JPH06210140A - Membrane separator - Google Patents

Membrane separator

Info

Publication number
JPH06210140A
JPH06210140A JP683493A JP683493A JPH06210140A JP H06210140 A JPH06210140 A JP H06210140A JP 683493 A JP683493 A JP 683493A JP 683493 A JP683493 A JP 683493A JP H06210140 A JPH06210140 A JP H06210140A
Authority
JP
Japan
Prior art keywords
reverse osmosis
pressure
osmosis membrane
membrane unit
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP683493A
Other languages
Japanese (ja)
Other versions
JP3121164B2 (en
Inventor
Yuichi Yokomizo
雄一 横溝
Nobukatsu Inaba
信克 稲葉
Kazuhiko Saiki
一彦 斎木
Hidenori Takahashi
英紀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP05006834A priority Critical patent/JP3121164B2/en
Publication of JPH06210140A publication Critical patent/JPH06210140A/en
Application granted granted Critical
Publication of JP3121164B2 publication Critical patent/JP3121164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make a two-stage reverse-osmosis membrane device compact and to reduce the running cost. CONSTITUTION:The rotating shafts of the high-pressure pump 12, motor 14, energy recovery turbine 16 and low-pressure pump 18 are connected. Concd. water 26 of a high-pressure reverse-osmosis membrane unit 24 is sent to the turbine 16 to recover driving energy, and the permeated water 28 of the unit 24 is pressurized by the low-pressure pump 18 and sent to a low-pressure reverse-osmosis membrane unit 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱塩等に用いられる逆浸
透膜を用いた膜分離装置、更に詳述すれば運転中の駆動
エネルギーを回収し、ランニングコストを低減させた膜
分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation device using a reverse osmosis membrane used for desalting and the like, and more specifically to a membrane separation device for collecting driving energy during operation and reducing running cost. .

【0002】[0002]

【従来の技術】逆浸透膜を用いた脱塩装置においては、
従来1種類の逆浸透膜を使用し、1段の脱塩操作で透過
水を得るのが一般的であった。また、透過水が高純度を
求められる場合には、前記脱塩装置の後段にイオン交換
装置を設け、これにより更なる処理をすることが行なわ
れていた。このような処理方法が採用される理由は、逆
浸透膜が高価であったことと、入口の運転圧力に対し
て、得られる水量と水質が、イオン交換樹脂法に比べて
ランニングコスト的に高いということが主たる理由であ
った。
2. Description of the Related Art In a desalination apparatus using a reverse osmosis membrane,
Conventionally, it has been general to use one type of reverse osmosis membrane to obtain permeated water by one-step desalting operation. Further, in the case where the permeated water is required to have a high purity, an ion exchange device has been provided in the subsequent stage of the desalting device to perform further treatment. The reason why such a treatment method is adopted is that the reverse osmosis membrane is expensive, and the amount of water and the quality of water obtained with respect to the operating pressure at the inlet are higher in running cost than the ion exchange resin method. That was the main reason.

【0003】ところが最近になって、逆浸透膜の技術開
発が進み、低価格で高性能の逆浸透膜の利用が可能とな
り、その結果、脱塩性能の異なる2種類の膜を使用する
いわゆる2段処理法が採用されつつある。例えば、図3
に示すように、1段目に高脱塩率の逆浸透膜ユニット1
を、2段目に低脱塩率の逆浸透膜ユニット2を設けた2
段処理法の場合、1段目の逆浸透膜ユニットの入口側に
設けた1台の原水供給ポンプ3によって、1段目と2段
目のユニットとの両方に必要な圧力を与える場合が多
い。しかし、原水が海水のように塩濃度が高く、したが
って脱塩に高圧を与える必要がある場合には、1段目と
2段目の必要供給圧力が1段目の逆浸透膜の耐圧上限値
を越えることがあり、この場合には図3に示すフロー構
成とすることはできない。
Recently, however, technological development of reverse osmosis membranes has advanced, and it has become possible to use high-performance reverse osmosis membranes at low cost. As a result, so-called 2 types of membranes having different desalination performances are used. A stage treatment method is being adopted. For example, in FIG.
As shown in Fig. 1, the reverse osmosis membrane unit 1 with a high desalination rate in the first stage
The reverse osmosis membrane unit 2 with a low desalination rate was installed in the second stage 2
In the case of the stage treatment method, a single raw water supply pump 3 provided on the inlet side of the first-stage reverse osmosis membrane unit often applies a necessary pressure to both the first-stage unit and the second-stage unit. . However, when the raw water has a high salt concentration like seawater and therefore it is necessary to apply high pressure for desalination, the required supply pressures for the first and second stages are the upper pressure resistance of the first reverse osmosis membrane. In some cases, the flow configuration shown in FIG. 3 cannot be used.

【0004】このため、図4に示すフロー構成とする必
要があるが、この場合には、更に一次透過水槽4、及び
2段目逆浸透膜ユニット用給水ポンプ5と当該ポンプ5
に付随する電動機(不図示)が必要になり、装置が繁雑
になる上、装置の設置面積の増大、ポンプ駆動エネルギ
ーの増大等の種々の問題が生じる。
Therefore, the flow structure shown in FIG. 4 is required. In this case, however, the primary permeated water tank 4, the second stage reverse osmosis membrane unit water supply pump 5 and the pump 5 are further provided.
Since an electric motor (not shown) attached to the device becomes necessary, the device becomes complicated, and various problems occur such as an increase in the installation area of the device and an increase in pump driving energy.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題を解
決するためになされたもので、その目的とするところ
は、装置の設置面積を小さくすると共に、2段目の給水
ポンプ用電動機を必要とせず、更に駆動エネルギーを回
収することにより、装置の運転コストを低減させた逆浸
透膜法による膜分離装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to reduce the installation area of the device and to require a second-stage feed pump electric motor. Another object of the present invention is to provide a membrane separation device by the reverse osmosis membrane method in which the operating cost of the device is reduced by further collecting the driving energy.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、原水を加圧して高圧逆浸透膜ユニットに供
給する高圧ポンプと、この高圧ポンプへ駆動動力を供給
する電動機と、前記高圧逆浸透膜ユニットの透過水を加
圧して低圧逆浸透膜ユニットに供給する低圧ポンプと、
及び高圧逆浸透膜ユニットから送られる濃縮水で駆動さ
れるエネルギー回収タービンとをこれらの回転軸を一軸
に連結して構成した動力部と、高圧逆浸透膜ユニット
と、低圧逆浸透膜ユニットとを有してなり、高圧ポンプ
に供給された原水を高圧逆浸透膜ユニット及び低圧逆浸
透膜ユニットで順次逆浸透処理をして低圧逆浸透膜ユニ
ットから透過水及び濃縮水を取り出すと共に、エネルギ
ー回収タービンによって高圧逆浸透膜ユニットの濃縮水
から前記ポンプの駆動エネルギーを回収するように膜分
離装置を構成するものである。
In order to achieve the above object, the present invention provides a high-pressure pump for pressurizing raw water to supply it to a high-pressure reverse osmosis membrane unit, an electric motor for supplying drive power to the high-pressure pump, and A low-pressure pump that pressurizes the permeated water of the high-pressure reverse osmosis membrane unit and supplies it to the low-pressure reverse osmosis membrane unit,
And a high-pressure reverse osmosis membrane unit and a low-pressure reverse osmosis membrane unit, and a power unit configured by connecting an energy recovery turbine driven by concentrated water sent from the high-pressure reverse osmosis membrane unit to one of these rotating shafts. The high-pressure reverse osmosis membrane unit and the low-pressure reverse osmosis membrane unit sequentially reverse osmosis the raw water supplied to the high-pressure pump to take out permeated water and concentrated water from the low-pressure reverse osmosis membrane unit, and also an energy recovery turbine. Thus, the membrane separation device is configured to recover the driving energy of the pump from the concentrated water of the high-pressure reverse osmosis membrane unit.

【0007】[0007]

【実施例】以下、本発明の一実施例につき図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1中10は基台で、この基台10上に高
圧ポンプ12、電動機14、エネルギー回収タービン1
6、低圧ポンプ18が図面の左側よりこの順に、かつ、
これらの回転軸が一軸をなすように連結されて配設さ
れ、これらポンプ12、電動機14、タービン16及び
ポンプ18によって動力部20が構成されている。な
お、22は前記電動機14とエネルギー回収タービン1
6の回転軸を連結するワンウェー(一方向)クラッチ
で、回収タービン16の回転数が所定の値に達すると連
結されるようになっている。電動機14を駆動させるこ
とにより、高圧ポンプが作動し、除去処理をするべき塩
類等の不純物を含んだ原水23は高圧状態で高圧逆浸透
膜ユニット(1段目の逆浸透膜ユニット)24に供給さ
れ、逆浸透処理される。高圧逆浸透膜ユニット24から
流出する高圧の濃縮水26(1段目濃縮水)はエネルギ
ー回収タービン16に送られ、これによりタービン16
が駆動されて、低圧ポンプ18の駆動エネルギーとし
て、更には高圧ポンプ12の駆動エネルギーの一部とし
て回収される。回収タービンでエネルギーを回収された
後の濃縮水26は、その後系外に廃棄される。一方、前
記高圧逆浸透膜ユニット24の透過水28(1段目透過
水)は大気圧に戻されることなくそのまま低圧ポンプ1
8に送られて比較的低圧に加圧された後、低圧逆浸透膜
ユニット(2段目の逆浸透膜ユニット)30に送られて
ここで更に逆浸透処理がなされる。これにより、ユニッ
ト30から比較的低圧の2段目濃縮水32、及び塩類が
除去された2段目透過水34が取り出される。前記2段
目濃縮水32は通常回収され、高圧逆浸透膜ユニットの
被処理水として使用される。
In FIG. 1, 10 is a base on which a high pressure pump 12, an electric motor 14, and an energy recovery turbine 1 are mounted.
6, low pressure pump 18 in this order from the left side of the drawing, and
These rotary shafts are connected and arranged so as to form a single shaft, and the pump 12, the electric motor 14, the turbine 16, and the pump 18 constitute a power unit 20. Reference numeral 22 is the electric motor 14 and the energy recovery turbine 1.
A one-way (one-way) clutch that connects the rotating shafts of 6 is connected when the number of rotations of the recovery turbine 16 reaches a predetermined value. By driving the electric motor 14, the high-pressure pump operates, and the raw water 23 containing impurities such as salts to be removed is supplied to the high-pressure reverse osmosis membrane unit (first-stage reverse osmosis membrane unit) 24 in a high pressure state. And subjected to reverse osmosis. The high-pressure concentrated water 26 (first-stage concentrated water) flowing out from the high-pressure reverse osmosis membrane unit 24 is sent to the energy recovery turbine 16 and thereby the turbine 16
Is driven and recovered as drive energy for the low-pressure pump 18 and as a part of drive energy for the high-pressure pump 12. The concentrated water 26 from which energy has been recovered by the recovery turbine is then discarded outside the system. On the other hand, the permeated water 28 (first-stage permeated water) of the high-pressure reverse osmosis membrane unit 24 is not returned to the atmospheric pressure and is directly supplied to the low-pressure pump 1.
After being sent to 8 to be pressurized to a relatively low pressure, it is sent to a low-pressure reverse osmosis membrane unit (second-stage reverse osmosis membrane unit) 30 and further subjected to reverse osmosis treatment. As a result, the relatively low-pressure second-stage concentrated water 32 and the salt-removed second-stage permeated water 34 are extracted from the unit 30. The second-stage concentrated water 32 is usually recovered and used as water to be treated in the high-pressure reverse osmosis membrane unit.

【0009】なお、海水淡水化の場合には一般に高圧ポ
ンプの圧力は60〜30kg/cm 2、低圧ポンプの圧
力は10〜30kg/cm2程度とすることが望まし
い。
Incidentally, in the case of desalination of seawater, high pressure porosity is generally used.
Pump pressure is 60 to 30 kg / cm 2, Low pressure pump pressure
Power is 10-30kg / cm2I hope it is about
Yes.

【0010】上記実施例の場合、動力伝達系の第一次動
力源は電動機14であり、この出力で高圧ポンプ12に
動力を与え、水馬力に変換する。通常、この水馬力のう
ちの約35%が高圧逆浸透膜ユニット24から透過水を
得るために消費され、残り約65%の水馬力は1段目濃
縮水としてエネルギー回収タービン16に導かれ、ここ
でエネルギーはタービン出力として回収される。回収さ
れるタービン出力は通常、電動機14に与えられた出力
の約30%程度である。このようにして回収されたター
ビン出力は、低圧ポンプ18を駆動するのに消費される
が、通常、低圧ポンプ18を駆動してもなお出力が余る
ため、余りのタービン出力を更にワンウェークラッチ2
2を介して電動機14の出力軽減のために利用すること
で総合的なエネルギー回収を図る。
In the case of the above embodiment, the primary power source of the power transmission system is the electric motor 14, and the output powers the high-pressure pump 12 to convert it into water horsepower. Normally, about 35% of this water horsepower is consumed to obtain permeate from the high-pressure reverse osmosis membrane unit 24, and the remaining about 65% water horsepower is guided to the energy recovery turbine 16 as the first-stage concentrated water, Here the energy is recovered as turbine output. The turbine power recovered is typically about 30% of the power provided to the motor 14. The turbine output thus recovered is consumed to drive the low-pressure pump 18, but normally, even if the low-pressure pump 18 is driven, the output is still excessive. Therefore, the surplus turbine output is further consumed by the one-way clutch 2
2 is used to reduce the output of the electric motor 14 to achieve comprehensive energy recovery.

【0011】すなわち、上記実施例の配列は、回収動力
を低圧ポンプ18の駆動に優先的に使用し、残りの回収
動力を電動機14の出力軽減に利用するもので、最も合
理的な動力回収が可能である。更に、各機器相互間にお
ける軸トルクの伝達が最も合理的に行われるので、軸の
強度は各機器個々の必要トルクで設計することが可能で
あると共に各機器とも特別仕様のものを必要とせず、標
準品をそのまま利用できるという利点がある。
That is, in the arrangement of the above embodiment, the recovered power is preferentially used to drive the low-pressure pump 18, and the remaining recovered power is used to reduce the output of the electric motor 14. It is possible. Furthermore, since the transmission of shaft torque between each device is most rational, the shaft strength can be designed according to the required torque for each device, and each device does not require special specifications. The advantage is that standard products can be used as they are.

【0012】なお、本実施例以外の動力部の配列(例え
ば後述の実施例2のような動力部の配列等)としても差
し支えないが、この場合は後述するごとく伝達すべき軸
トルクが機器相互間で重複するために本実施例の場合よ
りも大きな軸強度を必要とし、標準品の適用が難しくな
る。
It should be noted that the arrangement of the power parts other than the present embodiment (for example, the arrangement of the power parts as in the second embodiment to be described later) may be used, but in this case, as described later, the axial torque to be transmitted is different between the devices. Since they overlap each other, greater axial strength is required than in the case of this embodiment, and it becomes difficult to apply the standard product.

【0013】図2は本発明の他の実施例を示すもので、
この例にあっては、動力部20の配列順序が異なってい
る。すなわち、エネルギー回収タービン16、ワンウェ
ークラッチ22を介して電動機14、高圧ポンプ12、
低圧ポンプ18の順に配設してある。その他の構成は前
記実施例と同様であるので、同一部分に同一符号を付し
てその説明を省略する。
FIG. 2 shows another embodiment of the present invention.
In this example, the arrangement order of the power units 20 is different. That is, the energy recovery turbine 16, the one-way clutch 22, the electric motor 14, the high-pressure pump 12,
The low-pressure pump 18 is arranged in this order. Since other configurations are the same as those of the above-mentioned embodiment, the same reference numerals are given to the same portions and the description thereof will be omitted.

【0014】本例の場合、低圧ポンプ18への動力の伝
達が、高圧ポンプ12の回転軸を介してなされるので、
高圧ポンプ12の回転軸に実施例1の場合より大きな負
荷がかかり、そのため高圧ポンプ12の回転軸として、
上記実施例の場合より高い強度の回転軸が必要となると
いう難点があるものの、エネルギー回収の点では何ら問
題はない。
In the case of this example, since the power is transmitted to the low pressure pump 18 through the rotary shaft of the high pressure pump 12,
A larger load is applied to the rotary shaft of the high-pressure pump 12 than in the case of the first embodiment. Therefore, as the rotary shaft of the high-pressure pump 12,
Although there is a drawback that a rotating shaft having a higher strength is required than in the case of the above-mentioned embodiment, there is no problem in energy recovery.

【0015】[0015]

【発明の効果】本発明によれば、高圧の1段目濃縮水を
エネルギー回収タービンに供給してポンプ駆動エネルギ
ーの一部として回収するようにしたので、運転コストが
低減される。また、1段目透過水を低圧ポンプで加圧し
て低圧逆浸透膜ユニットに送るようにしたので、高圧逆
浸透膜ユニットに加える圧力は図3で示す従来方式と比
較して低圧で良い。このため、高濃度の塩類を含む原水
の脱塩処理等が一台の電動機で可能になると共に、設置
面積も従来方式と比較して小さくなる。
According to the present invention, the high-pressure first-stage concentrated water is supplied to the energy recovery turbine to be recovered as a part of the pump driving energy, so that the operating cost is reduced. Moreover, since the first-stage permeated water is pressurized by the low-pressure pump and sent to the low-pressure reverse osmosis membrane unit, the pressure applied to the high-pressure reverse osmosis membrane unit may be lower than that in the conventional system shown in FIG. Therefore, desalination treatment of raw water containing high-concentration salt is possible with one electric motor, and the installation area is smaller than that of the conventional method.

【0016】更に、本発明によれば、一次透過水槽及び
低圧ポンプ用電動機が不要となるという利点もある。
Further, according to the present invention, there is an advantage that the primary permeated water tank and the electric motor for the low pressure pump are unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すフロー図である。FIG. 1 is a flow chart showing an embodiment of the present invention.

【図2】本発明の他の実施例を示すフロー図である。FIG. 2 is a flowchart showing another embodiment of the present invention.

【図3】従来の逆浸透膜装置のフロー図である。FIG. 3 is a flow chart of a conventional reverse osmosis membrane device.

【図4】従来の他の逆浸透膜装置のフロー図である。FIG. 4 is a flow chart of another conventional reverse osmosis membrane device.

【符号の説明】[Explanation of symbols]

12 高圧ポンプ 14 電動機 16 エネルギー回収タービン 18 低圧ポンプ 20 動力部 22 ワンウェークラッチ 23 原水 24 高圧逆浸透膜ユニット 26 1段目濃縮水 28 1段目透過水 30 低圧逆浸透膜ユニット 32 2段目濃縮水 34 2段目透過水 12 High-pressure pump 14 Electric motor 16 Energy recovery turbine 18 Low-pressure pump 20 Power part 22 One-way clutch 23 Raw water 24 High-pressure reverse osmosis membrane unit 26 1st-stage concentrated water 28 1st-stage permeate 30 Low-pressure reverse osmosis membrane unit 32 Second-stage concentrated water 34 Second-stage permeated water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 英紀 東京都文京区本郷5丁目5番16号 オルガ ノ株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hideki Takahashi 5-5-16 Hongo, Bunkyo-ku, Tokyo Organo Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を加圧して高圧逆浸透膜ユニットに
供給する高圧ポンプと、この高圧ポンプへ駆動動力を供
給する電動機と、前記高圧逆浸透膜ユニットの透過水を
加圧して低圧逆浸透膜ユニットに供給する低圧ポンプ
と、及び高圧逆浸透膜ユニットから送られる濃縮水で駆
動されるエネルギー回収タービンとをこれらの回転軸を
一軸に連結して構成した動力部と、高圧逆浸透膜ユニッ
トと、低圧逆浸透膜ユニットとを有してなり、高圧ポン
プに供給された原水を高圧逆浸透膜ユニット及び低圧逆
浸透膜ユニットで順次逆浸透処理をして低圧逆浸透膜ユ
ニットから透過水及び濃縮水を取り出すと共に、エネル
ギー回収タービンによって高圧逆浸透膜ユニットの濃縮
水から前記ポンプの駆動エネルギーを回収する膜分離装
置。
1. A high-pressure pump for pressurizing raw water to supply it to a high-pressure reverse osmosis membrane unit, an electric motor supplying drive power to this high-pressure pump, and a low-pressure reverse osmosis for pressurizing permeate of the high-pressure reverse osmosis membrane unit. A low pressure pump for supplying to the membrane unit, and an energy recovery turbine driven by concentrated water sent from the high pressure reverse osmosis membrane unit, which are configured by connecting their rotary shafts to one axis, and a high pressure reverse osmosis membrane unit. And a low-pressure reverse osmosis membrane unit, and the raw water supplied to the high-pressure pump is sequentially subjected to reverse osmosis treatment in the high-pressure reverse osmosis membrane unit and the low-pressure reverse osmosis membrane unit, and permeated water and A membrane separation device that takes out the concentrated water and recovers the driving energy of the pump from the concentrated water of the high-pressure reverse osmosis membrane unit by an energy recovery turbine.
JP05006834A 1993-01-19 1993-01-19 Membrane separation device Expired - Fee Related JP3121164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05006834A JP3121164B2 (en) 1993-01-19 1993-01-19 Membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05006834A JP3121164B2 (en) 1993-01-19 1993-01-19 Membrane separation device

Publications (2)

Publication Number Publication Date
JPH06210140A true JPH06210140A (en) 1994-08-02
JP3121164B2 JP3121164B2 (en) 2000-12-25

Family

ID=11649268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05006834A Expired - Fee Related JP3121164B2 (en) 1993-01-19 1993-01-19 Membrane separation device

Country Status (1)

Country Link
JP (1) JP3121164B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206460A (en) * 1994-12-02 1996-08-13 Toray Ind Inc Reverse osmosis membrane separator and separation of highly concentrated solution
JP2001269543A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
JP2001269544A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
WO2009037515A3 (en) * 2007-09-20 2010-04-08 Abdulsalam Al-Mayahi Process and systems
WO2010131765A1 (en) * 2009-05-15 2010-11-18 株式会社 荏原製作所 Seawater desalination system and energy exchange chamber
EP2302201A2 (en) 2009-09-29 2011-03-30 Hitachi Plant Technologies, Ltd. Pump system having energy recovery apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206460A (en) * 1994-12-02 1996-08-13 Toray Ind Inc Reverse osmosis membrane separator and separation of highly concentrated solution
JP2001269543A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
JP2001269544A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
WO2009037515A3 (en) * 2007-09-20 2010-04-08 Abdulsalam Al-Mayahi Process and systems
WO2010131765A1 (en) * 2009-05-15 2010-11-18 株式会社 荏原製作所 Seawater desalination system and energy exchange chamber
US8771510B2 (en) 2009-05-15 2014-07-08 Ebara Corporation Seawater desalination system and energy exchange chamber
US9108162B2 (en) 2009-05-15 2015-08-18 Ebara Corporation Seawater desalination system and energy exchange chamber
EP2302201A2 (en) 2009-09-29 2011-03-30 Hitachi Plant Technologies, Ltd. Pump system having energy recovery apparatus
CN102032194A (en) * 2009-09-29 2011-04-27 株式会社日立工业设备技术 Pump system having energy recovery apparatus

Also Published As

Publication number Publication date
JP3121164B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
EP2310114B1 (en) Method of improving performance of a reverse osmosis system for seawater desalination, and modified reverse osmosis system obtained thereby
US4321137A (en) Apparatus for processing liquids such as water and the like by reverse osmosis
EP1680363B1 (en) Continuous closed-circuit desalination apparatus with single container
JP6965680B2 (en) Seawater desalination method and seawater desalination system
Kurihara et al. High recovery/high pressure membranes for brine conversion SWRO process development and its performance data
JP3787681B2 (en) Seawater desalination method by reverse osmosis
EP1323461A3 (en) Treatment system having spiral membrane element and method for operating the treatment system
WO2020027056A1 (en) Membrane separation device, desalination system, membrane separation method, and desalination method
JP2005279540A (en) Desalination system
JPH06210140A (en) Membrane separator
WO2017170013A1 (en) Water production system
WO2016080085A1 (en) Freshwater production system and freshwater production method
JPH06277455A (en) Operation of ultrafiltration membrane module
JP2001104954A (en) Seawater desalting system
JPH11253761A (en) Solution separation device
JP2017176929A (en) Water production system
JP2016097331A (en) Water generation system and water generation method
JPH09276864A (en) Seawater treatment apparatus
JPS5966391A (en) Reverse osmosis desalination process
JP3434211B2 (en) Nitrogen gas generator
JP2003126854A (en) Manufacturing device for primary water purification
JPS61178088A (en) Apparatus for making pure water
JPS58166904A (en) Membrane separator
WO2016006344A1 (en) Desalination system
US20080029461A1 (en) Proportioning, Regenerative, Rotary Pump

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071020

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081020

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111020

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121020

LAPS Cancellation because of no payment of annual fees