物が付着しているか否か
を判定するに当たり、その閾値を、予め当該ウェハの特
定のサンプリングチップに係わる明度の比較を行ってお
き、その比較結果に基いて決定しているので、ウェハ毎
に生じる下地の加工精度や、膜質の差異による反射光の
明度差の影響を受けることなく、精度の良い異物検査が
可能となる。又、閾値を、同一ウェハ内のサンプリング
チップ毎に設定しているので、チップ毎に生じ得る加工
精度、膜質の差異による反射光の明度差の影響を受ける
ことなく精度の良い異物検査が可能となる。
As described above, the foreign matter inspection apparatus according to the present embodiment detects the brightness of the reflected light of the laser beam applied to one chip on the wafer and irradiates the same pattern on the other chip. Detecting the brightness of the reflected light of the laser beam, comparing these detection results with each other, in comparing the difference with a predetermined threshold to determine whether foreign matter is attached on the wafer, the threshold is Since the brightness of a particular sampling chip of the wafer is compared in advance and the determination is made based on the comparison result, the processing accuracy of the undercoating that occurs for each wafer and the difference in brightness of reflected light due to the difference in film quality Accurate foreign matter inspection can be performed without being affected. In addition, since the threshold value is set for each sampling chip within the same wafer, it is possible to perform accurate foreign substance inspection without being affected by the processing accuracy that may occur for each chip and the difference in brightness of reflected light due to the difference in film quality. Become.

【0021】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。例えば、本
実施例では、異物検査をするに当たり、2つのチップを
比較する所謂2チップ比較法による異物検査を行う例を
示したが、光学系を用いた他の検査法、例えば偏光をウ
ェハ面に照射してその表面の凹凸を検知する方法等にも
本発明は適用可能である。又、本実施例では、2つのチ
ップを比較するに当たり、互いに隣接するチップ同士を
比較する例を示したが、当該チップから離れたチップと
比較して、その反射光の明度差を求めて閾値を設定して
もよい。この場合には、これらの中間に位置するチップ
の異物判定には、補間計算により求めた閾値を用いれば
よい。又、本実施例では、閾値の算出時に、2つのチッ
プの全面比較によって得られた明度差を平均化し、サン
プリングチップ毎に得られた値を更に平均化し、この値
に基いてウェハ固有の閾値を決定する例を示したが、上
記比較による明度差を全てのサンプリングチップに関し
て記憶しておき、その値を一括して平均化し、これに基
づいて当該閾値を算出してもよい。又、平均値を算出す
るに当たって、チップの位置に応じて平均化の重みを異
ならせてもよい。又、本実施例では、閾値を設定するに
当たり、サンプリングチップの全面に亘って反射光の明
度差を検出したが、チップの特定箇所の明度差を検出
し、この結果に基いて閾値を決定してもよい。又、上記
実施例では、レーザ光線を用いてウェハ表面の異物の有
無を判定する装置について説明したが、他の輻射線を用
いた検査装置にも適用できる。以上の説明では主として
本発明者によってなされた発明をその背景となった利用
分野である半導体ウェハ表面の異物検査に適用した場合
について説明したが、この発明はそれに限定されるもの
でなく、光学系を用いた異物検査一般に利用することが
できる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, in the present embodiment, an example of performing a foreign matter inspection by a so-called two-chip comparison method in which two chips are compared in performing the foreign matter inspection is shown, but another inspection method using an optical system, for example, polarization is performed on the wafer surface. The present invention can also be applied to a method of irradiating the surface of the sheet with light and detecting irregularities on the surface thereof. In addition, in the present embodiment, when comparing two chips, an example in which adjacent chips are compared with each other has been shown. However, the brightness difference of the reflected light is calculated by comparing with a chip distant from the chip, and a threshold value is obtained. May be set. In this case, the threshold value obtained by the interpolation calculation may be used for the foreign matter determination of the chips located in the middle of them. Further, in this embodiment, at the time of calculating the threshold value, the brightness differences obtained by comparing the entire surfaces of the two chips are averaged, the values obtained for each sampling chip are further averaged, and the wafer-specific threshold value is based on this value. However, the threshold value may be calculated on the basis of the brightness differences obtained by the above comparison stored for all the sampling chips, the values are collectively averaged. Further, in calculating the average value, the weight of averaging may be changed according to the position of the chip. Further, in the present embodiment, when setting the threshold value, the brightness difference of the reflected light was detected over the entire surface of the sampling chip, but the brightness difference at a specific portion of the chip was detected, and the threshold value was determined based on this result. May be. Further, in the above-mentioned embodiment, the apparatus for determining the presence / absence of foreign matter on the wafer surface by using the laser beam has been described, but it can be applied to an inspection apparatus using other radiation rays. In the above description, the case where the invention made by the present inventor is mainly applied to the foreign matter inspection on the surface of a semiconductor wafer which is the field of application which is the background has been described, but the present invention is not limited thereto and the optical system It can be generally used for foreign matter inspection using.

【0022】[0022]

【発明の効果】本発明によれば、異物判定に用いられる
閾値が、ウェハ毎の最適値、或はチップ毎の最適値に設
定されるので、ウェハ表面に付着した異物の有無の判定
が精度良く行われる。
According to the present invention, since the threshold value used for foreign matter determination is set to the optimum value for each wafer or the optimum value for each chip, it is possible to accurately determine the presence or absence of foreign matter adhering to the wafer surface. Well done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の2チップ比較による異物検査を行う
ための異物検査装置1の概略を示す説明図である。
FIG. 1 is an explanatory diagram showing an outline of a foreign matter inspection apparatus 1 for performing a foreign matter inspection by two-chip comparison of the present embodiment.

【図2】ウェハに固有の閾値を設定するためのサンプリ
ングチップC1〜C6の選択パターンを示す平面図であ
る。
FIG. 2 is a plan view showing a selection pattern of sampling chips C 1 to C 6 for setting a threshold value specific to a wafer.

【図3】ウェハ毎に設定された閾値Tの値を示すグラフ
である。
FIG. 3 is a graph showing a value of a threshold value T set for each wafer.

【図4】チップ毎に設定された閾値Tの値を示すグラフ
である。
FIG. 4 is a graph showing a value of a threshold T set for each chip.

【符号の説明】[Explanation of symbols]

1 異物検査装置 2 ウェハ(検査対象) 10 駆動系 11 X−Yステージ(試料台) 13 X−Yステージ制御装置 20 光学系 21 異物検査用レーザ照射装置(照射装置) 22 反射光検出器(CCD) 30 信号処理系 31 記憶器 32 演算器 33 閾値設定記憶装置 34 比較器 C1〜C6 サンプリングチップDESCRIPTION OF SYMBOLS 1 Foreign substance inspection device 2 Wafer (inspection target) 10 Drive system 11 XY stage (sample stage) 13 XY stage control device 20 Optical system 21 Laser irradiation device for foreign substance inspection (irradiation device) 22 Reflected light detector (CCD) ) 30 signal processing system 31 memory device 32 arithmetic unit 33 threshold value setting memory device 34 comparator C 1 to C 6 sampling chip

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料台に搭載された半導体ウェハの所定
領域に光線を照射する照射手段と、当該反射光を検出し
てウェハ表面の凹凸に応じた値を有する検査信号を出力
する反射光検出手段と、前記検査信号が表す値が所定の
閾値より大きか否かに応じて当該ウェハ上の異物の有無
を判定する異物判定手段とを有する異物検査装置におい
て、ウェハの特定領域で求められた前記検査信号に基い
て前記閾値を決定する閾値決定手段を具備したことを特
徴とする半導体ウェハの異物検査装置。
1. A irradiating means for irradiating a predetermined area of a semiconductor wafer mounted on a sample stage with a light beam, and a reflected light detection for detecting the reflected light and outputting an inspection signal having a value according to the unevenness of the wafer surface. In a foreign matter inspection apparatus having a means and a foreign matter determination means for determining the presence or absence of a foreign matter on the wafer according to whether or not the value represented by the inspection signal is larger than a predetermined threshold value, it is obtained in a specific region of the wafer. A foreign matter inspection device for a semiconductor wafer, comprising: a threshold value determining means for determining the threshold value based on the inspection signal.
【請求項2】 前記検査信号は、同一半導体ウェハ上の
2つの相異なるチップの同一パターンに光線を照射して
得られた2つの反射光の明度信号の差分を表す信号であ
ることを特徴とする請求項1に記載の半導体ウェハの異
物検査装置。
2. The inspection signal is a signal representing the difference between the brightness signals of two reflected lights obtained by irradiating the same pattern of two different chips on the same semiconductor wafer with a light beam. The foreign matter inspection apparatus for a semiconductor wafer according to claim 1.
【請求項3】 前記閾値決定手段は、半導体チップ毎に
異なる閾値を決定することを特徴とする請求項1又は2
に記載の半導体ウェハの異物検査装置。
3. The threshold value determining means determines a different threshold value for each semiconductor chip.
A semiconductor wafer foreign matter inspection apparatus according to item 1.
JP799593A 1993-01-21 1993-01-21 Foreign-matter inspecting apparatus for semiconductor wafer Pending JPH06213821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP799593A JPH06213821A (en) 1993-01-21 1993-01-21 Foreign-matter inspecting apparatus for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP799593A JPH06213821A (en) 1993-01-21 1993-01-21 Foreign-matter inspecting apparatus for semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH06213821A true JPH06213821A (en) 1994-08-05

Family

ID=11680988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP799593A Pending JPH06213821A (en) 1993-01-21 1993-01-21 Foreign-matter inspecting apparatus for semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH06213821A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284433A (en) * 2005-04-01 2006-10-19 Tokyo Seimitsu Co Ltd Device and method for visual examination
JP2006351667A (en) * 2005-06-14 2006-12-28 Sharp Corp Information management system
WO2008047422A1 (en) * 2006-10-18 2008-04-24 Casio Micronics Co., Ltd. Wiring pattern inspecting method and wiring pattern inspecting system
CN106645196A (en) * 2016-12-15 2017-05-10 广东威创视讯科技股份有限公司 Dust detector of projection lens and dust remover

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284433A (en) * 2005-04-01 2006-10-19 Tokyo Seimitsu Co Ltd Device and method for visual examination
JP2006351667A (en) * 2005-06-14 2006-12-28 Sharp Corp Information management system
WO2008047422A1 (en) * 2006-10-18 2008-04-24 Casio Micronics Co., Ltd. Wiring pattern inspecting method and wiring pattern inspecting system
CN106645196A (en) * 2016-12-15 2017-05-10 广东威创视讯科技股份有限公司 Dust detector of projection lens and dust remover

Similar Documents

Publication Publication Date Title
JP3143038B2 (en) Automatic focusing method and apparatus, and three-dimensional shape detection method and apparatus
US7999932B2 (en) Inspection apparatus and inspection method
JP4733154B2 (en) Foreign matter inspection method and foreign matter inspection device
US20080007727A1 (en) Surface inspection method and surface inspection apparatus
US20030020905A1 (en) Electrical circuit conductor inspection
JP2001503148A (en) Surface inspection system and method for distinguishing pits and particles on a wafer surface
JPH06213821A (en) Foreign-matter inspecting apparatus for semiconductor wafer
US10769769B2 (en) Dual mode inspector
JP2021058927A (en) Laser welding quality detecting method and laser welding quality detecting device
JP2003240723A (en) Method and apparatus for examining defect
CN111638226B (en) Detection method, image processor and detection system
JP4382315B2 (en) Wafer bump appearance inspection method and wafer bump appearance inspection apparatus
JP4369276B2 (en) Chip shape inspection apparatus and chip inspection method for disk-shaped parts
JP3314217B2 (en) Appearance inspection device
KR20070080165A (en) Flatness sensor apparatus of wafer stage and method for sensing thereof
JP4411373B2 (en) Surface inspection apparatus and method
CN111906043B (en) Pose detection method and system
US11975410B2 (en) Laser welding quality inspection method and laser welding quality inspection apparatus
JP2968106B2 (en) Via hole inspection equipment
JP3348059B2 (en) Method for manufacturing semiconductor device
JP3381420B2 (en) Projection detection device
JP2000121333A (en) Appearance inspection apparatus and method
JP2008216105A (en) Surface inspection method and device
JPS6035517A (en) Inspection device
JPH04140650A (en) Apparatus for inspecting printed circuit board