JPH0618277A - Calibrating method of inertia reference device - Google Patents

Calibrating method of inertia reference device

Info

Publication number
JPH0618277A
JPH0618277A JP17562192A JP17562192A JPH0618277A JP H0618277 A JPH0618277 A JP H0618277A JP 17562192 A JP17562192 A JP 17562192A JP 17562192 A JP17562192 A JP 17562192A JP H0618277 A JPH0618277 A JP H0618277A
Authority
JP
Japan
Prior art keywords
reference device
moving body
moving
inertial reference
output value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17562192A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hayakawa
義彰 早川
Hiroshi Takagi
博 高木
Shinsuke Matsumoto
信介 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Precision Co Ltd
Original Assignee
Mitsubishi Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Precision Co Ltd filed Critical Mitsubishi Precision Co Ltd
Priority to JP17562192A priority Critical patent/JPH0618277A/en
Publication of JPH0618277A publication Critical patent/JPH0618277A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a calibrating method of an inertia reference device which makes it possible to calibrate an initial scale factor or a drift bias of the inertia reference device of a moving body which is thrown into the air or sea or moved from a moving base such as a ship or the like in a short time at the moving spot and to update the data. CONSTITUTION:An initial scale factor or a bias of an inertia reference device 14 of a moving body 12 which moves from a moving base 10 or a launching means 16 of the moving base upon receipt of the moving force is calibrated from the comparing result of the data of a reference inertia device 20 and that of the inertia reference device 14 of the moving body 12 based on the oscillation input impressed to the moving base 10 or projecting means 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶や航空機等の移動
母体から空中、海中等に放出される移動体が具備する慣
性基準装置の較正方法に関し、特に、移動体の慣性基準
装置が有する角度検出機能のバイアス(入力が零値の時
にドリフト出力)とスケールファクタ(出力値/入力値
で決まる倍率値)の較正を短時間で遂行するための較正
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating an inertial reference device provided in a moving body emitted from a moving body such as a ship or an aircraft into the air or the sea. The present invention relates to a calibration method for calibrating a bias (drift output when an input has a zero value) and a scale factor (output value / magnification value determined by an input value) of an angle detection function in a short time.

【0002】[0002]

【従来の技術】従来、飛翔体に搭載される慣性基準装置
に組み込まれたジャイロのスケールファクタの較正は、
工場で回転テーブルによって正確な角度入力を加えて行
なう方法しかなく、また、移動母体が船舶等である場合
には、その移動母体の動揺下におけるジャイロバイアス
の較正には、GPS等の正確な位置入力を必要としてい
る。
2. Description of the Related Art Conventionally, calibration of a gyro scale factor incorporated in an inertial reference device mounted on a flying vehicle is as follows.
The only way to do this is to input an accurate angle using a rotary table at the factory. Also, if the moving base is a ship, etc., the correct position such as GPS can be used to calibrate the gyro bias under the shaking of the moving base. Needing input.

【0003】[0003]

【発明が解決しようとする課題】つまり、移動体の慣性
基準装置の較正を、当該移動体の飛翔開始時に直接的に
組み込まれた慣性基準装置のバイアスやスケールファク
タを短時間で較正するための実用度の高い方法は未だ提
供されていない。
That is, in order to calibrate the inertial reference device of a moving body, the bias and scale factor of the inertial reference device directly incorporated at the start of flight of the moving body can be calibrated in a short time. A highly practical method has not been provided yet.

【0004】依って、本発明の目的は、移動母体に搭載
された移動体に具備された慣性基準装置の各センサのバ
イアスやスケールファクタを移動体の飛翔開始時に、そ
の移動母体上で短時間に遂行可能な較正方法を提供せん
とするものである。
Therefore, an object of the present invention is to set the bias and scale factor of each sensor of the inertial reference device mounted on the moving body on the moving body for a short time at the start of flight of the moving body. It is intended to provide a feasible calibration method.

【0005】[0005]

【課題を解決するための手段】本発明に依れば、移動母
体に搭載されてそこから飛翔、移動する移動体が具備す
る慣性基準装置のスケールファクタとバイアスとを較正
する方法において、前記移動母体に設けられた移動体の
飛翔用発射手段に予め基準用の慣性基準装置を搭載して
該基準用慣性基準装置のスケールファクタとバイアスと
を常時、前記移動母体が具備する慣性基準装置の正しい
値に合わせて補正し、前記飛翔用発射手段に所定の動揺
入力を与えて、該動揺入力を前記基準用慣性基準装置で
計測すると共にその計測入力に対応した出力値を基準出
力値として求め、同時に前記移動体が具備する慣性基準
装置の出力値を被較正出力値として計測し、前記基準出
力値と被較正出力値との差値を求めて前記移動体の慣性
基準装置のスケールファクタとバイアスとを補正するよ
うにしたことを特徴とする慣性基準装置の較正方法が提
供される。
According to the present invention, there is provided a method of calibrating a scale factor and a bias of an inertial reference device included in a moving body mounted on a moving body and flying and moving therefrom. An inertial reference device for reference is previously mounted on the flight launching means of the moving body provided on the mother body so that the scale factor and bias of the reference inertial reference device are always correct in the inertial reference device of the movable mother body. Corrected according to the value, given a predetermined shaking input to the flight launch means, the shaking input is measured by the reference inertial reference device and the output value corresponding to the measured input is obtained as a reference output value, At the same time, the output value of the inertial reference device included in the moving body is measured as the output value to be calibrated, the difference value between the reference output value and the output value to be calibrated is obtained, and the scale of the inertial reference device of the moving body is calculated. Calibration method for inertial reference unit being characterized in that so as to correct the factor and bias is provided.

【0006】本発明によれば、更に、移動母体に搭載さ
れてそこから飛翔、移動する移動体が具備する慣性基準
装置のスケールファクタとバイアスとを較正する方法に
おいて、前記移動母体が具備する慣性基準装置を基準用
慣性基準装置と、前記移動母体のヘッディング軸回りに
所定の動揺入力を与えて、該動揺入力を前記基準用慣性
基準装置で計測すると共にその計測入力に対応した出力
値を基準出力値として求め、同時に前記移動体が具備す
る慣性基準装置の出力値を被較正出力値として計測し、
前記基準出力値と被較正出力値との差値を求めて前記移
動体の慣性基準装置のスケールファクタとバイアスとを
補正するようにした慣性基準装置の較正方法が提供され
る。
According to the present invention, there is further provided a method of calibrating a scale factor and a bias of an inertial reference device included in a moving body which is mounted on the moving body and flies and moves from the moving body. The reference device is an inertia reference device for reference, and a predetermined swing input is given around the heading axis of the moving body, the swing input is measured by the reference inertia reference device, and an output value corresponding to the measurement input is used as a reference. Obtained as an output value, and at the same time, the output value of the inertial reference device provided in the moving body is measured as an output value to be calibrated,
There is provided a method for calibrating an inertial reference device, wherein a difference value between the reference output value and an output value to be calibrated is obtained to correct a scale factor and a bias of the inertial reference device of the moving body.

【0007】[0007]

【作用】上述の2つの構成による慣性基準装置の構成方
法によれば、移動体の移動開始現場において、移動開始
直前においても較正によりスケールファクタとドリフト
バイアスとを更新して最新のスケールファクタとバイア
スとに基づいて移動を開始させる。
According to the method of configuring the inertial reference device having the above-described two configurations, the scale factor and the drift bias are updated by the calibration at the movement start site of the moving body immediately before the start of the movement to update the latest scale factor and bias. The movement is started based on and.

【0008】[0008]

【実施例】図1は、本発明の方法を船舶を移動母体と
し、魚雷を移動体とした実施例に対して適用する場合を
説明する平面図、図2は同実施例における移動体の飛翔
準備状態における較正手段の較正を示す部分拡大説明
図、図3は慣性基準装置の入力と出力との関係を示すグ
ラフ図、図4は本発明の較正方法を適用する他の実施例
を示す斜視図、図5は図3と同様のグラフ図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plan view for explaining a case where the method of the present invention is applied to an embodiment in which a ship is a moving body and a torpedo is a moving body, and FIG. 2 is a flight of the moving body in the same embodiment. FIG. 3 is a partially enlarged explanatory view showing the calibration of the calibration means in the preparation state, FIG. 3 is a graph showing the relationship between the input and the output of the inertial reference device, and FIG. 4 is a perspective view showing another embodiment to which the calibration method of the present invention is applied. FIG. 5 and FIG. 5 are graphs similar to FIG.

【0009】図1、図2を参照すると、本発明に係る慣
性基準装置の較正方法が適用される1実施例として船舶
かち成る移動母体10から魚雷から成る移動体12を空
中を介して又は直接的に海中に発射、飛翔させる前に予
め同移動体12に搭載された慣性基準装置14のバイア
スやスケールファクタを較正する場合を示している。
Referring to FIGS. 1 and 2, as one embodiment to which the method for calibrating an inertial reference device according to the present invention is applied, a moving body 10 made up of a ship's boat and a moving body 12 made up of torpedoes are passed through the air or directly. 2 shows a case where the bias and scale factor of the inertial reference device 14 mounted on the moving body 12 is calibrated in advance before it is launched into the sea and is made to fly.

【0010】移動母体10は移動体12を発射するため
の発射装置16を母体の適宜の位置に備えており、か
つ、移動母体10自身ももその航行過程に用いられる慣
性基準装置18を搭載、具備している。この移動母体の
前後軸における前方々向をX軸と選定する。
The moving body 10 is equipped with a launching device 16 for launching the moving body 12 at an appropriate position on the body, and the moving body 10 itself is also equipped with an inertial reference device 18 used in its navigation process. It has. The front-back direction of the moving mother body is selected as the X-axis.

【0011】他方、移動体12は、上記の移動母体10
が有する発射装置16において推進、発射されて飛翔を
開始するもので、飛翔方向は発射装置16が移動母体1
0である船舶の横腹に収納された状態から舶外に発射口
を突出させ、上記のX軸方向に対して目標に応じて制御
される発射角度β0に設定される。
On the other hand, the moving body 12 is the moving body 10 described above.
Is launched by the launching device 16 of the mobile device 1 and starts to fly.
The launching port is projected to the outside of the ship from the state of being housed on the side of the ship, which is 0, and is set to the launching angle β0 controlled according to the target in the X-axis direction.

【0012】さて、本発明の較正方法を遂行すべく、発
射管16に較正基準用の慣性基準装置20が取付けられ
る。そして、この較正基準用の慣性基準装置20は移動
母体10が本来的に具備する慣性基準装置18によって
時々、較正し、その検出精度は維持される。
To carry out the calibration method of the present invention, the launch tube 16 is fitted with an inertial reference device 20 for a calibration reference. Then, the inertial reference device 20 for this calibration reference is sometimes calibrated by the inertial reference device 18 which the moving mother body 10 originally has, and its detection accuracy is maintained.

【0013】移動体12の発射直前の較正時には、その
搭載慣性基準装置14を含め、移動体12を発射装置1
6により揺動させる。この揺動は略水平面内で、発射装
置16を発射軸線に対して既知量の正負の入力角度(±
β1)で印加されるように遂行される。そして、この入
力角度(±β1)を発射装置16が有する予め精度維持
がされている慣性基準装置20により計測し、この計測
値を基準値として移動体12の慣性基準装置14のヘッ
ディング回りの入力軸の角度検出のスケールファクタ
(Kh)及びドリフトレートバイアス(Dh)の較正を
行なう。また、併せて発射装置16の慣性基準装置20
のヘディング、ピッチ角度、ロール角度をを初期として
移動体12の慣性基準装置14に入力する。
At the time of calibration immediately before the launch of the moving body 12, the moving body 12 including the mounted inertial reference device 14 is mounted on the launching device 1.
Swing with 6. This swinging causes the launching device 16 to move in a substantially horizontal plane with respect to the launch axis by a known amount of positive and negative input angles (±
β1) is applied. Then, this input angle (± β1) is measured by the inertial reference device 20 of the launching device 16 whose accuracy is maintained in advance, and the input around the heading of the inertial reference device 14 of the moving body 12 is made with this measured value as a reference value. Calibrate the scale factor (Kh) and drift rate bias (Dh) for axis angle detection. In addition, the inertial reference device 20 of the launching device 16 is also included.
The heading, pitch angle, and roll angle are input to the inertia reference device 14 of the moving body 12 as initial values.

【0014】更に、移動体12の発射時期に時間が許せ
ば、角度±βによる動揺入力は何度か繰り返し印加して
外乱の影響を低減させ、それに依って計測される上記基
準値の精度を高精度化させることができる。
Furthermore, if time is allowed for the firing time of the moving body 12, the shaking input by the angle ± β is repeatedly applied several times to reduce the influence of disturbance, and the accuracy of the reference value measured according to it is reduced. High accuracy can be achieved.

【0015】図3は横軸が発射装置16の慣性基準装置
20で計測した動揺入力を示し、縦軸は移動体12の慣
性基準装置14の出力値である。このとき、動揺入力値
を多数化し、それに対応した多数の出力値を計測して最
小二乗法で出力値の直線を得れば、基準出力値(基準慣
性基準装置の出力値の直線)との差値を演算して、移動
体12の慣性基準装置13のスケールファクタKhとド
リフトレートバイアスDhは下記の式で得られる。 Kh=〔(Δα’−γ’)/β〕×100(%) −−−(1) Dh=γ’/T(度/時間),但しTは計測時間、−−−(2) なお、2つの慣性基準装置14、20間の座標系間の相
対角度、換言すれば、移動体12の慣性基準装置14の
座標系の初期値は両慣性基準装置14、20間の物理的
角度が既知の場合は、その既知値を導入して基準側であ
る発射装置16の慣性基準装置20の座標初期値から簡
単に設定可能となる。また、上記の物理的角度が未知の
値であるときは他の初期値設定手法、例えば、GPSを
利用した手法から得られる。
In FIG. 3, the horizontal axis represents the swing input measured by the inertial reference device 20 of the launching device 16, and the vertical axis represents the output value of the inertial reference device 14 of the moving body 12. At this time, if the number of shaking input values is increased and a large number of output values corresponding thereto are measured to obtain a straight line of the output value by the least squares method, the value of the reference output value (the straight line of the output value of the reference inertial reference device) By calculating the difference value, the scale factor Kh and the drift rate bias Dh of the inertial reference device 13 of the moving body 12 are obtained by the following equations. Kh = [(Δα'-γ ') / β] × 100 (%) ----- (1) Dh = γ' / T (degrees / hour), where T is the measurement time, ----- (2) The relative angle between the coordinate systems between the two inertial reference devices 14 and 20, in other words, the initial value of the coordinate system of the inertial reference devices 14 of the moving body 12 is known as the physical angle between the inertial reference devices 14 and 20. In this case, the known value can be introduced to easily set the coordinate initial value of the inertial reference device 20 of the launching device 16 on the reference side. When the physical angle has an unknown value, it can be obtained by another initial value setting method, for example, a method using GPS.

【0016】図4の(a)、(b)及び図5に示す第2
の実施例を参照すると、移動母体30は、例えば、ミサ
イル発射艦からなり、移動体32は、同母体30に設け
られたミサイル発射塔から成る発射装置36から空中へ
発射されるミサイル本体から成り、内部に慣性基準装置
34を有している。移動母体30は、その艦体中央部等
に設置された自身の慣性基準装置38を備え、かつ、前
後軸の前方がX軸として設定される。
The second shown in FIGS. 4A and 4B and FIG.
With reference to the embodiment of FIG. 1, the mobile base 30 is, for example, a missile launch ship, and the mobile base 32 is a missile body that is launched into the air from a launcher 36, which is a missile launch tower provided in the base body 30. , Has an inertia reference device 34 inside. The moving mother body 30 has its own inertia reference device 38 installed in the central portion of the ship body, and the front of the front-rear axis is set as the X-axis.

【0017】上述した構成において、移動母体30の有
する慣性基準装置38は基準慣性基準装置として設けら
れ、その精度は外部情報、例えば、航法衛星(GP
S)、天測による現在位置の測定データから維持されて
いる。移動体32は、発射直前では発射装置36内に在
り、移動母体30の変形等によるその慣性基準装置34
と較正基準と成る移動母体30の慣性基準装置38との
相対角度変化は、ミッション上、無視できない場合は、
他の手段、例えば、コリメータ等の光学的手段で常時計
測され、補正値として較正遂行時に入力、使用すれば良
い。
In the above-mentioned structure, the inertia reference device 38 of the moving mother body 30 is provided as a reference inertia reference device, and its accuracy is determined by external information such as a navigation satellite (GP).
S), it is maintained from the measurement data of the current position by astronomical measurement. The moving body 32 exists in the launching device 36 immediately before launching, and its inertia reference device 34 due to deformation of the moving mother body 30 or the like.
When the relative angle change between the inertial reference device 38 of the moving mother body 30 that serves as a calibration reference and the calibration reference cannot be ignored in the mission,
Other means, for example, an optical means such as a collimator may always be used for measurement, and a correction value may be input and used during calibration.

【0018】移動体30の慣性基準装置32が有するジ
ャイロのスケールファクタとドリフトレートバイアスの
較正を行なおうとするときには、移動母体30自体を、
例えばローリング動作等で動揺させ、較正基準の慣性基
準装置38と移動体32の慣性基準装置34とに正負の
角度入力が印加されるようにし、その出力である例えば
電気量の両者の値の差値を求め、その差値があれば、較
正基準用の慣性基準装置38は既に常時、精度維持され
ているから、同差値から直ちに移動体32の慣性基準装
置34におけるスケールファクタの変動とドリフトレー
トバイアスが演算検出でき、その検出された値を前回の
較正時に較正値に補正値として印加して更新することに
より、現在のスケールファクタとバイアス値とを較正、
設定することができるのである。
When attempting to calibrate the gyro scale factor and drift rate bias of the inertial reference device 32 of the moving body 30, the moving body 30 itself is
For example, it is swayed by a rolling operation or the like so that positive and negative angle inputs are applied to the inertial reference device 38 of the calibration reference and the inertial reference device 34 of the moving body 32, and the difference between the values of the output, for example, the amount of electricity. If a difference value is found, the inertia reference device 38 for calibration reference is always maintained in accuracy, so that the scale factor changes and drifts in the inertia reference device 34 of the moving body 32 immediately after the difference value. The rate bias can be calculated and detected, and the detected value is applied as a correction value to the calibration value at the time of the previous calibration and updated to calibrate the current scale factor and bias value.
It can be set.

【0019】図5は、上述の構成、設定過程によるスケ
ールファクタとバイアス値との演算、検出法をグラフ表
示により分かり易く図解したものであり、スケールファ
クタをΔK、ドリフトバイアスをDとして示してある。
すなわち、移動母体30の動揺入力が印加されたとき、
同母体の慣性基準装置38で、その動揺入力に応じた発
射装置36の角度入力(±β)を基準入力として種々の
値を検出し、このときに各検出値に対応した移動体32
の慣性基準装置34における出力値を計測し、その多点
計測値から最小2乗法により得た出力直線を演算で求
め、この出力直線と較正基準の慣性基準装置38による
出力直線とから図5に図示のごとく、 ΔK=〔(Δα’−γ’)/β〕×100(%) −−−(3) D=γ’/T(度/時間),Tは計測時間、 −−−(4) として得ることができる。
FIG. 5 is a graphical representation of the calculation and detection method of the scale factor and bias value according to the above-described configuration and setting process, and the scale factor is shown as ΔK and the drift bias is shown as D. .
That is, when the shaking input of the moving mother 30 is applied,
The inertia reference device 38 of the same body detects various values with the angle input (± β) of the launching device 36 corresponding to the shaking input as a reference input, and at this time, the moving body 32 corresponding to each detected value.
The output value of the inertia reference device 34 is measured, and the output straight line obtained by the least squares method from the multipoint measurement values is calculated. The output straight line and the output straight line of the calibration reference inertia reference device 38 are shown in FIG. As shown, ΔK = [(Δα′−γ ′) / β] × 100 (%) −−− (3) D = γ ′ / T (degree / hour), T is the measurement time, and −−− (4 ) Can be obtained as

【0020】本実施例では、動揺入力を主に加える軸回
りの角度とは別の移動母体の慣性基準装置と移動体の慣
性基準装置との物理的相対角度(2軸)が分からなくて
も、その2軸の初期値設定ができるのである。
In the present embodiment, even if the physical relative angle (two axes) between the inertia reference device of the moving body and the inertia reference device of the moving body, which is different from the angle around the axis to which the shaking input is mainly applied, is unknown. The initial values of the two axes can be set.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
による較正、設定方法を適用すると、例えば、移動体が
魚雷であれば、サーチモード時に円を描くように運動し
つつ、音波発射を行なうが、通常、それは数回から数十
回に渡り、同一方向に回転するので、一般にストラップ
ダウン型の慣性基準装置が用いられた場合には、そのジ
ャイロスケールファクタエラーの影響が大きくなるが、
本発明による較正方法を発射時に適用して慣性基準装置
のスケールファクタやドリフトバイアスの較正を行なう
ことにより、移動体の慣性基準装置におけるヘッディン
グ並びに位置精度の改善の効果が大きく、ひいては、指
令入力の印加で所定の目標へ向けて移動体を移動させる
場合に、同移動体の目標位置への到着精度を向上させる
ことができる。
As is apparent from the above description, when the calibration and setting method according to the present invention is applied, for example, when the moving body is a torpedo, sound waves are emitted while moving in a circle in the search mode. Usually, it rotates several times to several tens of times in the same direction, so when a strapdown type inertial reference device is generally used, the influence of the gyro scale factor error becomes large.
By applying the calibration method according to the present invention at the time of launch to calibrate the scale factor and drift bias of the inertial reference device, the effect of improving the heading and position accuracy in the inertial reference device of the moving body is large, and thus the command input When the moving body is moved toward a predetermined target by application, the accuracy of arrival of the moving body at the target position can be improved.

【0022】また、本発明は、移動体の移動開始時点直
前の比較的短い時間を捉えて較正処理を行い、初期スケ
ールファクタとバイアス値とを更新して移動させ得るの
で、移動体の移動目標への到着精度を従来に比べて短時
間にしかも、一定の簡単な演算処理に基づき向上させ得
る効果がある。また、発射装置を動揺させて動揺入力を
得る方法では、大きな移動母体とは無関係に移動体の慣
性基準装置に就き、スケールファクタとバイアスとの初
期較正を遂行できるから、較正操作そのものが簡単化さ
れる効果がある。更に、方位軸回りの回転を利用して魚
雷、又はミサイル等の移動体と較正基準用の慣性基準装
置との水平面の物理的相対角度が分からなくても水平面
2軸の初期値設定が可能なる。
Further, according to the present invention, since a relatively short time immediately before the start of the movement of the moving body is captured and the calibration processing is performed, the initial scale factor and the bias value can be updated to move the moving body. There is an effect that the arrival accuracy can be improved in a shorter time than in the past and based on a certain simple arithmetic process. Also, in the method of oscillating the launching device to obtain the sway input, the inertial reference device of the moving body can be used irrespective of the large moving body, and the initial calibration of the scale factor and the bias can be performed, which simplifies the calibration operation itself. Is effective. Further, by using the rotation around the azimuth axis, the initial values of the two axes of the horizontal plane can be set even if the physical relative angle of the horizontal plane between the torpedo or a moving body such as a missile and the inertial reference device for the calibration reference is not known. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を船舶を移動母体とし、魚雷を移
動体とした実施例に対して適用する場合を説明する平面
図である。
FIG. 1 is a plan view illustrating a case where the method of the present invention is applied to an embodiment in which a ship is a moving base and a torpedo is a moving body.

【図2】同実施例における移動体の飛翔準備状態におけ
る較正手段の較正を示す部分拡大説明図である。
FIG. 2 is a partially enlarged explanatory view showing the calibration of the calibration means in the flight preparation state of the moving body in the embodiment.

【図3】慣性基準装置の入力と出力との関係を示すグラ
フ図である。
FIG. 3 is a graph showing a relationship between an input and an output of the inertial reference device.

【図4】(a)は、本発明の較正方法を適用する他の実
施例を示す斜視図である。(b)は、同実施例の部分拡
大図である。
FIG. 4A is a perspective view showing another embodiment to which the calibration method of the present invention is applied. (B) is a partially enlarged view of the same embodiment.

【図5】図5は図3と同様のグラフ図である。FIG. 5 is a graph similar to FIG.

【符号の説明】[Explanation of symbols]

10…移動母体 12…移動体 14…移動体の慣性基準装置 16…発射装置 18…移動母体の慣性基準装置 20…発射装置 30…移動母体 32…移動体 34…移動体の慣性基準装置 36…発射装置 38…移動母体の慣性基準装置 DESCRIPTION OF SYMBOLS 10 ... Movable body 12 ... Movable body 14 ... Movable body inertial reference device 16 ... Ejecting device 18 ... Movable body inertial reference device 20 ... Ejection device 30 ... Movable mother body 32 ... Movable body 34 ... Movable body inertial reference device 36 ... Launching device 38 ... Inertia reference device for moving mother

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動母体に搭載されてそこから飛翔、移
動する移動体が具備する慣性基準装置の初期スケールフ
ァクタおよびバイアスを較正する方法において、 前記移動母体に設けられた移動体の飛翔用発射手段に予
め基準用の慣性基準装置を搭載して該基準用慣性基準装
置のスケールファクタとバイアスとを常時、前記移動母
体が具備する慣性基準装置の正しい値に合わせて補正
し、 前記飛翔用発射手段に所定の動揺入力を与えて、該動揺
入力を前記基準用慣性基準装置で計測すると共にその計
測入力に対応した出力値を基準出力値として求め、 同時に前記移動体が具備する慣性基準装置の出力値を被
較正出力値として計測し、 前記基準出力値と被較正出力値との差値を求めて前記移
動体の慣性基準装置のスケールファクタとバイアスとを
補正するようにしたことを特徴とする慣性基準装置の較
正方法。
1. A method for calibrating an initial scale factor and a bias of an inertial reference device included in a moving body mounted on, and flying from, a moving mother body, comprising: The inertial reference device for reference is previously mounted on the means, and the scale factor and bias of the reference inertial reference device are constantly corrected in accordance with the correct value of the inertial reference device included in the moving mother body, and the flight launch is performed. A predetermined shaking input is applied to the means, the shaking input is measured by the reference inertial reference device, and an output value corresponding to the measured input is obtained as a reference output value. At the same time, the inertial reference device of the moving body is provided. An output value is measured as a calibrated output value, and a scale factor and a bias of the inertial reference device of the moving body are obtained by obtaining a difference value between the reference output value and the calibrated output value. Calibration method for inertial reference unit being characterized in that so as to correct.
【請求項2】 移動母体に搭載されてそこから飛翔、移
動する移動体が具備する慣性基準装置のスケールファク
タとバイアスとを較正する方法において、 前記移動母体が具備する慣性基準装置を基準用慣性基準
装置とし、 前記移動母体に所定の動揺入力を与えて、該動揺入力を
前記基準用慣性基準装置で計測すると共にその計測入力
に対応した出力値を基準出力値として求め、 同時に前記移動体が具備する慣性基準装置の出力値を被
較正出力値として計測し、 前記基準出力値と被較正出力値との差値を求めて前記移
動体の慣性基準装置のスケールファクタとバイアスとを
補正するようにしたことを特徴とする慣性基準装置の較
正方法。
2. A method for calibrating a scale factor and a bias of an inertial reference device included in a moving body mounted on, and flying from, a moving mother body, wherein the inertial reference device included in the moving mother body is used as a reference inertia. As a reference device, a predetermined shaking input is given to the moving mother body, the shaking input is measured by the reference inertial reference device, and an output value corresponding to the measured input is obtained as a reference output value. An output value of the inertial reference device provided is measured as a calibrated output value, and a difference value between the reference output value and the calibrated output value is obtained to correct a scale factor and a bias of the inertial reference device of the moving body. A method for calibrating an inertial reference device characterized in that
JP17562192A 1992-07-02 1992-07-02 Calibrating method of inertia reference device Pending JPH0618277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17562192A JPH0618277A (en) 1992-07-02 1992-07-02 Calibrating method of inertia reference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17562192A JPH0618277A (en) 1992-07-02 1992-07-02 Calibrating method of inertia reference device

Publications (1)

Publication Number Publication Date
JPH0618277A true JPH0618277A (en) 1994-01-25

Family

ID=15999292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17562192A Pending JPH0618277A (en) 1992-07-02 1992-07-02 Calibrating method of inertia reference device

Country Status (1)

Country Link
JP (1) JPH0618277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220791A (en) * 2010-04-08 2011-11-04 Japan Aviation Electronics Industry Ltd Inertial navigation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220791A (en) * 2010-04-08 2011-11-04 Japan Aviation Electronics Industry Ltd Inertial navigation system

Similar Documents

Publication Publication Date Title
US8258999B2 (en) System and method for roll angle indication and measurement in flying objects
JP5479577B2 (en) Method and system for estimating the trajectory of a moving object
US7977613B2 (en) System and method for roll angle indication and measurement in flying objects
US5253823A (en) Guidance processor
JPH04265817A (en) Inertial-navigation-equipment aligning apparatus
US5442560A (en) Integrated guidance system and method for providing guidance to a projectile on a trajectory
US2995318A (en) Optical data transfer system
US6202535B1 (en) Device capable of determining the direction of a target in a defined frame of reference
US6621059B1 (en) Weapon systems
JP3313169B2 (en) Calibration method of set value of coordinate system of inertial reference device in moving object
CN112445230B (en) High-dynamic aircraft multi-mode guidance system and guidance method under large-span complex environment
JP3162187B2 (en) Method and apparatus for setting initial coordinate values of inertia detecting means of moving body
US6131068A (en) Accuracy of an inertial measurement unit
JPH0618277A (en) Calibrating method of inertia reference device
WO2000052413A9 (en) Highly accurate long range optically-aided inertially guided type missile
US7458264B2 (en) Generalized inertial measurement error reduction through multiple axis rotation during flight
JP3137438B2 (en) Initial coordinate value setting method for inertial detection means of moving object
US5740986A (en) Method of determining the position of roll of a rolling flying object
SE425618B (en) DIRECTION DETERMINATION DEVICE
US4202516A (en) Electronic tripod technique
JP2002162195A (en) Missile guidance system
JP3368917B2 (en) Calibration method for inertial detection means of moving object
JP2019199238A (en) Cruising control method and cruising control device
JPS63100515A (en) System for inspecting attitude of navigating body
EP4105599A1 (en) Vehicle having antenna positioner adjusted for timing latency and related methods