JPH06213669A - Calibration method for set value of coordinate system of inertia reference device of moving body - Google Patents

Calibration method for set value of coordinate system of inertia reference device of moving body

Info

Publication number
JPH06213669A
JPH06213669A JP688893A JP688893A JPH06213669A JP H06213669 A JPH06213669 A JP H06213669A JP 688893 A JP688893 A JP 688893A JP 688893 A JP688893 A JP 688893A JP H06213669 A JPH06213669 A JP H06213669A
Authority
JP
Japan
Prior art keywords
coordinate system
moving body
reference device
moving
inertial reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP688893A
Other languages
Japanese (ja)
Other versions
JP3313169B2 (en
Inventor
Yoshiaki Hayakawa
義彰 早川
Hiroshi Takagi
博 高木
Shinsuke Matsumoto
信介 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP688893A priority Critical patent/JP3313169B2/en
Publication of JPH06213669A publication Critical patent/JPH06213669A/en
Application granted granted Critical
Publication of JP3313169B2 publication Critical patent/JP3313169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a calibration method for a set value of each axis of coordinate system of an inertia reference device of a moving body in which setting of initial values of the coordinate system of the inertia reference device of the moving body can be omitted, and the method can be carried out without necessity of providing a new special means in the moving body. CONSTITUTION:The moved course Tr after beginning of flight of a moving body 16 is observed by measuring means 12, 20 provided on known points agaist the moving base point 14 of the moving body 16, Pso. The angle data of respective axes of the coordinate system of an inertia reference device 18 in a missile is obtained by the position Pm of the moving body 16 on reference navigation coordinates at observation from the observed orbit Tr of the moving body 16 on the reference navigation coordinate system, and the obtained angle data are input to the same inertia reference device 18 as set values concerning respective axes through a correspondence means, so as to renew the set values of the last time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一定の移動基点から飛
翔、移動する無人移動体に具備された航行用の慣性基準
装置の座標系の初期値設定方法に関するものであり、特
に、船舶や航空機を移動母体として、そこから基準とす
る航法座標上の目的点へ飛翔又は航行により移動するミ
サイル、魚雷、無人航空機等の移動体が具備する慣性基
準装置の座標系の各軸の設定値を移動基点で初期設定す
ることなく、移動中に順次に更新設定することにより、
あたかも正確な初期値設定を行うことと等価になし得る
移動体における慣性装置座標系の設定値較正方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for setting an initial value of a coordinate system of an inertial reference device for navigation provided on an unmanned vehicle which flies and moves from a fixed moving base point, and more particularly to a ship or a ship. Set the setting values for each axis of the coordinate system of the inertial reference device of a moving body such as a missile, torpedo, or unmanned aerial vehicle that moves from the aircraft as a moving base to a destination on the reference navigation coordinates by flight or navigation. Instead of initial setting at the movement base point, by sequentially updating and setting during movement,
The present invention relates to a method of calibrating a set value of an inertial device coordinate system in a moving body that can be equivalent to setting an accurate initial value.

【0002】[0002]

【従来の技術】移動体、例えば、ミサイル発射艦や航空
機から発射されて所定のプログラムに従った飛翔、移動
経路を経て目的点へ到達せしめられるミサイルは、同ミ
サイル自体が慣性基準装置を具備して、移動基点から経
時的に正規の移動経路(軌道)からのズレを修正しなが
ら、目的点へ移動する。従って、例えば、ノーススレー
ブ局地水平座標系(X:北、Y:東、Z:鉛直方向下
側)を基準の航法座標系としたとき、正規の移動経路
は、この基準航法座標系によって指令れさるため、同基
準航法座標に対する移動体であるミサイルの慣性基準装
置の座標系の初期値が正確に設定されている必要があ
る。
2. Description of the Related Art A missile which is launched from a moving body, for example, a missile launch ship or an aircraft, can fly to a destination according to a predetermined program or a moving route, and the missile itself has an inertia reference device. Then, it moves to the destination point while correcting the deviation from the regular movement path (trajectory) from the movement base point with time. Therefore, for example, when the north slave local horizontal coordinate system (X: north, Y: east, Z: vertical direction lower side) is used as the reference navigation coordinate system, the normal movement route is commanded by this reference navigation coordinate system. For this reason, it is necessary that the initial value of the coordinate system of the inertial reference device of the missile, which is a moving body, with respect to the same reference navigation coordinate is set accurately.

【0003】従来の移動体の慣性基準装置の座標系の初
期値の設定は、当該慣性基準装置の慣性検出要素である
ジャイロスコープ及び加速度計により地球自転角速度及
び重力の方法を検出し、基準航法座標系に対する初期値
を設定する方法(これを通常は、自己基準設定法と言
う)が取られるか、又は移動体の基準航法座標系に対す
る速度及び/又は位置を同移動体に搭載された測定手段
を用いて測定し、移動体の速度及び/又は位置の測定デ
ータを得るようにし、この得られた測定データと移動体
の慣性基準装置から得られる速度及び/又は位置のデー
タとを比較することにより、当該慣性基準装置の座標系
のズレを求め、求めたズレ値から当該移動体の慣性基準
装置の座標系の初期値を演算して設定する方法(これを
外部基準による慣性装置基準設定方法と言う)の二方法
が大別してとられていた。
The initial value of the coordinate system of the conventional inertial reference device for a moving body is set by detecting the method of earth rotation angular velocity and gravity by the gyroscope and the accelerometer which are the inertial detection elements of the inertial reference device, and the reference navigation is performed. A method of setting an initial value for the coordinate system (this is usually called a self-reference setting method) is taken, or the velocity and / or position of the mobile body with respect to the reference navigation coordinate system is measured on the same mobile body. And measuring the velocity and / or position of the moving body by using a means, and comparing the obtained measuring data with the velocity and / or position data obtained from the inertial reference device of the moving body. By doing so, the deviation of the coordinate system of the inertial reference device is obtained, and the initial value of the coordinate system of the inertial reference device of the moving body is calculated and set from the calculated deviation value Two methods referred to as a location reference setting method) it has been taken roughly.

【0004】[0004]

【発明が解決しようとする課題】然しながら、前者の従
来方法では、移動体が略、航法座標系に対して静止して
いることが必要であり、更に、初期値設定のための十分
な時間が必要である。従って、準備時間が短時間である
ことが絶対的な要求条件とされるミサイルの慣性基準装
置の座標系の初期値設定に、この従来方法を適用するこ
とは困難である。
However, in the former conventional method, it is necessary that the moving body is substantially stationary with respect to the navigation coordinate system, and further, sufficient time for setting the initial value is required. is necessary. Therefore, it is difficult to apply this conventional method to the initial value setting of the coordinate system of the inertial reference device of the missile, which is absolutely required to have a short preparation time.

【0005】他方、後者の方法は、航法座標系上で略静
止した状態での準備時間は必要としないが、移動体にド
ップラレーダ、GPS、スターセンサ等の計測手段を搭
載しておく必要があり、故に、必然的に移動体であるミ
サイルは、これらの計測手段の格納スペースを要し、寸
法や重量がかなり増加すると言う問題点がある。依っ
て、このような問題点を解決し得る手段、方法の開発が
なお、要望されている。
On the other hand, the latter method does not require a preparation time in a substantially stationary state on the navigation coordinate system, but it is necessary to equip a moving body with measuring means such as Doppler radar, GPS and star sensor. Therefore, the missile, which is inevitably a moving body, requires a storage space for these measuring means, which causes a problem that the size and weight increase considerably. Therefore, there is still a demand for development of means and methods capable of solving such problems.

【0006】従って、本発明の主たる目的は、移動体の
慣性基準装置の座標系の初期値設定を省略して移動開始
の瞬時化を図り、しかも別途に特殊な新たな手段を設け
る必要なく、遂行し得る移動体の慣性基準装置の座標系
各軸の設定値較正方法を提供せんとするものである。
Therefore, the main object of the present invention is to omit the setting of the initial value of the coordinate system of the inertial reference device of the moving body to instantly start the movement, and without the need to separately provide a special new means. It is intended to provide a method of calibrating the set value of each axis of the coordinate system of the inertial reference device of a mobile body which can be performed.

【0007】本発明の他の目的は、移動体を現在規模か
ら寸法、重量等の増加無く、同移動体に搭載、内蔵され
た慣性基準装置の座標系の初期値設定方法を外部の既存
計測手段を駆使して遂行する方法を提供せんとすること
にある。本発明の更に他の目的は、移動体が移動開始後
の移動中に同移動体が備えた慣性基準装置の座標系の初
期値を設定できるようにして、移動体の移動開始時点に
おける座標系初期値設定のための所要時間を略ゼロ化す
ることを可能とする移動体の慣性基準装置の座標系各軸
の設定値較正方法を提供せんとするものである。
Another object of the present invention is to measure the initial value of the coordinate system of the inertial reference device incorporated in the moving body without increasing the size, weight, etc. of the moving body from the present scale, and to measure the external existing measurement. The aim is to provide a way to carry out by making full use of means. Still another object of the present invention is to make it possible to set an initial value of a coordinate system of an inertial reference device included in the moving body during the movement after the moving body is started, so that the coordinate system at the time when the moving body starts moving. An object of the present invention is to provide a method for calibrating the set value of each axis of the coordinate system of the inertial reference device of a moving body, which makes it possible to substantially zero the time required for setting the initial value.

【0008】[0008]

【課題を解決するための手段】本発明は、移動体の移動
基点に対して既知点に設けられた計測手段、例えば、ミ
サイルがミサイル発射艦や航空機から発射されて飛翔移
動する場合には、同ミサイル発射艦や航空機に常備され
たレーダと艦や航空機自体の慣性基準装置とによってミ
サイルの飛翔開始後の移動経路(軌道)を実測し、この
実測された基準航法座標系におけるミサイルの軌道デー
タからその実測時の基準航法座標における位置で、ミサ
イルが有する慣性基準装置の座標系各軸のデータを求
め、求めたデータを各軸に関する設定値として通信手段
によりミサイルの慣性基準装置に入力し、前回の設定値
を更新、設定するものである。
Means for Solving the Problems The present invention provides a measuring means provided at a known point with respect to a moving base point of a moving body, for example, when a missile is launched from a missile launch ship or an aircraft and moves in flight, The trajectory of the missile is measured after the start of flight of the missile using the radar that is permanently installed in the missile launcher and the aircraft, and the inertial reference device of the ship and the aircraft itself, and the orbit data of the missile in the measured reference navigation coordinate system. From the position in the reference navigation coordinates at the time of actual measurement, the data of each axis of the coordinate system of the inertial reference device of the missile is obtained, and the obtained data is input as a set value for each axis to the inertial reference device of the missile by communication means, This is to update and set the previously set value.

【0009】即ち、本発明によれば、基準航法座標系に
おける移動基点から飛翔又は航行により移動する移動体
が具備した慣性基準装置の座標系の設定値を較正する方
法おいて、前記移動体の移動中の航法座標内における経
時的な移動経路を前記移動基点に対する所定の既知点に
設けられた経路計測手段により計測し、前記経路計測手
段により計測した前記移動体の経時的な移動経路の位置
データに基づいて、基準航法座標系における前記移動体
が具備する慣性基準装置の座標系の各軸の設定値を求
め、該求めた座標系の各軸の設定値を無線通信手段を介
して前記移動体の慣性基準装置に入力し、入力された前
記移動体の慣性基準装置の座標系における各軸の設定値
によって前回の設定値を更新し、以て基準航法座標系に
おける移動体の慣性基準装置の座標系の設定値を初期値
から順次に較正するようにした移動体における慣性基準
装置座標系の設定値較正方法を提供するものである。以
下、本発明を、添付図面に示す実施例に基づいて詳細に
説明する。
That is, according to the present invention, in a method of calibrating a set value of a coordinate system of an inertial reference device provided in a moving body that moves by a flight or a navigation from a moving base point in the reference navigation coordinate system, The position of the moving route of the moving body over time, which is measured by the route measuring means provided at a predetermined known point with respect to the moving base point, of the moving route within the navigation coordinates during movement, and which is measured by the route measuring means. Based on the data, the setting value of each axis of the coordinate system of the inertial reference device included in the moving body in the reference navigation coordinate system is obtained, and the setting value of each axis of the obtained coordinate system is obtained via the wireless communication means. It is input to the inertia reference device of the moving body, and the previous setting value is updated by the set value of each axis in the coordinate system of the inertia reference device of the moving body that has been input, whereby the inertia of the moving body in the reference navigation coordinate system is updated. There is provided a set value calibration method for inertial reference unit coordinate system in a moving body the set value of the coordinate system of quasi-devices to sequentially calibrated from the initial value. Hereinafter, the present invention will be described in detail based on the embodiments shown in the accompanying drawings.

【0010】[0010]

【実施例】図1は本発明に依る移動体における慣性基準
装置座標系の設定値較正方法を適用する1実施例として
移動母体であるミサイル発射艦から移動体であるミサイ
ルを発射する場合に、そのミサイルが有する慣性基準装
置の座標系の各軸の設定値を較正するに際して、レーダ
及びミサイル発射艦の慣性基準装置をミサイル軌道計測
手段として利用した実施例を説明する略示説明図、図2
は、同実施例において、ミサイル慣性装置の方位軸の設
定値較正を説明するためのグラフ図、図3〜図6は夫
々、本発明を適用可能な他の実施例による移動体を説明
する図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of applying the method for calibrating the set value of the inertial reference device coordinate system in a moving body according to the present invention, when a missile which is a moving body is launched from a missile launching ship which is a moving mother. 2 is a schematic explanatory view illustrating an embodiment in which the radar and the inertial reference device of the missile launcher are used as missile trajectory measuring means in calibrating the set values of the axes of the coordinate system of the inertial reference device of the missile, FIG.
FIG. 3 is a graph diagram for explaining the calibration of the set value of the azimuth axis of the missile inertial device in the same embodiment, and FIGS. 3 to 6 are diagrams for explaining a moving body according to another embodiment to which the present invention can be applied. Is.

【0011】図1において、ミサイル発射艦10は、航
行用の慣性基準装置(SINS)12を搭載しており、同慣
性基準装置12は、艦10の航法座標系、例えば、地球
上の緯度、経度及び局地水平真北を各軸とする基準航法
座標系における同艦10の位置、速度、及び姿勢方位角
(艦10の前後軸方向の向き)を計測して航法データを
出力し、制御装置22に演算して操艦データを得るよう
に構成されている。このSINS12は、ミサイル艦10の
甲板に設置されたレーダー装置20の姿勢方位角やミサ
イル発射塔14から発射されるミサイル16の基準とな
るものである。
In FIG. 1, a missile launch ship 10 is equipped with an inertial reference device (SINS) 12 for navigation. The inertial reference device 12 is a navigation coordinate system of the ship 10, for example, latitude on the earth, The control device outputs the navigation data by measuring the position, speed, and attitude azimuth (direction of the front-back axis of the ship 10) of the ship 10 in a standard navigation coordinate system having longitude and local horizontal true north as axes. It is configured to perform the operation 22 to obtain the ship maneuvering data. The SINS 12 serves as a reference for the attitude and azimuth of the radar device 20 installed on the deck of the missile ship 10 and for the missile 16 launched from the missile launch tower 14.

【0012】ミサイル16は、内部にミサイル自体の慣
性基準装置(MINS)18有し、そのMINS18も座標系を
有している。つまり、同MINS18の座標系と艦10のSI
NS12の座標系である基準航法座標系との間に1:1の
完全な関係が有れば、ミサイル16は基準航法座標系に
おいて飛翔していると見做すことが可能である。
The missile 16 has an inertial reference device (MINS) 18 for the missile itself, and the MINS 18 also has a coordinate system. In other words, the coordinate system of the MINS 18 and SI of the ship 10
If there is a 1: 1 complete relationship with the reference navigation coordinate system, which is the NS 12 coordinate system, then the missile 16 can be considered to be flying in the reference navigation coordinate system.

【0013】ミサイル16は、ミサイル発射艦10の発
射塔14から発射され、自身が有する慣性基準装置18
の出力データに従って慣性航行して目標到着点へ向か
う。このとき、一般的にMINS18の座標系の各軸は基準
航法座標系に対する初期化を行なうことが必要とされる
が、本発明においては、ミサイル16が発射される初動
過程では、所望の時期に直ちに発射されるように、その
時点の座標系各軸の設定値を維持したまま、初期化は行
なわないのである。従って、当初は電源だけを投入し、
発射により飛翔開始後の過程でMINS18の各軸の設定値
を初動時の設定値から順次に較正、更新して行く方法を
確立しているのである。
The missile 16 is launched from the launch tower 14 of the missile launch ship 10 and has an inertial reference device 18 that the missile 16 has.
According to the output data of, the aircraft will make an inertial cruise to the target arrival point. At this time, generally, each axis of the coordinate system of the MINS 18 needs to be initialized with respect to the reference navigation coordinate system. However, in the present invention, in the initial process of launching the missile 16, at a desired time. Initialization is not performed while maintaining the setting values of each axis of the coordinate system at that time so that the object is immediately fired. Therefore, at first, turn on only the power,
It establishes a method for sequentially calibrating and updating the set values of each axis of the MINS 18 from the set values at the time of initial movement in the process after the start of flight by launching.

【0014】つまり、本発明では、ミサイル発射艦10
が有するレーダー装置20により、発射塔14から発射
されたミサイル16の艦10に対する距離、方位角
(Ψ)及び俯角(θ)を経時的に計測して、制御装置2
2へその計測結果のデータが送出される。他方、この時
点で、艦10のSINS12は、同艦10の姿勢方位角を検
出して制御装置22へ時々刻々送出する。このため、制
御装置22はレーダー装置20の計測データはSINS12
の検出データとを受信して、それらの受信した計測デー
タ及び検出データから基準航法座標系におけるミサイル
16の軌道データが得られる。つまり、経時的にミサイ
ル16がどの地点を飛翔しているかのデータが得られる
のである。
That is, in the present invention, the missile launch ship 10
The radar device 20 included in the control unit 2 measures the distance, the azimuth angle (Ψ), and the depression angle (θ) of the missile 16 launched from the launch tower 14 with respect to the ship 10 over time.
The data of the measurement result is sent to 2. On the other hand, at this point, the SINS 12 of the ship 10 detects the attitude and azimuth of the ship 10 and sends it to the control device 22 every moment. Therefore, the control device 22 uses the measurement data of the radar device 20 as SINS12.
And detection data of the missile 16 in the reference navigation coordinate system are obtained from the received measurement data and detection data. In other words, it is possible to obtain data as to where the missile 16 is flying over time.

【0015】ここで、説明を簡略化するために、上述し
たミサイル16の軌道データに基づいて、同ミサイル1
6のMINS18の座標系における方位軸の設定値を較正、
更新する方法に就いて説明する。図2を参照すると、い
ま、ミサイル発射艦10から飛翔したミサイル16の軌
道がレーダー装置20の計測に基づいて、同図に図示の
ように、移動基点Ps0からの軌道データ(説明の簡略
化のため直線と仮定する)がラインTrのように得られ
たとする(その時点の位置はPm)。この軌道データT
r上の位置Pmにおいて、同データから、ミサイル16
の飛翔方向は基準航法座標系における北に対してΨm0
であるとして演算により求められる。つまり、ミサイル
16のMINS18が計測する方位軸の測定角度Ψのその時
点における値は、本来的にはΨm0となるべきである。
ここで、図2の北、東は勿論、艦10のSINS12が検出
したミサイル発射時点(位置Ps0)における航法座標
系(水平面)を示している。
Here, in order to simplify the explanation, based on the orbital data of the missile 16 described above, the missile 1
Calibrate the set value of the azimuth axis in the coordinate system of 6 MINS 18
I will explain how to update. Referring to FIG. 2, the trajectory of the missile 16 flying from the missile launch ship 10 is now measured based on the measurement by the radar device 20, and as shown in the figure, trajectory data from the movement base point Ps0 (for simplification of explanation) Therefore, it is assumed that a straight line) is obtained as a line Tr (the position at that time is Pm). This orbital data T
At position Pm on r, the missile 16
Flight direction is Ψm0 to the north in the reference navigation coordinate system.
And is calculated. That is, the value at that time of the measurement angle Ψ of the azimuth axis measured by the MINS 18 of the missile 16 should originally be Ψm0.
Here, the navigation coordinate system (horizontal plane) at the time of launching the missile (position Ps0) detected by the SINS 12 of the ship 10 is shown as well as the north and east of FIG.

【0016】従って、計測時点PmにMINS18の方位軸
が、持続していた方位角Ψの値がΨmであるとすると、
Ψm0−Ψm分だけ較正、補正して設定値をΨm0に設
定するのである。このとき、本発明では、ミサイル発射
艦10が有するデータリンク通信手段により、その方位
軸の角度データΨm0をMINS18に対して入力する。な
お、ミサイル16の軌道は、グラフ図示による説明上か
ら直線としたが、実際には直線のはずは無く、従って、
較正、更新設定の処理過程を繰り返し、ミサイル16は
目標地点へ慣性航法で指向させられることになるのであ
る。
Therefore, assuming that the value of the azimuth angle Ψ that the azimuth axis of the MINS 18 has continued at the measurement time point Pm is Ψm,
The set value is set to Ψm0 by calibrating and correcting for Ψm0−Ψm. At this time, in the present invention, the data link communication means included in the missile launch ship 10 inputs the angle data Ψm0 of the azimuth axis to the MINS 18. The orbit of the missile 16 is a straight line from the description of the graph, but it should not be a straight line.
By repeating the calibration and update setting process, the missile 16 is directed to the target point by inertial navigation.

【0017】以上の説明は、移動母体を形成するミサイ
ル発射艦10からMINS18を有したミサイル16が移動
体として飛翔移動する場合のMINS18の座標系の設定値
の較正、更新方法を座標系の方位軸に関して説明した
が、他の2軸(ピッチ軸、ロール軸)に就いても同様に
軸設定値の較正と更新とが行なわれる。この場合、ピッ
チ軸はMINS18から得られる飛翔距離の水平面内進行方
向成分、ロール軸は、MINS18から得られる飛翔距離の
水平面内進行方向と直交する成分をレーダー装置60か
ら得られるミサイルの対応する移動距離と比較する。
In the above explanation, when the missile 16 having the MINS 18 from the missile launch ship 10 forming the moving mother body flies as a moving body, the method of calibrating and updating the set value of the coordinate system of the MINS 18 is described. Although the axes have been described, the axis setting values are similarly calibrated and updated for the other two axes (pitch axis and roll axis). In this case, the pitch axis is the flight distance component of the flight distance obtained from the MINS 18, and the roll axis is the component of the flight distance obtained from the MINS 18 which is orthogonal to the in-horizontal movement direction of the missile obtained from the radar device 60. Compare with distance.

【0018】また、図1、図2は、ミサイル発射艦10
からミサイル16を発射する場合の実施例に基づいて説
明したが、図3は地上のミサイル発射塔34から発射さ
れるミサイル16をレーダー装置40で計測し、制御装
置でミサイル軌道を得る場合を示し、基準航法座標は、
地表面における固定した座標系が使用される。
1 and 2 show a missile launch ship 10
Although the description has been given based on the embodiment in which the missile 16 is launched from the above, FIG. 3 shows a case where the radar device 40 measures the missile 16 launched from the missile launch tower 34 on the ground and the control device obtains the missile trajectory. , The standard navigation coordinates are
A fixed coordinate system on the ground surface is used.

【0019】図4は同じく、航空機50を移動母体と
し、同航空機50が有するSINS52、制御装置54、レ
ーダー装置60に基づいてミサイル56の軌道Tr1を
得て、同ミサイル56のMINS58の座標系の設定値の較
正、更新をデータリンクで行なう例を示している。図5
は潜水艦70がSINS72とソナー74とを魚雷76の軌
道Tr2の計測手段として有し、魚雷76が有するMINS
78の座標系の設定値を較正、更新する実施例に本発明
の方法が適用され得ることを図示している。図6は、無
人航空機80が有する慣性基準装置88が地上から飛行
する場合に同慣性基準装置80の座標系に就き、飛行開
始時点における初期設定化を行なうことなく、飛行中に
地上のレーダー装置90から飛行軌道を計測して、既述
と同様に、同航空機80の慣性基準装置88の座標系に
おける各軸の設定を行なうようにする例である。
In FIG. 4, similarly, the aircraft 50 is used as a moving base, the trajectory Tr1 of the missile 56 is obtained based on the SINS 52, the control device 54, and the radar device 60 of the aircraft 50, and the coordinate system of the MINS 58 of the missile 56 is obtained. An example is shown in which calibration and updating of set values are performed by data link. Figure 5
The submarine 70 has the SINS 72 and the sonar 74 as the measuring means of the trajectory Tr2 of the torpedo 76, and the MINS of the torpedo 76.
It is illustrated that the method of the present invention can be applied to an embodiment for calibrating and updating the settings of 78 coordinate systems. FIG. 6 shows the inertial reference device 88 of the unmanned aerial vehicle 80, which is in the coordinate system of the inertial reference device 80 when flying from the ground, and does not perform initialization at the start of the flight, and the radar device on the ground during the flight. In this example, the flight trajectory is measured from 90, and each axis is set in the coordinate system of the inertial reference device 88 of the aircraft 80, as described above.

【0020】以上の説明から明らかなように、本発明
は、基本的に移動体の移動開始時点では、同移動体が有
する慣性基準装置の座標系の初期値設定を行なうことな
く、移動中に外部からの計測手段で、同移動体の軌道を
計測して求め、その軌道データから移動体の慣性基準装
置の各軸の設定値を始めの設定値から逐次、較正、更新
して行く点を特徴とし、初動時には、慣性基準装置の座
標系の軸の設定時間がゼロであり得る点で迅速性を要請
されるミサイル等には、極めて有効な座標系の設定値の
較正方法として適用できるのである。
As is clear from the above description, according to the present invention, basically, at the time of starting the movement of the moving body, the initial value of the coordinate system of the inertial reference device of the moving body is not set and the moving body is moved during the movement. Measure the trajectory of the moving body with an external measuring means, and from the trajectory data, set the values for each axis of the inertial reference device of the moving body from the first set value, and calibrate and update the points. As a feature, it can be applied as a very effective calibration method for the set value of the coordinate system for missiles, etc. that require swiftness because the axis setting time of the coordinate system of the inertial reference device can be zero at the time of initial movement. is there.

【0021】[0021]

【発明の効果】以上の説明から、本発明によれば、基準
航法座標系における移動基点から飛翔又は航行により移
動する移動体が具備した慣性基準装置の座標系の設定値
を較正する方法おいて、前記移動体の移動中の航法座標
内における経時的な移動経路を前記移動基点に対する所
定の既知点に設けられた経路計測手段により計測し、前
記経路計測手段により計測した前記移動体の経時的な移
動経路の位置データに基づいて、基準航法座標系におけ
る前記移動体が具備する慣性基準装置の座標系の各軸の
設定値を求め、該求めた座標系の各軸の設定値を無線通
信手段を介して前記移動体の慣性基準装置に入力し、入
力された前記移動体の慣性基準装置の座標系における各
軸の設定値によって前回の設定値を更新し、以て基準航
法座標系における移動体の慣性基準装置の座標系の設定
値を初期値から順次に較正するようにしたから、移動体
の外部で移動体の有した慣性基準装置の各軸における軸
角度の設定値を得ることができ、故に、移動体に新規手
段を搭載する必要がないから、重量の増加等の不利を来
すをことがなく、しかも、移動母体である母船、母機、
基地等において移動体の飛翔移動や航行移動の開始時点
で同移動体の慣性基準装置の初期値設定に要する時間を
略皆無化することができるのである。
As described above, according to the present invention, there is provided a method for calibrating the set value of the coordinate system of the inertial reference device included in the moving body that moves by the flight or the navigation from the movement base point in the reference navigation coordinate system. , The time course of the moving body in the navigation coordinates during movement of the moving body is measured by a route measuring means provided at a predetermined known point with respect to the moving base point, and the moving body's time course measured by the route measuring means is measured. Setting values for each axis of the coordinate system of the inertial reference device included in the moving body in the reference navigation coordinate system, and the setting values for each axis of the obtained coordinate system are wirelessly communicated. Input to the inertia reference device of the moving body via means, the previous setting value is updated by the set value of each axis in the coordinate system of the inertia reference device of the moving body input, thereby, in the reference navigation coordinate system Since the set values of the coordinate system of the inertial reference device of the moving body are sequentially calibrated from the initial values, it is possible to obtain the set value of the axis angle in each axis of the inertial reference device of the moving body outside the moving body. Therefore, since it is not necessary to mount a new means on the moving body, there is no disadvantage such as an increase in weight, and the moving body is the mother ship, the mother machine,
It is possible to eliminate almost all the time required for setting the initial value of the inertia reference device of the mobile body at the time of starting the flight movement or the navigation movement of the mobile body at the base or the like.

【0022】従って、ミサイルのような瞬時的な準備時
間により発射を要請される移動体の場合には極めて有効
であり、しかも、設定値の更新を移動過程で順次に行え
る点は、ミサイルの目的点への到達精度の向上も達成で
きる点で効果は大きい。
Therefore, it is extremely effective in the case of a mobile body such as a missile that is required to be fired by an instantaneous preparation time, and the point that the set value can be updated sequentially in the course of movement is the purpose of the missile. The effect is great in that the accuracy of reaching the point can also be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に依る移動体における慣性基準装置座標
系の設定値較正方法を適用する1実施例として移動母体
であるミサイル発射艦から移動体であるミサイルを発射
する場合に、そのミサイルが有する慣性基準装置の座標
系の各軸の設定値を較正するに際して、レーダ及びミサ
イル発射艦の慣性基準装置をミサイル軌道計測手段とし
て利用した実施例を説明する略示説明図である。
FIG. 1 is a diagram illustrating an example of applying a method for calibrating a set value of an inertial reference device coordinate system in a moving body according to the present invention. When a missile that is a moving body is launched from a missile launching ship that is a moving mother body, the missile is FIG. 9 is a schematic explanatory diagram illustrating an example in which the radar and the inertial reference device of the missile launcher are used as missile trajectory measuring means when calibrating the setting values of the axes of the coordinate system of the inertial reference device.

【図2】同実施例において、ミサイル慣性装置の方位軸
の設定値較正を説明するためのグラフ図である。
FIG. 2 is a graph for explaining the calibration of the set value of the azimuth axis of the missile inertial device in the embodiment.

【図3】本発明を適用可能な他の1実施例を示す略示機
構図である。
FIG. 3 is a schematic mechanism view showing another embodiment to which the present invention can be applied.

【図4】本発明を適用可能な更に他の1実施例を示す略
示機構図である。
FIG. 4 is a schematic mechanism view showing still another embodiment to which the present invention can be applied.

【図5】本発明を適用可能な更に他の1実施例を示す略
示機構図である。
FIG. 5 is a schematic mechanism view showing still another embodiment to which the present invention can be applied.

【図6】本発明を適用可能な別の1実施例を示す略示機
構図である。
FIG. 6 is a schematic mechanism view showing another embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

10…ミサイル発射艦 12…SINS 14…ミサイル発射塔 16…ミサイル 18…MINS 20…レーダー装置 22…制御装置 10 ... Missile launch ship 12 ... SINS 14 ... Missile launch tower 16 ... Missile 18 ... MINS 20 ... Radar device 22 ... Control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基準航法座標系における移動基点から飛
翔又は航行により移動する移動体が具備した慣性基準装
置の座標系の設定値を較正する方法おいて、 前記移動体の移動中の航法座標内における経時的な移動
経路を前記移動基点に対する所定の既知点に設けられた
経路計測手段により計測し、 前記経路計測手段により計測した前記移動体の経時的な
移動経路の位置データに基づいて、基準航法座標系にお
ける前記移動体が具備する慣性基準装置の座標系の各軸
の設定値を求め、 該求めた座標系の各軸の設定値を無線通信手段を介して
前記移動体の慣性基準装置に入力し、 入力された前記移動体の慣性基準装置の座標系における
各軸の設定値によって前回の設定値を更新し、 以て基準航法座標系における移動体の慣性基準装置の座
標系の設定値を初期値から順次に較正するようにしたこ
とを特徴とする移動体における慣性基準装置座標系の設
定値較正方法。
1. A method for calibrating a set value of a coordinate system of an inertial reference device included in a moving body that moves by flight or navigation from a moving base point in the reference navigation coordinate system, wherein The moving path over time is measured by a path measuring means provided at a predetermined known point with respect to the moving base point, and based on the position data of the moving path over time of the moving body measured by the path measuring means, a reference The setting values of the axes of the coordinate system of the inertial reference device included in the moving body in the navigation coordinate system are obtained, and the obtained setting values of the axes of the coordinate system are sent to the inertial reference device of the moving body via wireless communication means. The previous set value is updated by the set value of each axis in the coordinate system of the inertial reference device of the moving body that has been input, so that the coordinate system of the inertial reference device of the moving body in the reference navigation coordinate system is updated. Setpoint calibration method for inertial reference unit coordinate system in a mobile, characterized in that the value was set to sequentially calibrated from the initial value.
【請求項2】 前記移動基点は該移動体が飛翔移動又は
航行移動する移動母体であり、該移動母体に設けられた
レーダと移動母体航行用の慣性基準装置とを前記経路計
測手段として前記経時的移動経路を計測する請求項1に
記載の移動体の慣性基準装置における慣性基準装置座標
系の設定値較正方法。
2. The moving base point is a moving base body on which the moving body flies or travels, and the radar provided on the moving base body and an inertial reference device for moving the base body are used as the route measuring means for the passage of time. The method for calibrating a set value of an inertial reference device coordinate system in an inertial reference device for a moving body according to claim 1, wherein the dynamic movement path is measured.
【請求項3】 前記設定値の更新は、前記移動体の移動
中に繰り返され、初期値を繰り返し更新するようにする
ことを特徴とする請求項1に記載の移動体における慣性
基準装置座標系の設定値較正方法。
3. The inertial reference device coordinate system in a moving body according to claim 1, wherein the updating of the set value is repeated during movement of the moving body, and the initial value is repeatedly updated. Setting value calibration method.
JP688893A 1993-01-19 1993-01-19 Calibration method of set value of coordinate system of inertial reference device in moving object Expired - Fee Related JP3313169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP688893A JP3313169B2 (en) 1993-01-19 1993-01-19 Calibration method of set value of coordinate system of inertial reference device in moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP688893A JP3313169B2 (en) 1993-01-19 1993-01-19 Calibration method of set value of coordinate system of inertial reference device in moving object

Publications (2)

Publication Number Publication Date
JPH06213669A true JPH06213669A (en) 1994-08-05
JP3313169B2 JP3313169B2 (en) 2002-08-12

Family

ID=11650777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP688893A Expired - Fee Related JP3313169B2 (en) 1993-01-19 1993-01-19 Calibration method of set value of coordinate system of inertial reference device in moving object

Country Status (1)

Country Link
JP (1) JP3313169B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037776A (en) * 2014-06-16 2014-09-10 国家电网公司 Reactive power grid capacity configuration method for random inertia factor particle swarm optimization algorithm
CN104567936A (en) * 2015-01-27 2015-04-29 北京航天时代光电科技有限公司 Parameter calibration method of triaxially oblique configuration inertia measurement device
CN105203106A (en) * 2015-08-17 2015-12-30 湖北工业大学 WMPS network layout optimizing method based on simulated annealing particle swarm optimization
JP2017053687A (en) * 2015-09-08 2017-03-16 富士重工業株式会社 Flying object position calculation system, flying object position calculation method and flying object position calculation program
JP2019184267A (en) * 2018-04-03 2019-10-24 株式会社Subaru Position measurement method, position measurement device, and position measurement system
KR102163426B1 (en) * 2019-05-13 2020-10-07 주식회사 풍산 Separation distance calculation method and program using acceleration of acceleration sensor
CN114440711A (en) * 2021-12-03 2022-05-06 北京星途探索科技有限公司 Particle swarm algorithm-based four-stage solid carrier rocket trajectory optimization method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037776A (en) * 2014-06-16 2014-09-10 国家电网公司 Reactive power grid capacity configuration method for random inertia factor particle swarm optimization algorithm
CN104567936A (en) * 2015-01-27 2015-04-29 北京航天时代光电科技有限公司 Parameter calibration method of triaxially oblique configuration inertia measurement device
CN105203106A (en) * 2015-08-17 2015-12-30 湖北工业大学 WMPS network layout optimizing method based on simulated annealing particle swarm optimization
JP2017053687A (en) * 2015-09-08 2017-03-16 富士重工業株式会社 Flying object position calculation system, flying object position calculation method and flying object position calculation program
JP2019184267A (en) * 2018-04-03 2019-10-24 株式会社Subaru Position measurement method, position measurement device, and position measurement system
KR102163426B1 (en) * 2019-05-13 2020-10-07 주식회사 풍산 Separation distance calculation method and program using acceleration of acceleration sensor
CN114440711A (en) * 2021-12-03 2022-05-06 北京星途探索科技有限公司 Particle swarm algorithm-based four-stage solid carrier rocket trajectory optimization method
CN114440711B (en) * 2021-12-03 2024-02-02 北京星途探索科技有限公司 Four-stage solid carrier rocket trajectory optimization method based on particle swarm optimization

Also Published As

Publication number Publication date
JP3313169B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
US8213803B2 (en) Method and system for laser based communication
KR960014821B1 (en) Autonomous precision weapon delivery system and method using synthetic array radar
US8258999B2 (en) System and method for roll angle indication and measurement in flying objects
US5193064A (en) Method and apparatus of integrating Global Positioning System and Inertial Navigation System without using accelerometers
EP0636862B1 (en) Inertial measurement unit and method for improving its measurement accuracy
JP7123774B2 (en) flight control system
JP5338464B2 (en) Inertial navigation device, flying object, and navigation data calculation method
US2995318A (en) Optical data transfer system
JP4191588B2 (en) Satellite tracking antenna controller
JP3313169B2 (en) Calibration method of set value of coordinate system of inertial reference device in moving object
US5397079A (en) Process for the autonomous positional control of guided missiles
EP1207403A1 (en) Method for determining the position of reference axes in an inertial navigation system of an object in respect with the basic coordinates and embodiments thereof
US5988562A (en) System and method for determining the angular orientation of a body moving in object space
CN112445230B (en) High-dynamic aircraft multi-mode guidance system and guidance method under large-span complex environment
CN115574666B (en) Height setting method for grazing cruise target
GB2370099A (en) Weapon systems
JP2022520118A (en) Systems and methods for determining wind direction and velocity measurements from unmanned aerial vehicle altitude
JPH0611354A (en) Method and equipment for setting initial coordinate values of inertia detecting means of moving body
JP2002162195A (en) Missile guidance system
CN113820733B (en) Motion carrier navigation method and device based on directional antenna and Doppler information
RU2603821C2 (en) Multifunctional navigation system for moving ground objects
CN109460075B (en) Method and system for fast azimuth alignment
US20200216166A1 (en) Terminal Approach Angle Guidance for Unpowered Vehicles
CN112179378B (en) Polarized light navigation-assisted transfer alignment system
JPH0618277A (en) Calibrating method of inertia reference device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees