JPH0621049A - Method and apparatus for forming insulating thin film - Google Patents

Method and apparatus for forming insulating thin film

Info

Publication number
JPH0621049A
JPH0621049A JP17867892A JP17867892A JPH0621049A JP H0621049 A JPH0621049 A JP H0621049A JP 17867892 A JP17867892 A JP 17867892A JP 17867892 A JP17867892 A JP 17867892A JP H0621049 A JPH0621049 A JP H0621049A
Authority
JP
Japan
Prior art keywords
thin film
atmosphere
gas
insulating thin
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17867892A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17867892A priority Critical patent/JPH0621049A/en
Publication of JPH0621049A publication Critical patent/JPH0621049A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize formation of an insulating thin film of high quality containing oxygen and nitrogen with high reliability by mounting a semiconductor substrate in an atmosphere filled with predetermined gas, holding the atmosphere with the gas to a predetermined water content concentration of a special value or less, and heating the substrate to a predetermined temperature. CONSTITUTION:An insulating thin film containing oxygen and nitrogen of an element having a structure which has the film is formed on a semiconductor substrate 14. In such a case, the substrate 14 is installed in an atmosphere filled with predetermined gas. Then, the atmosphere is held with the gas in a predetermined water content concentration of about 100ppm or less, and the substrate 14 is heated to a predetermined temperature. Then, the atmosphere is held with gas containing oxygen or nitrogen as a material of the film to a predetermined water content concentration of about 100ppm or less to form the film. The atmosphere is filled with the gas, and the substrate 14 is cooled to a predetermined temperature lower than the heating temperature of the substrate 14 in the atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の絶縁薄膜
を形成する形成方法に係わり、特に水分を除去した、前
記絶縁薄膜の原料となる酸素および窒素を含んだガス雰
囲気内において行う、絶縁薄膜の形成方法および形成装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating thin film of a semiconductor device, and in particular, it is performed in a gas atmosphere containing oxygen and nitrogen, which is a raw material of the insulating thin film, from which water is removed. The present invention relates to a thin film forming method and a thin film forming apparatus.

【0002】[0002]

【従来の技術】一般に、Siを用いたMOS(metal ox
ide semiconductor )構造素子のゲート用絶縁膜材料と
しては、Si酸化膜やSi窒化酸化膜(以下ON膜と呼
ぶことにする)等が用いられているが、特に後者は前者
に比べて、膜中・界面のSiダングリングボンド(未結
合手)等をNによって効果的に不活性化(パッシベーシ
ョン)できる可能性を有し、ホットキャリア耐性等の素
子特性の向上が期待できる。このようなON膜形成方法
としては、通常、Si基板を常圧の酸素および窒素を含
む原料ガス雰囲気中で抵抗加熱電気炉や赤外線照射加熱
装置で加熱する方法等が主に用いられている。
2. Description of the Related Art Generally, MOS (metal ox) using Si is used.
As a gate insulating film material for a structural element, a Si oxide film, a Si oxynitride film (hereinafter referred to as an ON film), or the like is used. In particular, the latter is in the film compared to the former. -Si dangling bonds (unbonded hands) at the interface can be effectively inactivated (passivated) by N, and improvement of device characteristics such as hot carrier resistance can be expected. As such an ON film forming method, usually, a method of heating a Si substrate in a source gas atmosphere containing oxygen and nitrogen at atmospheric pressure with a resistance heating electric furnace or an infrared irradiation heating device is mainly used.

【0003】近年、MOS構造素子は微細化・高性能化
が積極的に進められてきており、これに伴いゲート用の
ON膜は、Si酸化膜換算膜厚10nm以下の薄膜を使
用するに至っており、界面状態の良好な、均一な膜質・
膜厚のゲート用絶縁薄膜を形成する絶縁薄膜形成工程
は、信頼性の高い高性能な当該素子を実現する上で極め
て重要な工程となっている。このような薄膜を、従来技
術の内で最も多用されている前述の方法で行った場合、
酸化および窒化反応を行う処理室内の雰囲気中の水分濃
度が通常約200〜500ppm以上と高いために、O
N薄膜と基板との界面やON薄膜中にSi−HやSi−
OH,N−H結合等の余分な結合状態が生成されたり、
また、これらSi等との結合原子が脱離することによっ
て点欠陥(Siダングリングボンド等)が形成された
り、さらには基板上の付着水分濃度の差異により酸化・
窒化速度が変動してON薄膜の膜厚が結果的に不均一に
なる、等の実用上極めて大きな問題があった。
In recent years, the miniaturization and high performance of MOS structure elements have been actively promoted, and as a result, the ON film for gates has come to use a thin film having a Si oxide film equivalent film thickness of 10 nm or less. And uniform film quality with good interface
The insulating thin film forming step of forming a gate insulating thin film having a large film thickness is an extremely important step for realizing the device having high reliability and high performance. When such a thin film is formed by the above-mentioned method which is most frequently used in the prior art,
Since the moisture concentration in the atmosphere in the processing chamber where the oxidation and nitriding reactions are performed is usually as high as about 200 to 500 ppm or more, O
Si-H or Si- in the interface between N thin film and substrate or in ON thin film
Excessive bond states such as OH and N—H bonds are generated,
In addition, a point defect (Si dangling bond, etc.) is formed by the detachment of the bonding atom with Si, etc., and further, oxidation /
There was a practically very serious problem that the nitriding speed fluctuated and the thickness of the ON thin film eventually became non-uniform.

【0004】また、このような処理室内の水分濃度を低
下させる目的で、処理室と外気との遮断を行うための基
板交換室を備えている装置は少なく、また、基板交換室
を仮に有していても、単に外気の混入を一時的に遮断す
ることが目的で、外気を起源とした、あるいは基板や基
板固定器具等に付着した水分を積極的に除去することを
目的には構成されていなかった。このため、処理室内へ
低水分のガスを導入しても、外気からの巻き込みによる
処理室内への水分の侵入や、基板や基板固定器具等に付
着した水分等によって処理室内雰囲気中の水分濃度が増
大、かつ変動した。しかも、前述したようなON薄膜の
平均膜厚の薄膜化を再現性良く実現するために酸化速度
を低下させる、すなわち、酸化温度を低下させる必要が
あり、本来膜質、あるいは近接膜との整合性の点から最
適な酸化温度範囲があるにもかかわらず、これを実現で
きず、最良のON薄膜を形成することが極めて困難であ
った。
In order to reduce the water concentration in the processing chamber, few devices have a substrate exchanging chamber for shutting off the processing chamber from the outside air, and the provisional substrate exchanging chamber is provided. However, it is configured for the purpose of simply shutting off the mixture of outside air, and for the purpose of actively removing the moisture originating from the outside or adhering to the substrate or the substrate fixing device. There wasn't. Therefore, even if a low-moisture gas is introduced into the processing chamber, the concentration of water in the atmosphere inside the processing chamber may be increased due to the intrusion of moisture into the processing chamber due to being caught from the outside air, the moisture adhering to the substrate, the substrate fixing device, or the like. Increased and fluctuated. Moreover, in order to realize the thinning of the average thickness of the ON thin film with good reproducibility, it is necessary to lower the oxidation rate, that is, lower the oxidation temperature. In view of the above point, this was not achieved even though there was an optimum oxidation temperature range, and it was extremely difficult to form the best ON thin film.

【0005】以上のような、ON薄膜の欠陥や膜厚の不
均一性、さらには酸化温度範囲の制約のため、MOS構
造素子の経時的な電気特性劣化を引き起こすホットキャ
リアや界面準位の発生頻度、およびキャリアトラップ密
度が低い、しかも、膜厚変動の小さいゲート用絶縁薄膜
の形成が困難と言う、実用上極めて深刻な問題があっ
た。
Due to the defects of the ON thin film, the non-uniformity of the film thickness, and the restriction of the oxidation temperature range as described above, the generation of hot carriers and interface states causing deterioration of the electrical characteristics of the MOS structure element over time. There is a very serious problem in practical use that it is difficult to form an insulating thin film for a gate, which has a low frequency and a low carrier trap density and a small film thickness variation.

【0006】[0006]

【発明が解決しようとする課題】このように従来技術で
は、ON薄膜の形成が、常圧すなわち1気圧の高い水分
濃度の酸素および窒素を含むガス雰囲気下で実施されて
いたため、ON薄膜と基板との界面およびON薄膜中に
この水分に起因した格子欠陥や目的以外の結合状態が形
成され、また基板上の水分濃度の差異に伴い膜厚が変動
し、しかも極めて薄い薄膜の平均膜厚の再現性を確保す
るためには酸化温度に制約が生じる、等の障害があり、
これらに起因した膜質低下や膜厚不均一性に伴って、前
述界面近傍でのホットキャリアの発生・トラップ量の増
大や局所的電界強度の増大等が起こるため、MOS構造
素子の電気特性の経時変化特性や絶縁耐圧特性が劣化
し、信頼性の高い素子を実現することが困難であった。
As described above, according to the prior art, since the formation of the ON thin film is carried out under a gas atmosphere containing oxygen and nitrogen having a high water concentration of atmospheric pressure, that is, 1 atm, the ON thin film and the substrate are not formed. Lattice defects and bonding states other than the purpose due to this moisture are formed at the interface with and in the ON thin film, and the film thickness varies with the difference in the water concentration on the substrate. In order to ensure reproducibility, there are obstacles such as restriction on the oxidation temperature,
Due to the deterioration of the film quality and the non-uniformity of the film thickness due to these factors, the generation of hot carriers near the interface, the increase of the trap amount, the increase of the local electric field intensity, etc. occur, and thus the electrical characteristics of the MOS structure element with time elapse. It was difficult to realize a highly reliable element because the change characteristics and the withstand voltage characteristics deteriorated.

【0007】本発明はこの様な課題を鑑みて成されたも
のであり、その目的とするところは、高品質の絶縁薄膜
形成を信頼性高く実現し得る絶縁薄膜の形成方法とその
形成装置を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an insulating thin film forming method and a forming apparatus which can reliably form a high quality insulating thin film. To provide.

【0008】[0008]

【課題を解決するための手段】本発明はこのような課題
を解決するものであり、ON薄膜の形成を、約100p
pm以下の極めて低い水分濃度の雰囲気下、または約1
00ppm以下の極めて低い水分濃度の且つ約750T
orr以下の減圧された雰囲気下、または約100pp
m以下の極めて低い水分濃度の且つ絶縁薄膜の原料とな
る酸素および窒素を含んだガスを純窒素等の中性ガスも
しくはアルゴン等の不活性ガスで希釈した雰囲気下で実
施することにより、前述した様なON薄膜と基板との界
面、および、ON薄膜中の欠陥密度を低減すると共に、
膜厚の均一性向上と、酸化温度の昇温限界範囲の拡張に
よって、ON膜の膜質、信頼性、およびON膜と他の膜
との整合性を向上するものである。
SUMMARY OF THE INVENTION The present invention solves such a problem by forming an ON thin film at about 100 p.
In an atmosphere of extremely low water concentration of pm or less, or about 1
Extremely low water concentration of less than 00ppm and about 750T
In a depressurized atmosphere below orr, or about 100 pp
By carrying out in an atmosphere in which a gas containing oxygen and nitrogen, which is a raw material of an insulating thin film and has an extremely low water concentration of m or less, is diluted with a neutral gas such as pure nitrogen or an inert gas such as argon, In addition to reducing the interface between the ON thin film and the substrate and the defect density in the ON thin film,
By improving the uniformity of the film thickness and expanding the temperature increase limit range of the oxidation temperature, the film quality and reliability of the ON film and the consistency between the ON film and other films are improved.

【0009】すなわち、所定のガスで充満された雰囲気
内に前記半導体基板を設置する第1工程と、前記雰囲気
を所定のガスで約100ppm以下の所定の水分濃度に
保持し、または前記雰囲気を所定のガスで約750To
rr以下の所定の圧力に保持し且つ該雰囲気を約100
ppm以下の所定の水分濃度に保持して前記半導体基板
を所定の温度に加熱する第2工程と、前記雰囲気を前記
絶縁薄膜の原料となる酸素もしくは窒素を含むガスで約
100ppm以下の所定の水分濃度に保持し、または前
記雰囲気を前記絶縁薄膜の原料となる酸素もしくは窒素
を含むガスで約750Torr以下の所定の圧力に保持
し且つ該雰囲気を約100ppm以下の所定の水分濃度
に保持し、または前記雰囲気を前記絶縁薄膜の原料とな
る酸素もしくは窒素を含むガスと純窒素等の中性ガスも
しくはアルゴン等の不活性ガスとの混合ガスで約100
ppm以下の所定の水分濃度に保持して前記絶縁薄膜を
形成する第3工程と、前記第3工程で前記絶縁薄膜を形
成した後、前記雰囲気を所定のガスで充満させ、該雰囲
気中で前記半導体基板の加熱温度よりも低い所定の温度
まで該半導体基板を冷却する第4工程とで構成される絶
縁薄膜の形成方法を用いる。
That is, the first step of installing the semiconductor substrate in an atmosphere filled with a predetermined gas, and maintaining the atmosphere at a predetermined water concentration of about 100 ppm or less with the predetermined gas, or the atmosphere is predetermined. About 750To of gas
The pressure is maintained at a predetermined pressure below rr and the atmosphere is maintained at about 100
A second step of heating the semiconductor substrate to a predetermined temperature while maintaining a predetermined water concentration of ppm or less, and a predetermined water content of about 100 ppm or less in a gas containing oxygen or nitrogen, which is a raw material of the insulating thin film, in the atmosphere. The concentration is maintained, or the atmosphere is maintained at a predetermined pressure of about 750 Torr or less with a gas containing oxygen or nitrogen that is a raw material of the insulating thin film, and the atmosphere is maintained at a predetermined water concentration of about 100 ppm or less, or The atmosphere is a mixed gas of a gas containing oxygen or nitrogen, which is a raw material of the insulating thin film, and a neutral gas such as pure nitrogen or an inert gas such as argon, and is about 100.
A third step of forming the insulating thin film while maintaining a predetermined water concentration of ppm or less, and after forming the insulating thin film in the third step, the atmosphere is filled with a predetermined gas, and the atmosphere is filled with the predetermined gas. A fourth step of cooling the semiconductor substrate to a predetermined temperature lower than the heating temperature of the semiconductor substrate is used to form an insulating thin film.

【0010】[0010]

【作用】本発明は、ON薄膜の形成を、極めて低い水分
濃度の雰囲気下、または極めて低い水分濃度の且つ減圧
された雰囲気下、または極めて低い水分濃度の且つ絶縁
薄膜の原料となる酸素および窒素を含んだガスを純窒素
等の中性ガスもしくはアルゴン等の不活性ガスで希釈し
た雰囲気下で実施することにより、ON薄膜と基板との
界面、およびON薄膜中の欠陥密度を低減すると共に、
膜厚の均一性と、酸化温度の昇温限界範囲の拡張によっ
て、ON膜の膜質、信頼性、およびON膜と他の膜との
整合性を向上することが可能になるため、MOS構造素
子の電気特性の経時変化特性等の劣化を防止した、再現
性の良い、信頼性の高い素子が実現できる。
The present invention forms an ON thin film in an atmosphere having an extremely low water content, in an atmosphere having a very low water content and under reduced pressure, or with oxygen and nitrogen as a raw material of an insulating thin film having an extremely low water content. By carrying out in an atmosphere in which the gas containing is diluted with a neutral gas such as pure nitrogen or an inert gas such as argon, the defect density in the interface between the ON thin film and the substrate and the ON thin film is reduced,
Since the film quality and reliability of the ON film and the consistency between the ON film and other films can be improved by the uniformity of the film thickness and the extension of the temperature rise limit range of the oxidation temperature, the MOS structure element can be improved. It is possible to realize a highly reproducible element with high reproducibility, which is capable of preventing deterioration of the characteristics of the electric characteristics with time and the like.

【0011】[0011]

【実施例】本発明の実施例として、Si基板を用いたM
OSダイオード形成工程の内の、ゲート用ON薄膜形成
工程を例に、本発明の絶縁薄膜の形成方法と形成装置の
構成について説明する。なお、実施例では、ON薄膜の
形成装置の基板出し入れ方法として、処理室内壁に接触
することなく移送ができる方式(ソフトランディング)
を採用した場合を例に形成方法と装置構成を説明する。
EXAMPLE As an example of the present invention, M using a Si substrate
Among the OS diode forming steps, the ON thin film forming step for a gate will be taken as an example to describe the method of forming an insulating thin film and the configuration of the forming apparatus of the present invention. In the embodiment, as a method of loading and unloading the substrate of the ON thin film forming apparatus, it is possible to transfer the substrate without contacting the inner wall of the processing chamber (soft landing).
The forming method and the device configuration will be described by taking the case of adopting as an example.

【0012】図1は、本発明に係わる絶縁薄膜形成装置
の1実施例を示す概略構成図である。同図において、1
は処理室、2a,2bは水分除去器、3は加熱部、4は
処理室用ガス導入系、5は処理室排気系、6は処理室開
閉部、7は基板交換室、8は基板交換室用ガス導入系、
9は基板交換室排気系、10は伸縮管、11は基板移送
用駆動部、12は基板固定台支持部、13は基板固定
台、14は基板、15はベーク用ヒーター線、16は伸
縮方向である。
FIG. 1 is a schematic diagram showing an embodiment of an insulating thin film forming apparatus according to the present invention. In the figure, 1
Is a processing chamber, 2a and 2b are moisture removers, 3 is a heating unit, 4 is a processing chamber gas introduction system, 5 is a processing chamber exhaust system, 6 is a processing chamber opening / closing unit, 7 is a substrate exchange chamber, and 8 is substrate exchange. Room gas introduction system,
9 is a substrate exchange chamber exhaust system, 10 is a telescopic tube, 11 is a substrate transfer drive unit, 12 is a substrate fixing base support unit, 13 is a substrate fixing base, 14 is a substrate, 15 is a baking heater wire, and 16 is an expanding / contracting direction. Is.

【0013】処理室1は、処理温度、ガスの種類と流
量、ガス中水分濃度、および排気速度が制御できる、加
熱部3、処理室用ガス導入系4、水分除去器2a、およ
び処理室排気系5を有しており、所要の条件に設定可能
な構成になっている。また、その端部には外気の混入防
止と室内雰囲気の維持のための処理室開閉部6が設けら
れており、基板交換室7と気密性を維持して接続されて
いる。この基板交換室7は外部からの基板の出し入れを
行うための開閉扉(図示省略)があり、また所要の雰囲
気を実現するため、ガスの種類と流量、ガス中水分濃
度、および排気速度が制御できる、基板交換室用ガス導
入系8、水分除去器2b、および基板交換室排気系9を
有する。さらに、これの端部には基板移送のための機構
である伸縮管10、基板移送用駆動部11、基板固定台
支持部12、および基板固定台13が接続されている。
すなわち、基板固定台13に設置された基板14は基板
固定台支持部12に接続された基板移送用駆動部11の
移動(図では、伸縮方向16のような左右方向に移動で
きる)によって基板交換室7と処理室1との間を移動で
きると共に、基板固定台13と共に処理室1内に設置で
きる。この移動の際、伸縮管10は基板移送用駆動部1
1の動きに連れて基板交換室7の雰囲気を壊す事なく伸
縮が可能な様になっている。なお、水分除去器2a,2
bは、所要の極めて低い水分濃度(例えば約10ppb
以下)のガスが供給できる能力を有する。また、基板交
換室7と伸縮管10の外周には壁内水分加熱除去のため
のベーク用ヒーター線15が設置されている。
The processing chamber 1 has a heating section 3, a processing chamber gas introduction system 4, a moisture remover 2a, and a processing chamber exhaust which can control the processing temperature, the type and flow rate of gas, the moisture concentration in gas, and the exhaust speed. It has a system 5 and can be set to required conditions. Further, a processing chamber opening / closing unit 6 for preventing the entry of outside air and maintaining the indoor atmosphere is provided at the end portion thereof, and is connected to the substrate exchange chamber 7 while maintaining airtightness. The substrate exchange chamber 7 has an opening / closing door (not shown) for loading / unloading the substrate from the outside, and in order to realize a required atmosphere, the type and flow rate of gas, the moisture concentration in gas, and the exhaust speed are controlled. It has a substrate exchange chamber gas introduction system 8, a moisture remover 2b, and a substrate exchange chamber exhaust system 9. Further, a telescopic tube 10, which is a mechanism for transferring a substrate, a substrate transfer driving unit 11, a substrate fixing base support unit 12, and a substrate fixing base 13 are connected to the end portion of this.
That is, the substrate 14 installed on the substrate fixing base 13 is replaced by the movement of the substrate transfer driving unit 11 connected to the substrate fixing base support unit 12 (in the figure, the substrate 14 can be moved in the lateral direction such as the expansion / contraction direction 16). It can be moved between the chamber 7 and the processing chamber 1, and can be installed in the processing chamber 1 together with the substrate fixing base 13. At the time of this movement, the expansion tube 10 is moved by the substrate transfer drive unit 1.
With the movement of 1, the expansion and contraction can be performed without destroying the atmosphere of the substrate exchange chamber 7. In addition, the water removers 2a, 2
b is the required extremely low water concentration (for example, about 10 ppb
The following) gas can be supplied. In addition, a bake heater wire 15 for removing moisture heating in the wall is installed around the substrate exchange chamber 7 and the expansion tube 10.

【0014】以上述べたように、処理室1および基板交
換室7は各々独立に雰囲気を制御でき、特に処理室1
は、絶縁薄膜形成工程を、全く大気との接触を断ちなが
ら極めて低水分濃度の雰囲気下で進行させることが可能
な装置構成になっている。
As described above, the atmosphere of the processing chamber 1 and the substrate exchange chamber 7 can be controlled independently of each other.
Has an apparatus configuration capable of advancing the insulating thin film forming step in an atmosphere having an extremely low water content while completely cutting off contact with the atmosphere.

【0015】ここで、Si−MOSダイオード形成工程
の内のゲート用ON薄膜形成工程として、Si酸化膜や
窒化膜等の絶縁厚膜でダイオード動作領域以外が絶縁さ
れるようにパターニングされたSi基板面露出部(ダイ
オード動作領域)上へ酸素および窒素を含むガスを供給
し、熱拡散・酸化・窒化反応により薄いON薄膜(例え
ば5nm(以下、Si酸化膜換算膜厚とする))を該基
板上に形成する工程を例に、本発明の装置の利用方法を
示しながら、本発明の低水分雰囲気下での絶縁薄膜の形
成方法の第1の例を概説する。
Here, as a gate ON thin film forming step in the Si-MOS diode forming step, a Si substrate patterned by an insulating thick film such as a Si oxide film or a nitride film so as to insulate regions other than the diode operating region. A thin ON thin film (for example, 5 nm (hereinafter, referred to as Si oxide film equivalent thickness)) is formed on the exposed surface (diode operating region) by supplying a gas containing oxygen and nitrogen and by thermal diffusion / oxidation / nitridation reaction. The first example of the method for forming an insulating thin film in the low-moisture atmosphere of the present invention will be outlined while showing the method of using the device of the present invention by taking the above-mentioned forming process as an example.

【0016】前記パターニングされたSi基板露出部を
有した基板14を、N2 等のSiに対して悪影響を与え
ない中性ガスもしくはAr等の不活性ガスで充満してあ
る基板交換室7内の基板固定台13に設置した上で、真
空室(例えば、約10-6Torr以下)に排気し、か
つ、所要の時間ベーク用ヒーター線15によりその内壁
を加熱(例えば約80〜200℃)し雰囲気中の水分濃
度の低下と清浄性の向上を図る(第1予備工程)。なお
処理室1も予め高真空に排気し、かつ加熱部3によりそ
の内壁を加熱(例えば約700〜1200℃)し低水分
濃度の清浄な雰囲気とする(第2予備工程)。基板交換
室7内の残留水分濃度が所要の水分分圧以下(例えば、
約10-8Torr以下)になった時点で、処理室1での
処理雰囲気と同圧になるまで前述の中性ガスもしくは不
活性ガスを導入した後、処理室開閉部6を開き基板14
を処理室1へ移送する(第1工程)。なお、処理室1
も、基板交換室7の雰囲気と同様な低水分圧になった時
点で、所要の温度に、前記中性ガスもしくは不活性ガス
を導入した状態(この時の水分濃度は約100〜1pp
m以下)にしておく。移送後、処理室開閉部6を閉鎖
し、処理室1内に前記中性ガスもしくは不活性ガスを適
量導入しながら、場合によっては同時に排気し、処理室
1内を所要の圧力(例えば、約2000〜0.1Tor
r)に保持すると共に、基板14を所要の酸化・窒化温
度(例えば、約700〜1200℃)まで加熱する(第
2工程)。所要の酸化・窒化温度になった時点で、前記
処理室1内への導入中性ガスもしくは不活性ガスの代わ
りに、例えばO2 やNH3 ,N2 O等から成る、酸素も
しくは窒素を含むガスを処理室1内に所要の濃度・流量
で導入しながら、場合によっては同時に排気し、処理室
1内を所要の圧力(例えば、約2000〜0.1Tor
r)に保持することによって、前記Si基板面露出部に
ON薄膜を熱拡散反応により形成させる(第3工程)。
なお、該第3工程でのON薄膜形成手順としては、始め
からON膜組成として形成することも、あるいは酸化後
窒化、窒化後酸化しても良い。所要の膜厚になった時点
で、前記原料ガスの導入を停止し、代わりに処理室1内
に前記中性ガスもしくは不活性ガスを導入し、このガス
によって処理室1内が充満された状態で、基板14を次
の工程(通常、ゲート電極形成工程)に支障のない温度
(例えば、約600℃〜室温近傍)まで冷却する(第4
工程)。なお、この冷却は、膜形成後、処理室1内が前
記中性ガスもしくは不活性ガスに置換された時点で、基
板14を、処理室1内雰囲気と同等のガス雰囲気にして
ある基板交換室7へ戻し、処理室開閉部6を閉鎖した上
で、前記温度まで冷却しても、同等の低水分濃度雰囲気
でのゲート用ON薄膜を得ることができる。
In the substrate exchange chamber 7 in which the substrate 14 having the patterned exposed portion of the Si substrate is filled with a neutral gas such as N 2 which does not adversely affect Si or an inert gas such as Ar. After being installed on the substrate fixing base 13 of FIG. 1, the gas is exhausted to a vacuum chamber (for example, about 10 −6 Torr or less), and the inner wall of the baking heater wire 15 is heated for a required time (for example, about 80 to 200 ° C.). Then, the water concentration in the atmosphere is reduced and the cleanliness is improved (first preliminary step). The processing chamber 1 is also evacuated to a high vacuum in advance, and the inner wall of the processing chamber 1 is heated by the heating unit 3 (for example, about 700 to 1200 ° C.) to form a clean atmosphere having a low water content (second preliminary step). The residual moisture concentration in the substrate exchange chamber 7 is equal to or lower than the required moisture partial pressure (for example,
(Approx. 10 −8 Torr or less), after introducing the above-mentioned neutral gas or inert gas until the pressure becomes the same as the processing atmosphere in the processing chamber 1, the processing chamber opening / closing part 6 is opened.
Is transferred to the processing chamber 1 (first step). Incidentally, the processing room 1
Also, when the same low moisture pressure as the atmosphere of the substrate exchange chamber 7 is reached, the neutral gas or the inert gas is introduced to the required temperature (the moisture concentration at this time is about 100 to 1 pp).
m or less). After the transfer, the processing chamber opening / closing part 6 is closed, and while the appropriate amount of the neutral gas or the inert gas is introduced into the processing chamber 1, the processing chamber 1 is simultaneously evacuated to a required pressure (for example, about 2000-0.1 Tor
The substrate 14 is heated to a required oxidation / nitriding temperature (for example, about 700 to 1200 ° C.) while being kept at r) (second step). At the time when the required oxidation / nitriding temperature is reached, oxygen or nitrogen containing, for example, O 2 , NH 3 , N 2 O, etc. is contained in place of the neutral gas or inert gas introduced into the processing chamber 1. While the gas is introduced into the processing chamber 1 at a required concentration and flow rate, the gas is simultaneously exhausted in some cases, and the pressure inside the processing chamber 1 is reduced to a required pressure (for example, about 2000 to 0.1 Torr).
By holding at r), an ON thin film is formed on the exposed surface of the Si substrate by thermal diffusion reaction (third step).
As the ON thin film forming procedure in the third step, the ON film composition may be formed from the beginning, or post-oxidation nitriding or post-nitridation oxidation may be performed. When the required film thickness is reached, the introduction of the raw material gas is stopped, the neutral gas or the inert gas is introduced into the processing chamber 1 instead, and the inside of the processing chamber 1 is filled with this gas. Then, the substrate 14 is cooled to a temperature (for example, about 600 ° C. to around room temperature) that does not interfere with the next step (generally, the gate electrode forming step) (fourth step).
Process). The cooling is performed in the substrate exchange chamber in which the substrate 14 is in a gas atmosphere equivalent to the atmosphere in the processing chamber 1 when the inside of the processing chamber 1 is replaced with the neutral gas or the inert gas after the film formation. It is possible to obtain the ON thin film for a gate in the same low moisture concentration atmosphere by returning to 7 and closing the processing chamber opening / closing part 6 and then cooling to the above temperature.

【0017】このように、本発明の低水分濃度雰囲気下
での絶縁薄膜形成方法を実施することにより、膜形成速
度が不均一とならない一定の低水分濃度雰囲気下でガス
供給量を任意に制御できるため、極めて制御性・再現性
良く所要の酸化・窒化温度で基板14のSi基板面露出
部に極めて薄い(例えば、5nm以下)ゲート用ON薄
膜を実現できた。しかも、超低水分下での処理のため、
このような極薄膜で重要な絶縁薄膜自体の膜質、および
絶縁薄膜と基板との界面特性が向上し、経時特性の劣化
の一要因であるゲート絶縁膜中での電荷蓄積を軽減・抑
制できた。ここで述べた結果は、本発明の有効性の一例
に過ぎず、本発明を実施することにより所要の温度で、
かつ、雰囲気中の水分の悪影響をほぼ完全に抑制できる
ため、高品質の絶縁薄膜を高い信頼性で実現することが
できる。
As described above, by carrying out the method of forming an insulating thin film in a low moisture concentration atmosphere of the present invention, the gas supply amount can be arbitrarily controlled in a constant low moisture concentration atmosphere in which the film formation rate does not become non-uniform. Therefore, it was possible to realize an extremely thin (for example, 5 nm or less) gate ON thin film on the exposed portion of the Si substrate surface of the substrate 14 at a required oxidation / nitriding temperature with excellent controllability and reproducibility. Moreover, because of the treatment under ultra-low moisture,
The quality of the insulating thin film itself, which is important for such ultra-thin films, and the interface characteristics between the insulating thin film and the substrate were improved, and charge accumulation in the gate insulating film, which is a factor in deterioration of the characteristics over time, was reduced or suppressed. . The results described here are merely one example of the effectiveness of the present invention, and at the required temperature for carrying out the present invention,
Moreover, since the adverse effect of moisture in the atmosphere can be suppressed almost completely, a high-quality insulating thin film can be realized with high reliability.

【0018】本発明の低水分雰囲気下での絶縁薄膜の形
成方法の第2の例を概説する。
A second example of the method for forming an insulating thin film in a low moisture atmosphere of the present invention will be outlined.

【0019】前記パターニングされたSi基板露出部を
有した基板14を、N2 等のSiに対して悪影響を与え
ない中性ガスもしくはAr等の不活性ガスで充満してあ
る基板交換室7内の基板固定台13に設置した上で、真
空室(例えば、約10-6Torr以下)に排気し、か
つ、所要の時間ベーク用ヒーター線15によりその内壁
を加熱(例えば約80〜200℃)し雰囲気中の水分濃
度の低下と清浄性の向上を図る(第1予備工程)。なお
処理室1も予め高真空に排気し、かつ加熱部3によりそ
の内壁を加熱(例えば約700〜1200℃)し低水分
濃度の清浄な雰囲気とする(第2予備工程)。基板交換
室7内の残留水分濃度が所要の水分分圧以下(例えば、
約10-8Torr以下)になった時点で、処理室1での
処理雰囲気と同圧になるまで前述の中性ガスもしくは不
活性ガスを導入した後、処理室開閉部6を開き基板14
を処理室1へ移送する(第1工程)。なお、処理室1
も、基板交換室7の雰囲気と同様な低水分圧になった時
点で、所要の温度に、前記中性ガスもしくは不活性ガス
を導入した状態(この時の水分濃度は約100〜1pp
m以下)にしておく。移送後、処理室開閉部6を閉鎖
し、処理室1内に前記中性ガスもしくは不活性ガスを適
量導入しながら、同時に排気し、処理室1内を所要の1
気圧より低い圧力(例えば、約750〜1Torr)に
保持すると共に、基板14を所要の酸化・窒化温度(例
えば、約700〜1200℃)まで加熱する(第2工
程)。所要の酸化・窒化温度になった時点で、前記処理
室1内への導入中性ガスもしくは不活性ガスの代わり
に、例えばO2 やNH3 ,N2 O等から成る、酸素もし
くは窒素を含むガスを処理室1内に所要の濃度・流量で
導入しながら、同時に排気し、処理室1内を所要の1気
圧より低い圧力(例えば、約750〜1Torr)に保
持することによって、前記Si基板面露出部にON薄膜
を熱拡散反応により形成させる(第3工程)。なお、該
第3工程でのON薄膜形成手順としては、始めからON
膜組成として形成することも、あるいは酸化後窒化、窒
化後酸化しても良い。所要の膜厚になった時点で、前記
原料ガスの導入を停止し、代わりに処理室1内に前記中
性ガスもしくは不活性ガスを導入し、このガスによって
処理室1内が充満された状態で、基板14を次の工程
(通常、ゲート電極形成工程)に支障のない温度(例え
ば、約600℃〜室温近傍)まで冷却する(第4工
程)。なお、この冷却は、膜形成後、処理室1内が前記
中性ガスもしくは不活性ガスに置換された時点で、基板
14を、処理室1内雰囲気と同等のガス雰囲気にしてあ
る基板交換室7へ戻し、処理室開閉部6を閉鎖した上
で、前記温度まで冷却しても、同等の低水分濃度雰囲気
でのゲート用ON薄膜を得ることができる。
In the substrate exchange chamber 7 in which the substrate 14 having the patterned Si substrate exposed portion is filled with a neutral gas such as N 2 which does not adversely affect Si or an inert gas such as Ar. After being installed on the substrate fixing base 13 of FIG. 1, the gas is exhausted to a vacuum chamber (for example, about 10 −6 Torr or less), and the inner wall of the baking heater wire 15 is heated for a required time (for example, about 80 to 200 ° C.). Then, the water concentration in the atmosphere is reduced and the cleanliness is improved (first preliminary step). The processing chamber 1 is also evacuated to a high vacuum in advance, and the inner wall of the processing chamber 1 is heated by the heating unit 3 (for example, about 700 to 1200 ° C.) to form a clean atmosphere having a low water content (second preliminary step). The residual moisture concentration in the substrate exchange chamber 7 is equal to or lower than the required moisture partial pressure (for example,
(Approx. 10 −8 Torr or less), after introducing the above-mentioned neutral gas or inert gas until the pressure becomes the same as the processing atmosphere in the processing chamber 1, the processing chamber opening / closing part 6 is opened.
Is transferred to the processing chamber 1 (first step). Incidentally, the processing room 1
Also, when the same low moisture pressure as the atmosphere of the substrate exchange chamber 7 is reached, the neutral gas or the inert gas is introduced to the required temperature (the moisture concentration at this time is about 100 to 1 pp).
m or less). After the transfer, the processing chamber opening / closing part 6 is closed, and while the appropriate amount of the neutral gas or the inert gas is introduced into the processing chamber 1, at the same time, the processing chamber 1 is evacuated to the required amount of 1
While maintaining the pressure lower than atmospheric pressure (for example, about 750 to 1 Torr), the substrate 14 is heated to a required oxidation / nitriding temperature (for example, about 700 to 1200 ° C.) (second step). At the time when the required oxidation / nitriding temperature is reached, oxygen or nitrogen containing, for example, O 2 , NH 3 , N 2 O, etc. is contained in place of the neutral gas or inert gas introduced into the processing chamber 1. The Si substrate is introduced by introducing gas at a required concentration and flow rate into the processing chamber 1 and simultaneously exhausting the gas to maintain the processing chamber 1 at a pressure lower than the required 1 atm (eg, about 750 to 1 Torr). An ON thin film is formed on the exposed surface by a thermal diffusion reaction (third step). The procedure for forming the ON thin film in the third step is from the beginning to ON.
It may be formed as a film composition, or may be nitrided after oxidation or oxidized after nitridation. When the required film thickness is reached, the introduction of the raw material gas is stopped, the neutral gas or the inert gas is introduced into the processing chamber 1 instead, and the inside of the processing chamber 1 is filled with this gas. Then, the substrate 14 is cooled to a temperature (for example, about 600 ° C. to around room temperature) that does not interfere with the next step (generally, the gate electrode forming step) (fourth step). The cooling is performed in the substrate exchange chamber in which the substrate 14 is in a gas atmosphere equivalent to the atmosphere in the processing chamber 1 when the inside of the processing chamber 1 is replaced with the neutral gas or the inert gas after the film formation. It is possible to obtain the ON thin film for gate in the same low moisture concentration atmosphere by returning to 7 and closing the processing chamber opening / closing part 6 and then cooling to the above temperature.

【0020】このように、本発明の低水分濃度・減圧ガ
ス雰囲気下での絶縁薄膜形成方法を実施することによ
り、常圧ガス雰囲気下では膜形成速度が早すぎ、酸化・
窒化時間の調整が極めて困難な高い酸化・窒化温度下で
も、減圧ガス雰囲気中で基板14への原料ガス供給量を
任意に制御できるため、極めて制御性・再現性良く所要
の酸化・窒化温度で基板14のSi基板面露出部に極め
て薄い(例えば、5nm以下)ゲート用ON薄膜を実現
できた。しかも、超低水分下での処理のため、このよう
な極薄膜で重要な絶縁薄膜自体の膜質、および絶縁薄膜
と基板との界面特性が向上し、経時特性の劣化の一要因
であるゲート絶縁膜中での電荷蓄積を軽減・抑制でき
た。ここで述べた結果は、本発明の有効性の一例に過ぎ
ず、本発明を実施することにより所要の温度で、かつ、
雰囲気中の水分の悪影響をほぼ完全に抑制できるため、
高品質の絶縁薄膜を高い信頼性で実現することができ
る。
As described above, by carrying out the method of forming an insulating thin film in a low-moisture-concentration, reduced-pressure gas atmosphere of the present invention, the film-forming rate is too fast in an atmospheric gas atmosphere, and oxidation
Even at a high oxidation / nitriding temperature where the adjustment of the nitriding time is extremely difficult, the supply amount of the raw material gas to the substrate 14 can be arbitrarily controlled in the depressurized gas atmosphere, so that the required oxidation / nitriding temperature can be extremely controlled and reproducible. It was possible to realize an extremely thin (for example, 5 nm or less) ON thin film for gate on the exposed portion of the Si substrate surface of the substrate 14. Moreover, because the treatment is performed under ultra-low moisture, the film quality of the insulating thin film itself, which is important for such ultra-thin films, and the interface characteristics between the insulating thin film and the substrate are improved, which is a cause of deterioration of characteristics over time. The charge accumulation in the film could be reduced or suppressed. The results described here are merely one example of the effectiveness of the present invention, and at the required temperature for carrying out the present invention, and
Since the adverse effect of moisture in the atmosphere can be suppressed almost completely,
A high-quality insulating thin film can be realized with high reliability.

【0021】本発明の低水分雰囲気下での絶縁薄膜の形
成方法の第3の例を概説する。
A third example of the method of forming an insulating thin film in a low moisture atmosphere of the present invention will be outlined.

【0022】前記パターニングされたSi基板露出部を
有した基板14を、N2 等のSiに対して悪影響を与え
ない中性ガスもしくはAr等の不活性ガスで充満してあ
る基板交換室7内の基板固定台13に設置した上で、真
空室(例えば、約10-6Torr以下)に排気し、か
つ、所要の時間ベーク用ヒーター線15によりその内壁
を加熱(例えば約80〜200℃)し雰囲気中の水分濃
度の低下と清浄性の向上を図る(第1予備工程)。なお
処理室1も予め高真空に排気し、かつ加熱部3によりそ
の内壁を加熱(例えば約700〜1200℃)し低水分
濃度の清浄な雰囲気とする(第2予備工程)。基板交換
室7内の残留水分濃度が所要の水分分圧以下(例えば、
約10-8Torr以下)になった時点で、処理室1での
処理雰囲気と同圧になるまで前述の中性ガスもしくは不
活性ガスを導入した後、処理室開閉部6を開き基板14
を処理室1へ移送する(第1工程)。なお、処理室1
も、基板交換室7の雰囲気と同様な低水分圧になった時
点で、所要の温度に、前記中性ガスもしくは不活性ガス
を導入した状態(この時の水分濃度は約100〜1pp
m以下)にしておく。移送後、処理室開閉部6を閉鎖
し、処理室1内に前記中性ガスもしくは不活性ガスを適
量導入しながら、場合によっては同時に排気し、処理室
1内を所要の圧力(例えば、約2000〜0.1Tor
r)に保持すると共に、基板14を所要の酸化・窒化温
度(例えば、約700〜1200℃)まで加熱する(第
2工程)。所要の酸化・窒化温度になった時点で、前記
処理室1内への導入中性ガスもしくは不活性ガスと共
に、同時に、例えばO2 やNH3 ,N2O等から成る、
酸素もしくは窒素を含むガスを処理室1内に所要の流量
で導入しながら、場合によっては同時に排気し、処理室
1内を所要の圧力(例えば、約2000〜0.1Tor
r)、または所要の1気圧より低い圧力(例えば、約7
50〜1Torr)に保持することによって、前記Si
基板面露出部にON薄膜を熱拡散反応により形成させる
(第3工程)。なお、該第3工程でのON薄膜形成手順
としては、始めからON膜組成として形成することも、
あるいは酸化後窒化、窒化後酸化しても良い。所要の膜
厚になった時点で、前記原料ガスの導入を停止し、処理
室1内に導入し続けている前記中性ガスもしくは不活性
ガスによって処理室1内が充満された状態で、基板14
を次の工程(通常、ゲート電極形成工程)に支障のない
温度(例えば、約600℃〜室温近傍)まで冷却する
(第4工程)。なお、この冷却は、膜形成後、処理室1
内が前記中性ガスもしくは不活性ガスに置換された時点
で、基板14を、処理室1内雰囲気と同等のガス雰囲気
にしてある基板交換室7へ戻し、処理室開閉部6を閉鎖
した上で、前記温度まで冷却しても、同等の低水分濃度
雰囲気でのゲート用ON薄膜を得ることができる。
In the substrate exchange chamber 7 in which the substrate 14 having the patterned Si substrate exposed portion is filled with a neutral gas such as N 2 which does not adversely affect Si or an inert gas such as Ar. After being installed on the substrate fixing base 13 of FIG. 1, the gas is exhausted to a vacuum chamber (for example, about 10 −6 Torr or less), and the inner wall of the baking heater wire 15 is heated for a required time (for example, about 80 to 200 ° C.). Then, the water concentration in the atmosphere is reduced and the cleanliness is improved (first preliminary step). The processing chamber 1 is also evacuated to a high vacuum in advance, and the inner wall of the processing chamber 1 is heated by the heating unit 3 (for example, about 700 to 1200 ° C.) to form a clean atmosphere having a low water content (second preliminary step). The residual moisture concentration in the substrate exchange chamber 7 is equal to or lower than the required moisture partial pressure (for example,
(Approx. 10 −8 Torr or less), after introducing the above-mentioned neutral gas or inert gas until the pressure becomes the same as the processing atmosphere in the processing chamber 1, the processing chamber opening / closing part 6 is opened.
Is transferred to the processing chamber 1 (first step). Incidentally, the processing room 1
Also, when the same low moisture pressure as the atmosphere of the substrate exchange chamber 7 is reached, the neutral gas or the inert gas is introduced to the required temperature (the moisture concentration at this time is about 100 to 1 pp).
m or less). After the transfer, the processing chamber opening / closing part 6 is closed, and while the appropriate amount of the neutral gas or the inert gas is introduced into the processing chamber 1, the processing chamber 1 is simultaneously evacuated to a required pressure (for example, about 2000-0.1 Tor
The substrate 14 is heated to a required oxidation / nitriding temperature (for example, about 700 to 1200 ° C.) while being kept at r) (second step). At the time of reaching the required oxidation / nitriding temperature, together with the neutral gas or the inert gas introduced into the processing chamber 1, at the same time, for example, O 2 , NH 3 , N 2 O, etc. are formed.
While introducing a gas containing oxygen or nitrogen into the processing chamber 1 at a required flow rate, the gas is simultaneously evacuated in some cases, and the pressure inside the processing chamber 1 is reduced to a required pressure (for example, about 2000 to 0.1 Torr).
r), or a pressure lower than the required 1 atm (eg about 7
50 to 1 Torr)
An ON thin film is formed on the exposed surface of the substrate by a thermal diffusion reaction (third step). As the ON thin film forming procedure in the third step, the ON film composition may be formed from the beginning.
Alternatively, nitridation after oxidization or oxidation after nitridation may be performed. When the required film thickness is reached, the introduction of the raw material gas is stopped, and the processing chamber 1 is filled with the neutral gas or the inert gas which is continuously introduced into the processing chamber 1. 14
Is cooled to a temperature (for example, about 600 ° C. to around room temperature) that does not interfere with the next step (generally, the gate electrode forming step) (fourth step). In addition, this cooling is performed after the film is formed in the processing chamber 1.
When the inside is replaced with the neutral gas or the inert gas, the substrate 14 is returned to the substrate exchange chamber 7 in a gas atmosphere equivalent to the atmosphere in the processing chamber 1, and the processing chamber opening / closing unit 6 is closed. Then, even if cooled to the above temperature, an ON thin film for gate in the same low moisture concentration atmosphere can be obtained.

【0023】このように、本発明の低水分濃度・希釈ガ
ス雰囲気下での絶縁薄膜形成方法を実施することによ
り、常圧の原料ガス雰囲気下では膜形成速度が早すぎ、
酸化・窒化時間の調整が極めて困難な高い酸化・窒化温
度下でも、希釈ガス雰囲気中で基板14への原料ガス供
給量を任意に制御できるため、極めて制御性・再現性良
く所要の酸化・窒化温度で基板14のSi基板面露出部
に極めて薄い(例えば、5nm以下)ゲート用ON薄膜
を実現できた。しかも、超低水分下での処理のため、こ
のような極薄膜で重要な絶縁薄膜自体の膜質、および絶
縁薄膜と基板との界面特性が向上し、経時特性の劣化の
一要因であるゲート絶縁膜中での電荷蓄積を軽減・抑制
できた。ここで述べた結果は、本発明の有効性の一例に
過ぎず、本発明を実施することにより所要の温度で、か
つ、雰囲気中の水分の悪影響をほぼ完全に抑制できるた
め、高品質の絶縁薄膜を高い信頼性で実現することがで
きる。
As described above, by carrying out the method of forming an insulating thin film in a low moisture concentration / diluting gas atmosphere of the present invention, the film forming rate is too fast in a normal pressure source gas atmosphere,
Even at a high oxidation / nitridation temperature where it is extremely difficult to adjust the oxidation / nitridation time, the supply amount of the raw material gas to the substrate 14 can be arbitrarily controlled in the diluting gas atmosphere, so that the required oxidation / nitridation can be performed with excellent controllability and reproducibility. It was possible to realize an extremely thin ON thin film for gate (for example, 5 nm or less) on the exposed portion of the Si substrate surface of the substrate 14 at temperature. Moreover, because the treatment is performed under ultra-low moisture, the film quality of the insulating thin film itself, which is important for such ultra-thin films, and the interface characteristics between the insulating thin film and the substrate are improved, which is a cause of deterioration of characteristics over time. The charge accumulation in the film could be reduced or suppressed. The results described here are only one example of the effectiveness of the present invention, and by implementing the present invention, it is possible to suppress the adverse effect of moisture in the atmosphere at a required temperature almost completely. A thin film can be realized with high reliability.

【0024】以上述べた実施例はゲート用ON薄膜の形
成を例に説明したものであるが、これ以外にも、分子線
やプラズマ、イオンビーム、光化学反応等を用いた絶縁
薄膜形成等に対して適用できる他、化合物半導体やヘテ
ロ接合デバイスの絶縁薄膜形成、その他各種の絶縁薄膜
形成に本発明が適用できることは言うまでもない。ま
た、基板加熱を赤外線照射加熱方式にしたり、処理室を
多段、縦型にした装置構成の場合でも、あるいは他の基
板処理を行うために基板交換室内での基板への光照射や
基板の加熱が可能な様に改良した場合でも、さらには基
板の移送機構や基板交換室の移動機構を変更した場合で
も、本発明の主旨を逸脱するものではない。
Although the above-mentioned embodiments are described by taking the formation of the ON thin film for gates as an example, in addition to this, for forming an insulating thin film using molecular beam, plasma, ion beam, photochemical reaction, etc. Needless to say, the present invention can be applied to the formation of insulating thin films for compound semiconductors and heterojunction devices, and various other insulating thin film formations. In addition, even if the substrate is heated by the infrared irradiation heating method, or if the processing chamber has a multi-stage, vertical type device configuration, or in order to perform other substrate processing, the substrate is irradiated with light or the substrate is heated. However, the present invention does not deviate from the gist of the present invention, even if the substrate transfer mechanism or the substrate exchanging chamber moving mechanism is changed.

【0025】[0025]

【発明の効果】以上述べた実施例でも明らかな様に、本
発明により極めて高品質の絶縁薄膜形成を信頼性高く実
現できる。
As is apparent from the above-mentioned embodiments, the present invention enables highly reliable formation of an insulating thin film of extremely high quality.

【0026】本発明は、高品質のゲート用絶縁薄膜形成
を始めとして、様々な半導体素子の高品質絶縁薄膜形成
を信頼性高く実現する上で非常に有効である。したがっ
て、本発明を実施することによる工業上の利点は極めて
大きい。
The present invention is very effective for highly reliable formation of high-quality insulating thin films for various semiconductor elements including high-quality gate insulating thin film formation. Therefore, the industrial advantages of implementing the present invention are extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる絶縁薄膜形成装置の一実施例を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an insulating thin film forming apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…処理室、2a,2b…水分除去器、3…加熱部、4
…処理室用ガス導入系、5…処理室排気系、6…処理室
開閉部、7…基板交換室、8…基板交換室用ガス導入
系、9…基板交換室排気系、10…伸縮管、11…基板
移送用駆動部、12…基板固定台支持部、13…基板固
定台、14…基板、15…ベーク用ヒーター線、16…
伸縮方向。
DESCRIPTION OF SYMBOLS 1 ... Processing chamber, 2a, 2b ... Moisture removal device, 3 ... Heating part, 4
... Processing chamber gas introduction system, 5 ... Processing chamber exhaust system, 6 ... Processing chamber opening / closing section, 7 ... Substrate exchange chamber, 8 ... Substrate exchange chamber gas introduction system, 9 ... Substrate exchange chamber exhaust system, 10 ... Expansion tube , 11 ... Driving part for transferring substrate, 12 ... Substrate fixing base support part, 13 ... Substrate fixing base, 14 ... Substrate, 15 ... Baking heater wire, 16 ...
Expansion direction.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に絶縁薄膜層を有する構造
の素子の、酸素および窒素を含む絶縁薄膜の形成方法に
おいて、 所定のガスで充満された雰囲気内に前記半導体基板を設
置する第1工程と、 前記雰囲気を所定のガスで約100ppm以下の所定の
水分濃度に保持し、前記半導体基板を所定の温度に加熱
する第2工程と、 前記雰囲気を前記絶縁薄膜の原料となる酸素もしくは窒
素を含むガスで、約100ppm以下の所定の水分濃度
に保持し、前記絶縁薄膜を形成する第3工程と、 前記第3工程で前記絶縁薄膜を形成した後、前記雰囲気
を所定のガスで充満させ、該雰囲気中で前記半導体基板
の加熱温度よりも低い所定の温度まで該半導体基板を冷
却する第4工程とで構成されることを特徴とする絶縁薄
膜の形成方法。
1. A method of forming an insulating thin film containing oxygen and nitrogen in an element having a structure having an insulating thin film layer on a semiconductor substrate, the first step of placing the semiconductor substrate in an atmosphere filled with a predetermined gas. A second step of heating the semiconductor substrate to a predetermined temperature by maintaining the atmosphere at a predetermined water concentration of about 100 ppm or less with a predetermined gas, and oxygen or nitrogen as a raw material of the insulating thin film in the atmosphere. With a gas containing, maintaining a predetermined moisture concentration of about 100 ppm or less, a third step of forming the insulating thin film, and after forming the insulating thin film in the third step, the atmosphere is filled with a predetermined gas, A fourth step of cooling the semiconductor substrate to a predetermined temperature lower than the heating temperature of the semiconductor substrate in the atmosphere, the method for forming an insulating thin film.
【請求項2】 半導体基板上に絶縁薄膜層を有する構造
の素子の、酸素および窒素を含む絶縁薄膜の形成方法に
おいて、 所定のガスで充満された雰囲気内に前記半導体基板を設
置する第1工程と、 前記雰囲気を所定のガスで約750Torr以下の所定
の圧力に保持し、かつ、該雰囲気を約100ppm以下
の所定の水分濃度に保持して前記半導体基板を所定の温
度に加熱する第2工程と、 前記雰囲気を前記絶縁薄膜の原料となる酸素もしくは窒
素を含むガスで約750Torr以下の所定の圧力に保
持し、かつ、該雰囲気を約100ppm以下の所定の水
分濃度に保持して前記絶縁薄膜を形成する第3工程と、 前記第3工程で前記絶縁薄膜を形成した後、前記雰囲気
を所定のガスで充満させ、該雰囲気中で前記半導体基板
の加熱温度よりも低い所定の温度まで該半導体基板を冷
却する第4工程とで構成されることを特徴とする絶縁薄
膜の形成方法。
2. A method of forming an insulating thin film containing oxygen and nitrogen in an element having a structure having an insulating thin film layer on a semiconductor substrate, the first step of placing the semiconductor substrate in an atmosphere filled with a predetermined gas. And a second step of heating the semiconductor substrate to a predetermined temperature while maintaining the atmosphere with a predetermined gas at a predetermined pressure of about 750 Torr or less and maintaining the atmosphere at a predetermined moisture concentration of about 100 ppm or less. And maintaining the atmosphere at a predetermined pressure of about 750 Torr or less with a gas containing oxygen or nitrogen as a raw material of the insulating thin film, and maintaining the atmosphere at a predetermined moisture concentration of about 100 ppm or less. And forming the insulating thin film in the third step, filling the atmosphere with a predetermined gas, and heating the semiconductor substrate in the atmosphere at a temperature higher than the heating temperature of the semiconductor substrate. The fourth step and forming method of the insulating thin film characterized by being constituted by cooling the semiconductor substrate to a lower predetermined temperature.
【請求項3】 半導体基板上に絶縁薄膜層を有する構造
の素子の、酸素および窒素を含む絶縁薄膜の形成方法に
おいて、 所定のガスで充満された雰囲気内に前記半導体基板を設
置する第1工程と、 前記雰囲気を所定のガスで約100ppm以下の所定の
水分濃度に保持して前記半導体基板を所定の温度に加熱
する第2工程と、 前記雰囲気を前記絶縁薄膜の原料となる酸素もしくは窒
素を含むガスと、純窒素等の中性ガスもしくはアルゴン
等の不活性ガスで、約100ppm以下の所定の水分濃
度に保持し、前記絶縁薄膜を形成する第3工程と、 前記第3工程で前記絶縁薄膜を形成した後、前記雰囲気
を所定のガスで充満させ、該雰囲気中で前記半導体基板
の加熱温度よりも低い所定の温度まで該半導体基板を冷
却する第4工程とで構成されることを特徴とする絶縁薄
膜の形成方法。
3. A method of forming an insulating thin film containing oxygen and nitrogen in an element having a structure having an insulating thin film layer on a semiconductor substrate, the first step of placing the semiconductor substrate in an atmosphere filled with a predetermined gas. A second step of heating the semiconductor substrate to a predetermined temperature while maintaining the atmosphere at a predetermined moisture concentration of about 100 ppm or less with a predetermined gas; and oxygen or nitrogen serving as a raw material of the insulating thin film in the atmosphere. A third step of forming the insulating thin film by containing the gas and a neutral gas such as pure nitrogen or an inert gas such as argon at a predetermined moisture concentration of about 100 ppm or less, and the insulating step in the third step. A fourth step of forming a thin film, filling the atmosphere with a predetermined gas, and cooling the semiconductor substrate to a predetermined temperature lower than the heating temperature of the semiconductor substrate in the atmosphere. Method for forming the insulating thin film, characterized in that.
【請求項4】 半導体基板上に形成される絶縁薄膜の原
料となる酸素もしくは窒素を含むガスの供給系を備えた
前記絶縁薄膜を形成する処理手段と、 前記処理手段の雰囲気に所定のガスを供給すること、お
よび該雰囲気を所定の圧力に排気することを制御する雰
囲気制御手段と、 前記絶縁薄膜の形成時と形成後に前記半導体基板を所定
の温度に加熱する基板加熱手段と、 前記雰囲気制御手段を備え、前記処理手段に前記半導体
基板を外気から遮断して、搬送し設置する基板交換手段
とを具備することを特徴とする絶縁薄膜形成装置。
4. A processing unit for forming the insulating thin film, which comprises a gas supply system containing oxygen or nitrogen as a raw material for the insulating thin film formed on a semiconductor substrate, and a predetermined gas in an atmosphere of the processing unit. Atmosphere control means for controlling supply and exhaust of the atmosphere to a predetermined pressure; substrate heating means for heating the semiconductor substrate to a predetermined temperature during and after the formation of the insulating thin film; An insulating thin film forming apparatus, further comprising: a means for exchanging the semiconductor substrate from outside air, the substrate exchanging means for transporting and setting the semiconductor substrate.
【請求項5】 半導体基板上に形成される絶縁薄膜の原
料となる酸素もしくは窒素を含むガスと、純窒素等の中
性ガスもしくはアルゴン等の不活性ガスとの混合ガスの
供給系を備えた前記絶縁薄膜を形成する処理手段と、 前記処理手段の雰囲気に所定のガスを供給すること、お
よび該雰囲気を所定の圧力に排気することを制御する雰
囲気制御手段と、 前記絶縁薄膜の形成時と形成後に前記半導体基板を所定
の温度に加熱する基板加熱手段と、 前記雰囲気制御手段を備え、前記処理手段に前記半導体
基板を外気から遮断して、搬送し設置する基板交換手段
とを具備することを特徴とする絶縁薄膜形成装置。
5. A supply system of a mixed gas of a gas containing oxygen or nitrogen as a raw material of an insulating thin film formed on a semiconductor substrate and a neutral gas such as pure nitrogen or an inert gas such as argon. Processing means for forming the insulating thin film, atmosphere control means for controlling supply of a predetermined gas to the atmosphere of the processing means, and exhaust of the atmosphere to a predetermined pressure, and at the time of forming the insulating thin film, A substrate heating unit for heating the semiconductor substrate to a predetermined temperature after formation, an atmosphere control unit, and a substrate exchanging unit for transporting and placing the semiconductor substrate in the processing unit, shielding the semiconductor substrate from the outside air. An insulating thin film forming apparatus characterized by:
JP17867892A 1992-07-06 1992-07-06 Method and apparatus for forming insulating thin film Pending JPH0621049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17867892A JPH0621049A (en) 1992-07-06 1992-07-06 Method and apparatus for forming insulating thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17867892A JPH0621049A (en) 1992-07-06 1992-07-06 Method and apparatus for forming insulating thin film

Publications (1)

Publication Number Publication Date
JPH0621049A true JPH0621049A (en) 1994-01-28

Family

ID=16052647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17867892A Pending JPH0621049A (en) 1992-07-06 1992-07-06 Method and apparatus for forming insulating thin film

Country Status (1)

Country Link
JP (1) JPH0621049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113930A (en) * 1995-06-27 2000-09-05 L'oreal Cosmetic composition comprising a film-forming polymer, preparation, and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113930A (en) * 1995-06-27 2000-09-05 L'oreal Cosmetic composition comprising a film-forming polymer, preparation, and use thereof

Similar Documents

Publication Publication Date Title
US9117661B2 (en) Method of improving oxide growth rate of selective oxidation processes
US7084068B2 (en) Annealing furnace, manufacturing apparatus, annealing method and manufacturing method of electronic device
JP4926219B2 (en) Manufacturing method of electronic device material
US20040175961A1 (en) Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics
JP2000349081A (en) Method for formation of oxide film
KR20090097219A (en) Insulating film forming method and substrate processing method
JP4965849B2 (en) Insulating film forming method and computer recording medium
KR100810777B1 (en) Method for forming film and computer readable recording medium
JPH0621049A (en) Method and apparatus for forming insulating thin film
JP3297958B2 (en) Thin film formation method
JPH11135492A (en) Method and device for forming silicon oxide film
JPH04276621A (en) Formation method and device for insulating thin film
JPH04268729A (en) Method and device for forming insulating thin film
JPH11297689A (en) Heat treatment of silicon insulating film and manufacture of semiconductor device
JPH07153695A (en) Method of forming film
JPH11162971A (en) Formation method for oxide film, and manufacture of p-type semiconductor element
JP3952542B2 (en) Method for forming silicon oxide film
JPH11288933A (en) Method for forming insulation film and manufacture of p-type semiconductor element
JP2001203198A (en) Silicon substrate with insulating film on surface, method and device for manufacturing it
JPH0485927A (en) Method and device for forming film for gate electrode
JPH08288283A (en) Method and apparatus for forming silicon oxide film
JPH05343421A (en) Insulation film formation method for semiconductor device
JPH1167749A (en) Formation of silicon oxide film and drying/film forming device
JPH11214379A (en) Method for forming silicon oxide film
JPH05304146A (en) Deposition of insulation film