WO2017170013A1 - Water production system - Google Patents

Water production system Download PDF

Info

Publication number
WO2017170013A1
WO2017170013A1 PCT/JP2017/011338 JP2017011338W WO2017170013A1 WO 2017170013 A1 WO2017170013 A1 WO 2017170013A1 JP 2017011338 W JP2017011338 W JP 2017011338W WO 2017170013 A1 WO2017170013 A1 WO 2017170013A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
osmosis membrane
membrane module
pressure
reverse osmosis
Prior art date
Application number
PCT/JP2017/011338
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 信也
熊野 淳夫
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2017170013A1 publication Critical patent/WO2017170013A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for

Definitions

  • the present invention relates to a fresh water generation system. More specifically, the present invention relates to a fresh water generation system that produces fresh water using a reverse osmosis membrane module.
  • a freshwater production system that produces fresh water from seawater supplies saltwater in seawater by supplying seawater that has been pressurized to a predetermined pressure by a high-pressure pump to a reverse osmosis (RO) membrane module and passing through the RO membrane.
  • RO reverse osmosis
  • This is a system for removing fresh water by removing water.
  • the remaining salt water is discharged from the RO membrane module as concentrated salt water (brine).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-176775 discloses the use of an osmotic pressure power generation system that utilizes osmotic pressure energy of concentrated salt water in such a water production system (seawater desalination apparatus).
  • concentrated salt water DS: draw solution
  • FO Forward Osmosis
  • membrane module semi-permeable membrane generator for power generation
  • FS feed solution
  • Patent Document 2 Japanese Patent Laid-Open No. 2014-200708 discloses a similar system in which not only an electric energy recovery device (ERD) such as a water current generator, but also a machine such as a pressure conversion means and a rotation imparting function.
  • ERD electric energy recovery device
  • the use of the formula ERD is also disclosed. It should be noted that the energy consumed by the seawater supply means can be reduced by supplying the energy recovered by such ERD to the seawater supply means such as a pump.
  • low osmotic pressure water supplied to the FO membrane module
  • low-concentration salt water for example, brine, brackish water
  • untreated water containing impurities for example, sewage treated water, River water, industrial wastewater
  • the supply of low osmotic pressure water to the FO membrane module requires only the energy required for liquid transfer and can be performed with a relatively low energy by a low-pressure pump.
  • reverse osmosis treatment is low osmotic pressure water
  • it is necessary to apply high pressure because water is collected from the liquid to be treated by passing it through the membrane by applying pressure exceeding the osmotic pressure. is there. Therefore, in order to supply low osmotic pressure water to another RO membrane module, a high-pressure pump capable of increasing the pressure to a relatively high pressure is separately required, resulting in an increase in energy consumption of the system. .
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to increase the amount of water produced and suppress the increase in energy consumption in a water production system using an RO membrane module.
  • the present invention is a desalination system for producing fresh water from seawater and low osmotic pressure water having a lower osmotic pressure than seawater,
  • a first reverse osmosis membrane module having a first reverse osmosis membrane, separating the fresh water from the seawater via the first reverse osmosis membrane, and discharging concentrated salt water that is the concentrated seawater;
  • a first high pressure pump for supplying the seawater to the first reverse osmosis membrane module;
  • a second reverse osmosis membrane module having a second reverse osmosis membrane, and separating the fresh water from the low osmotic pressure water through the second reverse osmosis membrane;
  • a second high pressure pump for supplying the low osmotic pressure water to the second reverse osmosis membrane module;
  • a forward osmosis membrane module having a forward osmosis membrane, diluting the concentrated salt water with water supplied from the low osmotic pressure water through the forward os
  • the energy recovery device is preferably a mechanical energy recovery device.
  • the present invention in the fresh water generation system using the RO membrane module, it is possible to increase the amount of fresh water and to suppress an increase in energy consumption.
  • the fresh water generation system basically includes a first reverse osmosis (RO) membrane module 11, a first high pressure pump 31 (HP1), a second reverse osmosis ( RO) membrane module 12, second high pressure pump 32 (HP2), forward osmosis (FO) membrane module 2, low pressure pump 4 (BP), and energy recovery device 5 (ERD).
  • RO reverse osmosis
  • HP1 high pressure pump 31
  • HP2 second reverse osmosis
  • HP2 second high pressure pump 32
  • F forward osmosis
  • BP low pressure pump 4
  • ERP energy recovery device 5
  • seawater that has been pressurized to a predetermined pressure higher than the osmotic pressure of seawater by the first high-pressure pump 31 is supplied to the first RO membrane module 11 and passed through the first RO membrane 11a.
  • Salt and the like in the seawater are removed, and fresh water is taken out.
  • the second high pressure pump 32 supplies the second RO membrane module 12 with low osmotic pressure water that has been boosted to a predetermined pressure higher than the osmotic pressure of the low osmotic pressure water (liquid having a lower osmotic pressure than seawater).
  • salt, impurities and the like of low osmotic pressure water are removed, and fresh water is taken out.
  • fresh water (product water) is produced from both seawater and low osmotic pressure water in this way, so the amount of fresh water can be increased.
  • the detail of the fresh water generation system of this embodiment is demonstrated.
  • seawater is first supplied to the first high-pressure pump 31 by a low-pressure pump (not shown).
  • seawater is boosted to a predetermined pressure by the first high-pressure pump 31 and supplied to the first RO membrane module 11.
  • the predetermined pressure is higher than the osmotic pressure of seawater (about 2.5 to 3 MPa), for example, about 5 to 7 MPa.
  • the first RO membrane module 11 separates fresh water from the seawater pressurized to a predetermined pressure by the first high-pressure pump 31 through the first RO membrane 11a.
  • fresh water for example, a salt content of less than 350 mg / L
  • first RO membrane 11a of the first RO membrane module 11 can be obtained.
  • the separated fresh water is sent to the next purification step as necessary to become production water.
  • the remaining concentrated seawater is discharged from the first RO membrane module 11 as concentrated salt water (brine) and supplied to the second chamber 22 of the FO membrane module 2.
  • the low osmotic pressure water is supplied by the low pressure pump 4 to the second high pressure pump 32 and the first chamber 21 of the FO membrane module 2.
  • the “low osmotic pressure water” is a liquid having an osmotic pressure lower than that of seawater. Treated water, river water, industrial wastewater).
  • the pressure of the low-pressure pump is not particularly limited, but is lower than the first high-pressure pump and the second high-pressure pump.
  • the low osmotic pressure water is increased to a predetermined pressure by the second high pressure pump 32 and supplied to the second RO membrane module 12.
  • the predetermined pressure is an osmotic pressure of low osmotic pressure water (for example, about 0.1 MPa when the low osmotic pressure water is brine, or 0.05 MPa or less when the low osmotic pressure water is sewage treated water).
  • the higher pressure is, for example, about 0.5 to 3 MPa.
  • the second RO membrane module 12 separates fresh water from the low osmotic pressure water that has been pressurized to a predetermined pressure by the second high-pressure pump 32 via the second RO membrane 12a. In this way, fresh water that has passed through the second RO membrane 12a of the second RO membrane module 12 and from which salt, impurities, and the like have been removed can be obtained.
  • the separated fresh water is sent to the next purification step as necessary to become production water.
  • the remaining concentrated low osmotic pressure water is discharged from the second RO membrane module 12 and discharged to a river or the like after being subjected to drainage treatment.
  • the shapes of the RO membrane (the first RO membrane 11a and the second RO membrane 12a) and the FO membrane 2a are not particularly limited, and examples thereof include a flat membrane, a spiral membrane, and a hollow fiber membrane.
  • the flat film is illustrated as a simplified RO film and FO film, but is not particularly limited to such a shape.
  • hollow fiber membranes can increase the membrane area per module and improve the efficiency of reverse osmosis and forward osmosis compared to spiral type semipermeable membranes. Is advantageous.
  • the material of the RO membrane and the FO membrane is not particularly limited, and examples thereof include cellulose acetate, polyamide, and polysulfone.
  • the form of the RO membrane module (the first RO membrane module 11, the second RO membrane module 12) and the FO membrane module 2 is not particularly limited.
  • a hollow fiber membrane a module in which the hollow fiber membranes are arranged straight or And a crosswind module in which a hollow fiber membrane is wound around a core tube.
  • a flat membrane a laminated module in which flat membranes are stacked, a spiral module in which flat membranes are enveloped and wound around a core tube, and the like can be mentioned.
  • the FO membrane module 2 has a forward osmosis membrane (semi-permeable membrane) 2a and a first chamber 21 and a second chamber 22 partitioned by the forward osmosis membrane 2a.
  • the concentrated salt water discharged from the first RO membrane module 11 is supplied to the second chamber 22 of the FO membrane module 2.
  • low osmotic pressure water is supplied to the first chamber 21 of the FO membrane module 2 by the low pressure pump 4.
  • the concentrated salt water in the second chamber 22 is diluted by the water supplied from the first chamber 21 side through the forward osmosis membrane 2a by the forward osmosis phenomenon, and the diluted salt water (diluted concentrated salt water) is the second. It is discharged from the outlet of the chamber 22.
  • the concentrated salt water is diluted with water, and the diluted salt water is increased (pressure increased).
  • the diluted salt water discharged from the second chamber 22 of the FO membrane module 2 is supplied to the next energy recovery device (ERD) 5.
  • the diluted salt water after the energy is recovered by the ERD 5 is discharged to the ocean after being subjected to drainage treatment.
  • the energy recovery device (ERD) 5 recovers the energy of the diluted salt water that has been increased (pressure increased) in the FO membrane module 2. Then, the energy recovered by the ERD 5 is supplied to the second high-pressure pump 32 as indicated by a dotted line in FIG.
  • supplying energy to the second high-pressure pump 32 means, for example, transmitting (supplying) energy such as power and electric power directly to the second high-pressure pump.
  • energy is transmitted (supplied) to the low osmotic pressure water on the downstream side of the second high-pressure pump 32 (upstream side of the second RO membrane module 12), thereby indirectly reducing the burden on the second high-pressure pump. May be supplied to the second high-pressure pump 32.
  • the energy recovered by the ERD 5 is supplied to the second high-pressure pump 32 that is an increase factor of the amount of energy consumed. An increase in the amount can be suppressed.
  • Examples of the energy recovery device include a mechanical ERD and an electric ERD.
  • Mechanical ERD is a device that mechanically recovers saltwater energy.
  • Examples of the mechanical ERD include a power transmission type ERD and a pressure transmission type ERD.
  • the power transmission type ERD is a device that collects the flow rate (pressure) energy, etc. of diluted salt water as power.
  • Examples of the power transmission type ERD include a turbocharger or a water turbine that is coaxially coupled to a drive shaft of a high-pressure pump.
  • the pressure transmission type ERD Pressure Exchanger
  • ERD Pressure Exchanger
  • Electrical ERD is a device that collects energy as electricity.
  • Examples of the electric ERD include a water current generator using a turbine or the like.
  • Mechanical ERD has the advantages of less energy conversion loss and higher energy recovery efficiency than electrical ERD. Therefore, the power consumption of the high-pressure pump or the like can be further reduced by adopting the mechanical ERD as the ERD.
  • the electric ERD has an advantage that the degree of freedom of design is high because the generated electricity may be supplied to the high-pressure pump or the like via wiring, and the electricity can be supplied to other facilities.
  • the diluted salt water discharged from the second chamber 22 of the FO membrane module 2 has a high flow rate (pressure) energy.
  • a turbocharger used as the ERD
  • energy can be transmitted as power from the diluted salt water to the low osmotic pressure water on the other side of the turbocharger by sending the diluted salt water to one side of the turbocharger.
  • the low osmotic pressure water can be raised by the turbocharger, and the power consumption of the second high-pressure pump 32 can be reduced by using the flow rate (pressure) energy of the diluted salt water by the ERD.
  • a turbocharger has an advantage that it is suitable for mass processing because it has a wider flow rate range than water turbines that are coaxially coupled to the drive shaft of a high-pressure pump.
  • a buffer water wheel, a reaction water wheel, or the like can be used as the water wheel.
  • the buffer turbine include a Pelton turbine, a targo impulse turbine, and a cross flow turbine. Among these, it is preferable to use a Pelton turbine from the viewpoint of recovery efficiency and ease of maintenance.
  • a clutch may be provided between the second high-pressure pump 32 and the water wheel (ERD5).
  • the clutch in the initial state from the start of the fresh water generation system to the steady state, the clutch can be disengaged so that the water turbine does not become a load on the second high-pressure pump 32 even in the initial state.
  • the pressure transmission type ERD recovers the energy of the flow pressure of the diluted salt water discharged from the second chamber 22 of the FO membrane module 2 and supplies the recovered energy to the second high-pressure pump 32. Specifically, for example, a part of the flow pressure of the diluted salt water is transmitted as pressure to low osmotic pressure water in a branch channel (not shown) connecting the upstream side and the downstream side of the second high-pressure pump 32. The load on the second high-pressure pump 32 can be reduced.
  • the pressure transmission type ERD generally has a smaller conversion loss and superior energy recovery efficiency than the power transmission type ERD. Note that the low osmotic pressure water boosted by the pressure transmission type ERD is boosted to the same pressure as the low osmotic pressure water boosted by the second high pressure pump 32 using a booster pump, if necessary.
  • the flow rate (pressure) energy and osmotic pressure energy of the concentrated salt water discharged from the first RO membrane module 11 can be recovered by the FO membrane module 2 and the energy recovery device 5 described above. Using the recovered energy, the energy consumption of the second high-pressure pump 32 can be reduced, and the energy consumption of the fresh water generation system can be reduced.
  • the energy recovered by ERD may be supplied not only to the second high pressure pump 32 but also to the first high pressure pump 31 and the like.
  • First reverse osmosis membrane module (first RO membrane module), 11a First reverse osmosis membrane (first RO membrane), 12 Second reverse osmosis membrane module (second RO membrane module), 12a Second reverse osmosis membrane (second RO membrane) ), 2 forward osmosis membrane module (FO membrane module), 2a forward osmosis membrane (FO membrane), 21 first chamber, 22 second chamber, 31 first high pressure pump, 32 second high pressure pump, 4 low pressure pump, 5 energy Recovery device (ERD).
  • first RO membrane module First reverse osmosis membrane module
  • first RO membrane First reverse osmosis membrane
  • second RO membrane module Second reverse osmosis membrane module
  • second RO membrane Second reverse osmosis membrane

Abstract

A water production system for producing fresh water from seawater and low-osmotic-pressure water having a lower osmotic pressure than seawater, said system comprising: a first reverse osmosis membrane module that has a first reverse osmosis membrane, separates freshwater from seawater via the first reverse osmosis membrane, and discharges concentrated saltwater, i.e. the concentrated seawater; a first high-pressure pump that supplies seawater to the first reverse osmosis membrane module; a second reverse osmosis membrane module that has a second reverse osmosis membrane, and separates fresh water from low-osmotic-pressure water via the second reverse osmosis membrane; a second high-pressure pump that supplies low-osmotic-pressure water to the second reverse osmosis membrane module; a forward osmosis membrane module that has a forward osmosis membrane, dilutes the concentrated saltwater using water supplied from among the low-osmotic-pressure water via the forward osmosis membrane, and discharges diluted saltwater, i.e. the concentrated saltwater that has been diluted; a low-pressure pump that supplies low-osmotic-pressure water to the forward osmosis membrane module and the second high-pressure pump; and an energy recovery device that recovers energy from the diluted saltwater, and supplies the recovered energy to the second high-pressure pump.

Description

造水システムFresh water system
 本発明は、造水システムに関する。より詳細には、逆浸透膜モジュールを用いて淡水を生産する造水システムに関する。 The present invention relates to a fresh water generation system. More specifically, the present invention relates to a fresh water generation system that produces fresh water using a reverse osmosis membrane module.
 海水から淡水を生産する造水システムは、高圧ポンプによって所定の圧力に昇圧された海水を逆浸透(RO:Reverse Osmosis)膜モジュールに供給し、RO膜を通過させることで、海水中の塩分等を除去して淡水を取り出すシステムである。残りの塩水は、濃縮塩水(ブライン)としてRO膜モジュールから排出される。 A freshwater production system that produces fresh water from seawater supplies saltwater in seawater by supplying seawater that has been pressurized to a predetermined pressure by a high-pressure pump to a reverse osmosis (RO) membrane module and passing through the RO membrane. This is a system for removing fresh water by removing water. The remaining salt water is discharged from the RO membrane module as concentrated salt water (brine).
 特許文献1(特開2003-176775号公報)には、このような造水システム(海水淡水化装置)において、濃縮塩水の浸透圧エネルギーを利用した浸透圧発電システムを用いることが開示されている。この海水淡水化装置では、正浸透(FO:Forward Osmosis)膜モジュール(発電用半透膜透過器)の半透膜の一方側に、淡水を取り出した後の濃縮塩水(DS:ドロー溶液)を流し、半透膜の他方側に、海水よりも浸透圧が低い低浸透圧水(FS:フィード溶液)を流すことで、正浸透現象によって濃縮海水側の流量を増加させ、増加した流量で水流発電機を駆動させて発電を行う。 Patent Document 1 (Japanese Patent Laid-Open No. 2003-176775) discloses the use of an osmotic pressure power generation system that utilizes osmotic pressure energy of concentrated salt water in such a water production system (seawater desalination apparatus). . In this seawater desalination apparatus, concentrated salt water (DS: draw solution) after taking out fresh water is placed on one side of a semi-permeable membrane of a forward osmosis (FO: Forward Osmosis) membrane module (semi-permeable membrane generator for power generation). By flowing low osmotic pressure water (FS: feed solution) having a lower osmotic pressure than seawater to the other side of the semipermeable membrane, the flow rate on the concentrated seawater side is increased by the normal osmosis phenomenon. Power is generated by driving the generator.
 また、特許文献2(特開2014-200708号公報)には、同様のシステムにおいて、水流発電機などの電気式のエネルギー回収装置(ERD)だけでなく、圧力変換手段、回転付与機能などの機械式のERDを用いることも開示されている。なお、このようなERDによって回収されたエネルギーを、ポンプなどの海水供給手段に供給することで、海水供給手段の消費エネルギーを低減させることができる。 Patent Document 2 (Japanese Patent Laid-Open No. 2014-200708) discloses a similar system in which not only an electric energy recovery device (ERD) such as a water current generator, but also a machine such as a pressure conversion means and a rotation imparting function. The use of the formula ERD is also disclosed. It should be noted that the energy consumed by the seawater supply means can be reduced by supplying the energy recovered by such ERD to the seawater supply means such as a pump.
 なお、上記FO膜モジュールに供給される低浸透圧水(FS)としては、海水よりも濃度の低い低濃度塩水(例えば、かん水、汽水)、不純物を含む未処理水(例えば、下水処理水、河川水、工業排水)などが用いられる。 In addition, as low osmotic pressure water (FS) supplied to the FO membrane module, low-concentration salt water (for example, brine, brackish water) having a concentration lower than seawater, untreated water containing impurities (for example, sewage treated water, River water, industrial wastewater) and the like are used.
特開2003-176775号公報JP 2003-176775 A 特開2014-200708号公報JP 2014-200708 A
 従来の浸透圧発電システムを備えた造水システムにおいて、低浸透圧水は、FO膜モジュールのみに供給され、FO膜モジュールで濃縮された後に河川等に排水されていた。しかし、造水量を増加させるためには、海水だけでなく低浸透圧水からも、別途、RO膜モジュールを用いて水を製造することが望ましい。 In a fresh water generation system equipped with a conventional osmotic pressure power generation system, low osmotic pressure water was supplied only to the FO membrane module, and after being concentrated by the FO membrane module, was drained to a river or the like. However, in order to increase the amount of water produced, it is desirable to produce water using RO membrane modules separately from seawater as well as low osmotic pressure water.
 FO膜モジュールへの低浸透圧水の供給は、送液に必要なエネルギーのみを必要とし、低圧のポンプによって比較的低エネルギーで実施可能である。しかし、逆浸透処理は、低浸透圧水とはいえ、浸透圧を超える圧力を加えることにより、処理対象液から水を膜透過させて水を回収する処理であるため、高い圧力を加える必要がある。したがって、別のRO膜モジュールへ低浸透圧水を供給するためには、比較的高い圧力に昇圧することが可能な高圧ポンプが別途必要となり、システムのエネルギー消費量が増加するという問題があった。 The supply of low osmotic pressure water to the FO membrane module requires only the energy required for liquid transfer and can be performed with a relatively low energy by a low-pressure pump. However, although reverse osmosis treatment is low osmotic pressure water, it is necessary to apply high pressure because water is collected from the liquid to be treated by passing it through the membrane by applying pressure exceeding the osmotic pressure. is there. Therefore, in order to supply low osmotic pressure water to another RO membrane module, a high-pressure pump capable of increasing the pressure to a relatively high pressure is separately required, resulting in an increase in energy consumption of the system. .
 本発明は、上記の課題に鑑みてなされたものであり、RO膜モジュールを用いた造水システムにおいて、造水量を増加させると共に、エネルギー消費量の増加を抑制することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to increase the amount of water produced and suppress the increase in energy consumption in a water production system using an RO membrane module.
 本発明は、海水、および、海水より浸透圧が低い低浸透圧水から、淡水を生産する造水システムであって、
 第1逆浸透膜を有し、前記海水から前記第1逆浸透膜を介して前記淡水を分離し、濃縮された前記海水である濃縮塩水を排出する、第1逆浸透膜モジュールと、
 前記海水を前記第1逆浸透膜モジュールに供給する第1高圧ポンプと、
 第2逆浸透膜を有し、前記低浸透圧水から前記第2逆浸透膜を介して前記淡水を分離する、第2逆浸透膜モジュールと、
 前記低浸透圧水を前記第2逆浸透膜モジュールに供給する第2高圧ポンプと、
 正浸透膜を有し、前記濃縮塩水を前記正浸透膜を介して前記低浸透圧水から供給される水によって希釈し、希釈された前記濃縮塩水である希釈塩水を排出する、正浸透膜モジュールと、
 前記低浸透圧水を前記正浸透膜モジュールおよび前記第2高圧ポンプに供給する低圧ポンプと、
 前記希釈塩水のエネルギーを回収し、回収したエネルギーを前記第2高圧ポンプに供給する、エネルギー回収装置と、を備える、造水システムである。
The present invention is a desalination system for producing fresh water from seawater and low osmotic pressure water having a lower osmotic pressure than seawater,
A first reverse osmosis membrane module having a first reverse osmosis membrane, separating the fresh water from the seawater via the first reverse osmosis membrane, and discharging concentrated salt water that is the concentrated seawater;
A first high pressure pump for supplying the seawater to the first reverse osmosis membrane module;
A second reverse osmosis membrane module having a second reverse osmosis membrane, and separating the fresh water from the low osmotic pressure water through the second reverse osmosis membrane;
A second high pressure pump for supplying the low osmotic pressure water to the second reverse osmosis membrane module;
A forward osmosis membrane module having a forward osmosis membrane, diluting the concentrated salt water with water supplied from the low osmotic pressure water through the forward osmosis membrane, and discharging the diluted salt water which is the diluted salt water When,
A low pressure pump for supplying the low osmotic pressure water to the forward osmosis membrane module and the second high pressure pump;
An energy recovery device that recovers energy of the diluted salt water and supplies the recovered energy to the second high-pressure pump.
 前記エネルギー回収装置は、機械式のエネルギー回収装置であることが好ましい。 The energy recovery device is preferably a mechanical energy recovery device.
 本発明によれば、RO膜モジュールを用いた造水システムにおいて、造水量を増加させると共に、エネルギー消費量の増加を抑制することができる。 According to the present invention, in the fresh water generation system using the RO membrane module, it is possible to increase the amount of fresh water and to suppress an increase in energy consumption.
本発明の一実施形態に係る造水システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the fresh water generation system which concerns on one Embodiment of this invention.
 図1に示されるように、本発明の一実施形態に係る造水システムは、基本的に、第1逆浸透(RO)膜モジュール11、第1高圧ポンプ31(HP1)、第2逆浸透(RO)膜モジュール12、第2高圧ポンプ32(HP2)、正浸透(FO)膜モジュール2、低圧ポンプ4(BP)、および、エネルギー回収装置5(ERD)を備えている。 As shown in FIG. 1, the fresh water generation system according to one embodiment of the present invention basically includes a first reverse osmosis (RO) membrane module 11, a first high pressure pump 31 (HP1), a second reverse osmosis ( RO) membrane module 12, second high pressure pump 32 (HP2), forward osmosis (FO) membrane module 2, low pressure pump 4 (BP), and energy recovery device 5 (ERD).
 本実施形態の造水システムにおいては、第1高圧ポンプ31によって、海水の浸透圧より高い所定の圧力に昇圧された海水を第1RO膜モジュール11に供給し、第1RO膜11aを通過させることで、海水中の塩分等が除去され、淡水が取り出される。また、第2高圧ポンプ32によって、低浸透圧水(海水より浸透圧が低い液)の浸透圧より高い所定の圧力に昇圧された低浸透圧水を第2RO膜モジュール12に供給し、第2RO膜12aを通過させることで、低浸透圧水の塩分、不純物等が除去され、淡水が取り出される。 In the fresh water generation system of the present embodiment, seawater that has been pressurized to a predetermined pressure higher than the osmotic pressure of seawater by the first high-pressure pump 31 is supplied to the first RO membrane module 11 and passed through the first RO membrane 11a. , Salt and the like in the seawater are removed, and fresh water is taken out. The second high pressure pump 32 supplies the second RO membrane module 12 with low osmotic pressure water that has been boosted to a predetermined pressure higher than the osmotic pressure of the low osmotic pressure water (liquid having a lower osmotic pressure than seawater). By passing through the membrane 12a, salt, impurities and the like of low osmotic pressure water are removed, and fresh water is taken out.
 本実施形態の造水システムでは、このようにして、海水および低浸透圧水の両方から、淡水(生産水)が生産されるため、造水量を増加させることができる。以下、本実施形態の造水システムの詳細について説明する。 In the fresh water generation system of the present embodiment, fresh water (product water) is produced from both seawater and low osmotic pressure water in this way, so the amount of fresh water can be increased. Hereinafter, the detail of the fresh water generation system of this embodiment is demonstrated.
 (第1RO膜モジュール)
 本実施形態の造水システムにおいて、海水は、まず、低圧ポンプ(図示せず)により第1高圧ポンプ31に供給される。
(First RO membrane module)
In the fresh water generation system of this embodiment, seawater is first supplied to the first high-pressure pump 31 by a low-pressure pump (not shown).
 次に、第1高圧ポンプ31により海水が所定の圧力に昇圧され、第1RO膜モジュール11へ供給される。ここで、所定の圧力は、海水の浸透圧(約2.5~3MPa)より高い圧力であり、例えば、5~7MPa程度である。 Next, seawater is boosted to a predetermined pressure by the first high-pressure pump 31 and supplied to the first RO membrane module 11. Here, the predetermined pressure is higher than the osmotic pressure of seawater (about 2.5 to 3 MPa), for example, about 5 to 7 MPa.
 第1RO膜モジュール11は、第1高圧ポンプ31によって所定の圧力に昇圧された海水から第1RO膜11aを介して淡水を分離する。こうして第1RO膜モジュール11の第1RO膜11aを透過した淡水(例えば、塩分含量350mg/L未満)を得ることができる。 The first RO membrane module 11 separates fresh water from the seawater pressurized to a predetermined pressure by the first high-pressure pump 31 through the first RO membrane 11a. Thus, fresh water (for example, a salt content of less than 350 mg / L) that has passed through the first RO membrane 11a of the first RO membrane module 11 can be obtained.
 分離された淡水は、必要により次の精製工程等に送られて生産水となる。残りの濃縮された海水は、濃縮塩水(ブライン)として第1RO膜モジュール11から排出され、FO膜モジュール2の第2室22に供給される。 The separated fresh water is sent to the next purification step as necessary to become production water. The remaining concentrated seawater is discharged from the first RO membrane module 11 as concentrated salt water (brine) and supplied to the second chamber 22 of the FO membrane module 2.
 (第2RO膜モジュール)
 一方、低浸透圧水は、低圧ポンプ4によって、第2高圧ポンプ32およびFO膜モジュール2の第1室21に供給される。なお、「低浸透圧水」とは、海水より浸透圧が低い液であり、例えば、海水よりも濃度の低い低濃度塩水(例えば、かん水、汽水)、不純物を含む未処理水(例えば、下水処理水、河川水、工業排水)などが挙げられる。また、低圧ポンプの圧力は、特に限定されないが、第1高圧ポンプおよび第2高圧ポンプより低い圧力である。
(Second RO membrane module)
On the other hand, the low osmotic pressure water is supplied by the low pressure pump 4 to the second high pressure pump 32 and the first chamber 21 of the FO membrane module 2. The “low osmotic pressure water” is a liquid having an osmotic pressure lower than that of seawater. Treated water, river water, industrial wastewater). The pressure of the low-pressure pump is not particularly limited, but is lower than the first high-pressure pump and the second high-pressure pump.
 次に、第2高圧ポンプ32により低浸透圧水が所定の圧力に昇圧され、第2RO膜モジュール12へ供給される。ここで、所定の圧力は、低浸透圧水の浸透圧(例えば、低浸透圧水がかん水である場合は約0.1MPa、低浸透圧水が下水処理水である場合は0.05MPa以下)より高い圧力であり、例えば、0.5~3MPa程度である。 Next, the low osmotic pressure water is increased to a predetermined pressure by the second high pressure pump 32 and supplied to the second RO membrane module 12. Here, the predetermined pressure is an osmotic pressure of low osmotic pressure water (for example, about 0.1 MPa when the low osmotic pressure water is brine, or 0.05 MPa or less when the low osmotic pressure water is sewage treated water). The higher pressure is, for example, about 0.5 to 3 MPa.
 第2RO膜モジュール12は、第2高圧ポンプ32によって所定の圧力に昇圧された低浸透圧水から第2RO膜12aを介して淡水を分離する。こうして第2RO膜モジュール12の第2RO膜12aを透過し、塩分、不純物等が除去された淡水を得ることができる。 The second RO membrane module 12 separates fresh water from the low osmotic pressure water that has been pressurized to a predetermined pressure by the second high-pressure pump 32 via the second RO membrane 12a. In this way, fresh water that has passed through the second RO membrane 12a of the second RO membrane module 12 and from which salt, impurities, and the like have been removed can be obtained.
 分離された淡水は、必要により次の精製工程等に送られて生産水となる。残りの濃縮された低浸透圧水は、第2RO膜モジュール12から排出され、排水処理が施された後に河川等に排出される。 The separated fresh water is sent to the next purification step as necessary to become production water. The remaining concentrated low osmotic pressure water is discharged from the second RO membrane module 12 and discharged to a river or the like after being subjected to drainage treatment.
 なお、RO膜(第1RO膜11a,第2RO膜12a)およびFO膜2aの形状としては、特に限定されないが、例えば、平膜、スパイラル膜または中空糸膜が挙げられる。なお、図1では、RO膜およびFO膜として平膜を簡略化して描いているが、特にこのような形状に限定されるものではない。なお、中空糸膜(中空糸型半透膜)は、スパイラル型半透膜などに比べて、モジュール当たりの膜面積を大きくすることができ、逆浸透および正浸透の効率を高めることができる点で有利である。 Note that the shapes of the RO membrane (the first RO membrane 11a and the second RO membrane 12a) and the FO membrane 2a are not particularly limited, and examples thereof include a flat membrane, a spiral membrane, and a hollow fiber membrane. In FIG. 1, the flat film is illustrated as a simplified RO film and FO film, but is not particularly limited to such a shape. In addition, hollow fiber membranes (hollow fiber type semipermeable membranes) can increase the membrane area per module and improve the efficiency of reverse osmosis and forward osmosis compared to spiral type semipermeable membranes. Is advantageous.
 RO膜およびFO膜の材質としては、特に限定されないが、例えば、酢酸セルロース、ポリアミドまたはポリスルホンが挙げられる。 The material of the RO membrane and the FO membrane is not particularly limited, and examples thereof include cellulose acetate, polyamide, and polysulfone.
 また、RO膜モジュール(第1RO膜モジュール11,第2RO膜モジュール12)およびFO膜モジュール2の形態としては、特に限定されないが、中空糸膜を用いる場合は、中空糸膜をストレート配置したモジュールや、中空糸膜を芯管に巻きつけたクロスワインド型モジュールなどが挙げられる。平膜を用いる場合は、平膜を積み重ねた積層型モジュールや、平膜を封筒状として芯管に巻きつけたスパイラル型モジュールなどが挙げられる。 Further, the form of the RO membrane module (the first RO membrane module 11, the second RO membrane module 12) and the FO membrane module 2 is not particularly limited. However, when a hollow fiber membrane is used, a module in which the hollow fiber membranes are arranged straight or And a crosswind module in which a hollow fiber membrane is wound around a core tube. In the case of using a flat membrane, a laminated module in which flat membranes are stacked, a spiral module in which flat membranes are enveloped and wound around a core tube, and the like can be mentioned.
 (FO膜モジュール)
 FO膜モジュール2は、正浸透膜(半透膜)2aと、正浸透膜2aで仕切られた第1室21および第2室22を有している。
(FO membrane module)
The FO membrane module 2 has a forward osmosis membrane (semi-permeable membrane) 2a and a first chamber 21 and a second chamber 22 partitioned by the forward osmosis membrane 2a.
 上述のとおり、FO膜モジュール2の第2室22には、第1RO膜モジュール11から排出された濃縮塩水が供給される。一方、FO膜モジュール2の第1室21には、低圧ポンプ4によって、低浸透圧水が供給される。これにより、第2室22内の濃縮塩水は、正浸透現象により正浸透膜2aを介して第1室21側から供給される水によって希釈され、希釈塩水(希釈された濃縮塩水)が第2室22の流出口から排出される。 As described above, the concentrated salt water discharged from the first RO membrane module 11 is supplied to the second chamber 22 of the FO membrane module 2. On the other hand, low osmotic pressure water is supplied to the first chamber 21 of the FO membrane module 2 by the low pressure pump 4. Thereby, the concentrated salt water in the second chamber 22 is diluted by the water supplied from the first chamber 21 side through the forward osmosis membrane 2a by the forward osmosis phenomenon, and the diluted salt water (diluted concentrated salt water) is the second. It is discharged from the outlet of the chamber 22.
 このようにして、FO膜モジュール2では、濃縮塩水が水によって希釈され、増量された(圧力が高められた)希釈塩水となる。 In this way, in the FO membrane module 2, the concentrated salt water is diluted with water, and the diluted salt water is increased (pressure increased).
 FO膜モジュール2の第2室22から排出される希釈塩水は、次のエネルギー回収装置(ERD)5に供給される。なお、ERD5でエネルギーが回収された後の希釈塩水は、排水処理が施された後、海洋へ排出される。 The diluted salt water discharged from the second chamber 22 of the FO membrane module 2 is supplied to the next energy recovery device (ERD) 5. In addition, the diluted salt water after the energy is recovered by the ERD 5 is discharged to the ocean after being subjected to drainage treatment.
 (エネルギー回収装置)
 エネルギー回収装置(ERD)5は、FO膜モジュール2において増量された(圧力が高められた)希釈塩水のエネルギーを回収する。そして、ERD5によって回収されたエネルギーは、図1に点線で示されるように、第2高圧ポンプ32に供給される。
(Energy recovery device)
The energy recovery device (ERD) 5 recovers the energy of the diluted salt water that has been increased (pressure increased) in the FO membrane module 2. Then, the energy recovered by the ERD 5 is supplied to the second high-pressure pump 32 as indicated by a dotted line in FIG.
 なお、エネルギーを第2高圧ポンプ32に供給するとは、例えば、第2高圧ポンプに直接、動力、電力等のエネルギーを伝達(供給)することである。ただし、第2高圧ポンプ32の下流側(第2RO膜モジュール12の上流側)の低浸透圧水にエネルギーを伝達(供給)し、第2高圧ポンプの負担を軽減することで、間接的にエネルギーを第2高圧ポンプ32に供給してもよい。 Note that supplying energy to the second high-pressure pump 32 means, for example, transmitting (supplying) energy such as power and electric power directly to the second high-pressure pump. However, energy is transmitted (supplied) to the low osmotic pressure water on the downstream side of the second high-pressure pump 32 (upstream side of the second RO membrane module 12), thereby indirectly reducing the burden on the second high-pressure pump. May be supplied to the second high-pressure pump 32.
 本実施形態においては、システム全体の造水量を増加させると共に、ERD5によって回収されたエネルギーを、エネルギー消費量の増加要因となる第2高圧ポンプ32に供給することで、造水システム全体のエネルギー消費量の増加を抑制することができる。 In this embodiment, while increasing the amount of fresh water generated in the entire system, the energy recovered by the ERD 5 is supplied to the second high-pressure pump 32 that is an increase factor of the amount of energy consumed. An increase in the amount can be suppressed.
 エネルギー回収装置(ERD)としては、例えば、機械式のERD、または、電気式のERDが挙げられる。 Examples of the energy recovery device (ERD) include a mechanical ERD and an electric ERD.
 機械式のERDは、塩水のエネルギーを機械的に回収する装置である。機械式のERDとしては、例えば、動力伝達式ERDまたは圧力伝達式ERDが挙げられる。 Mechanical ERD is a device that mechanically recovers saltwater energy. Examples of the mechanical ERD include a power transmission type ERD and a pressure transmission type ERD.
 動力伝達式ERDは、希釈塩水の流量(圧力)エネルギー等を動力として回収する装置である。動力伝達式ERDとしては、例えば、ターボチャージャー、または、高圧ポンプの駆動軸と同軸上に結合された水車が挙げられる。 The power transmission type ERD is a device that collects the flow rate (pressure) energy, etc. of diluted salt water as power. Examples of the power transmission type ERD include a turbocharger or a water turbine that is coaxially coupled to a drive shaft of a high-pressure pump.
 圧力伝達式ERD(Pressure Exchanger)は、希釈塩水の圧力を低浸透圧水の圧力に変換する装置である。 The pressure transmission type ERD (Pressure Exchanger) is a device that converts the pressure of diluted salt water into the pressure of low osmotic pressure water.
 電気式のERDは、電気としてエネルギーを回収する装置である。電気式のERDとしては、タービン等を用いた水流発電機などが挙げられる。 Electrical ERD is a device that collects energy as electricity. Examples of the electric ERD include a water current generator using a turbine or the like.
 機械式のERDは、電気式のERDよりもエネルギー変換ロスが少なく、エネルギー回収効率が高いという利点がある。したがって、ERDとして機械式のERDを採用することにより、高圧ポンプ等の消費動力をより削減することができる。 Mechanical ERD has the advantages of less energy conversion loss and higher energy recovery efficiency than electrical ERD. Therefore, the power consumption of the high-pressure pump or the like can be further reduced by adopting the mechanical ERD as the ERD.
 一方、電気式のERDは、発電した電気を高圧ポンプ等へ配線を介して供給すればよく、電気を他の施設へ供給することもできるため、設計の自由度が高いという利点がある。 On the other hand, the electric ERD has an advantage that the degree of freedom of design is high because the generated electricity may be supplied to the high-pressure pump or the like via wiring, and the electricity can be supplied to other facilities.
 FO膜モジュール2の第2室22から排出される希釈塩水は、高い流量(圧力)エネルギーを有している。このため、例えば、ERDとしてターボチャージャーを用いる場合、希釈塩水をターボチャージャーの一方側へ送ることで、希釈塩水からターボチャージャーの他方側の低浸透圧水へ動力としてエネルギーを伝達することができる。これにより、ターボチャージャーによって低浸透圧水を昇圧させることができ、ERDによって、希釈塩水の流量(圧力)エネルギーを利用して、第2高圧ポンプ32の消費動力を低減させることができる。 The diluted salt water discharged from the second chamber 22 of the FO membrane module 2 has a high flow rate (pressure) energy. For this reason, for example, when a turbocharger is used as the ERD, energy can be transmitted as power from the diluted salt water to the low osmotic pressure water on the other side of the turbocharger by sending the diluted salt water to one side of the turbocharger. Thereby, the low osmotic pressure water can be raised by the turbocharger, and the power consumption of the second high-pressure pump 32 can be reduced by using the flow rate (pressure) energy of the diluted salt water by the ERD.
 なお、一般に、ターボチャージャーは、高圧ポンプの駆動軸と同軸上に結合された水車などに比べて、処理可能な流量範囲が広いため、大量処理に適しているという利点がある。 In general, a turbocharger has an advantage that it is suitable for mass processing because it has a wider flow rate range than water turbines that are coaxially coupled to the drive shaft of a high-pressure pump.
 また、ERDとして、第2高圧ポンプ32の駆動軸(モータ軸)と同軸上に結合された水車を用いる場合、水車としては、緩衝水車、反動水車などを用いることができる。緩衝水車としては、例えば、ペルトン水車、ターゴインパルス水車、クロスフロー水車などが挙げられる。これらの中でも、回収効率やメンテナンスの容易性の観点から、ペルトン水車を用いることが好ましい。 Further, when a water turbine that is coaxially coupled to the drive shaft (motor shaft) of the second high-pressure pump 32 is used as the ERD, a buffer water wheel, a reaction water wheel, or the like can be used as the water wheel. Examples of the buffer turbine include a Pelton turbine, a targo impulse turbine, and a cross flow turbine. Among these, it is preferable to use a Pelton turbine from the viewpoint of recovery efficiency and ease of maintenance.
 なお、第2高圧ポンプ32と水車(ERD5)との間にクラッチを設けてもよい。これにより、造水システムを始動してから定常状態に至る初期状態において、クラッチを切ることで、初期状態においても水車が第2高圧ポンプ32の負荷とならないようにすることができる。 A clutch may be provided between the second high-pressure pump 32 and the water wheel (ERD5). Thus, in the initial state from the start of the fresh water generation system to the steady state, the clutch can be disengaged so that the water turbine does not become a load on the second high-pressure pump 32 even in the initial state.
 また、圧力伝達式ERDは、FO膜モジュール2の第2室22から排出された希釈塩水の流れ圧力のエネルギーを回収し、回収したエネルギーを第2高圧ポンプ32に供給する。具体的には、例えば、希釈塩水の流れ圧力の一部が、第2高圧ポンプ32の上流側と下流側を接続する分岐流路(図示せず)内の低浸透圧水に圧力として伝達され、第2高圧ポンプ32の負荷を低減することができる。 In addition, the pressure transmission type ERD recovers the energy of the flow pressure of the diluted salt water discharged from the second chamber 22 of the FO membrane module 2 and supplies the recovered energy to the second high-pressure pump 32. Specifically, for example, a part of the flow pressure of the diluted salt water is transmitted as pressure to low osmotic pressure water in a branch channel (not shown) connecting the upstream side and the downstream side of the second high-pressure pump 32. The load on the second high-pressure pump 32 can be reduced.
 圧力伝達式ERDは、一般に動力伝達式ERDよりも変換ロスが小さくエネルギー回収効率に優れている。なお、圧力伝達式ERDで昇圧された低浸透圧水は、必要に応じて、ブースターポンプを用いて第2高圧ポンプ32によって昇圧された低浸透圧水と同じ圧力まで昇圧される。 The pressure transmission type ERD generally has a smaller conversion loss and superior energy recovery efficiency than the power transmission type ERD. Note that the low osmotic pressure water boosted by the pressure transmission type ERD is boosted to the same pressure as the low osmotic pressure water boosted by the second high pressure pump 32 using a booster pump, if necessary.
 上述のFO膜モジュール2およびエネルギー回収装置5により、第1RO膜モジュール11から排出された濃縮塩水の流量(圧力)エネルギーおよび浸透圧エネルギーを回収することができる。回収したエネルギーを用いて、第2高圧ポンプ32の消費エネルギーを低減し、造水システムの消費エネルギーを低減することができる。 The flow rate (pressure) energy and osmotic pressure energy of the concentrated salt water discharged from the first RO membrane module 11 can be recovered by the FO membrane module 2 and the energy recovery device 5 described above. Using the recovered energy, the energy consumption of the second high-pressure pump 32 can be reduced, and the energy consumption of the fresh water generation system can be reduced.
 なお、ERDで回収したエネルギーを第2高圧ポンプ32だけでなく、第1高圧ポンプ31等に供給してもよい。 The energy recovered by ERD may be supplied not only to the second high pressure pump 32 but also to the first high pressure pump 31 and the like.
 11 第1逆浸透膜モジュール(第1RO膜モジュール)、11a 第1逆浸透膜(第1RO膜)、12 第2逆浸透膜モジュール(第2RO膜モジュール)、12a 第2逆浸透膜(第2RO膜)、2 正浸透膜モジュール(FO膜モジュール)、2a 正浸透膜(FO膜)、21 第1室、22 第2室、31 第1高圧ポンプ、32 第2高圧ポンプ、4 低圧ポンプ、5 エネルギー回収装置(ERD)。 11 First reverse osmosis membrane module (first RO membrane module), 11a First reverse osmosis membrane (first RO membrane), 12 Second reverse osmosis membrane module (second RO membrane module), 12a Second reverse osmosis membrane (second RO membrane) ), 2 forward osmosis membrane module (FO membrane module), 2a forward osmosis membrane (FO membrane), 21 first chamber, 22 second chamber, 31 first high pressure pump, 32 second high pressure pump, 4 low pressure pump, 5 energy Recovery device (ERD).

Claims (2)

  1.  海水、および、海水より浸透圧が低い低浸透圧水から、淡水を生産する造水システムであって、
     第1逆浸透膜を有し、前記海水から前記第1逆浸透膜を介して前記淡水を分離し、濃縮された前記海水である濃縮塩水を排出する、第1逆浸透膜モジュールと、
     前記海水を前記第1逆浸透膜モジュールに供給する第1高圧ポンプと、
     第2逆浸透膜を有し、前記低浸透圧水から前記第2逆浸透膜を介して前記淡水を分離する、第2逆浸透膜モジュールと、
     前記低浸透圧水を前記第2逆浸透膜モジュールに供給する第2高圧ポンプと、
     正浸透膜を有し、前記濃縮塩水を前記正浸透膜を介して前記低浸透圧水から供給される水によって希釈し、希釈された前記濃縮塩水である希釈塩水を排出する、正浸透膜モジュールと、
     前記低浸透圧水を前記正浸透膜モジュールおよび前記第2高圧ポンプに供給する低圧ポンプと、
     前記希釈塩水のエネルギーを回収し、回収したエネルギーを前記第2高圧ポンプに供給する、エネルギー回収装置と、を備える、造水システム。
    A fresh water production system that produces fresh water from seawater and low osmotic pressure water having a lower osmotic pressure than seawater,
    A first reverse osmosis membrane module having a first reverse osmosis membrane, separating the fresh water from the seawater via the first reverse osmosis membrane, and discharging concentrated salt water that is the concentrated seawater;
    A first high pressure pump for supplying the seawater to the first reverse osmosis membrane module;
    A second reverse osmosis membrane module having a second reverse osmosis membrane, and separating the fresh water from the low osmotic pressure water through the second reverse osmosis membrane;
    A second high pressure pump for supplying the low osmotic pressure water to the second reverse osmosis membrane module;
    A forward osmosis membrane module having a forward osmosis membrane, diluting the concentrated salt water with water supplied from the low osmotic pressure water through the forward osmosis membrane, and discharging the diluted salt water which is the diluted salt water When,
    A low pressure pump for supplying the low osmotic pressure water to the forward osmosis membrane module and the second high pressure pump;
    A water production system comprising: an energy recovery device that recovers energy of the diluted salt water and supplies the recovered energy to the second high-pressure pump.
  2.  前記エネルギー回収装置は、機械式のエネルギー回収装置である、請求項1に記載の造水システム。 The fresh water generation system according to claim 1, wherein the energy recovery device is a mechanical energy recovery device.
PCT/JP2017/011338 2016-03-28 2017-03-22 Water production system WO2017170013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-064201 2016-03-28
JP2016064201A JP6658198B2 (en) 2016-03-28 2016-03-28 Fresh water system

Publications (1)

Publication Number Publication Date
WO2017170013A1 true WO2017170013A1 (en) 2017-10-05

Family

ID=59965483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011338 WO2017170013A1 (en) 2016-03-28 2017-03-22 Water production system

Country Status (2)

Country Link
JP (1) JP6658198B2 (en)
WO (1) WO2017170013A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550701A (en) * 2019-09-09 2019-12-10 中国电建集团华东勘测设计研究院有限公司 Zero-emission concentration system for reverse osmosis process by using forward osmosis membrane module
CN112108001A (en) * 2019-06-20 2020-12-22 国家能源投资集团有限责任公司 Reverse osmosis system and method for concentrating lithium-containing brine by using reverse osmosis system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965680B2 (en) * 2017-10-13 2021-11-10 東洋紡株式会社 Seawater desalination method and seawater desalination system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120118826A1 (en) * 2009-07-09 2012-05-17 I.D.E. Technologies Ltd. Desalination system
US20130160435A1 (en) * 2010-05-20 2013-06-27 Ohl Medio Ambiente, Inima, S.A.U. Process for the production of hydraulic energy and production of potable water by direct osmosis
JP2014200708A (en) * 2013-04-02 2014-10-27 協和機電工業株式会社 Salt water desalinator
CN104163470A (en) * 2013-10-17 2014-11-26 国家海洋局天津海水淡化与综合利用研究所 Concentrated water energy gradient utilization reverse osmosis seawater desalination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120118826A1 (en) * 2009-07-09 2012-05-17 I.D.E. Technologies Ltd. Desalination system
US20130160435A1 (en) * 2010-05-20 2013-06-27 Ohl Medio Ambiente, Inima, S.A.U. Process for the production of hydraulic energy and production of potable water by direct osmosis
JP2014200708A (en) * 2013-04-02 2014-10-27 協和機電工業株式会社 Salt water desalinator
CN104163470A (en) * 2013-10-17 2014-11-26 国家海洋局天津海水淡化与综合利用研究所 Concentrated water energy gradient utilization reverse osmosis seawater desalination method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108001A (en) * 2019-06-20 2020-12-22 国家能源投资集团有限责任公司 Reverse osmosis system and method for concentrating lithium-containing brine by using reverse osmosis system
CN110550701A (en) * 2019-09-09 2019-12-10 中国电建集团华东勘测设计研究院有限公司 Zero-emission concentration system for reverse osmosis process by using forward osmosis membrane module

Also Published As

Publication number Publication date
JP2017176928A (en) 2017-10-05
JP6658198B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6965680B2 (en) Seawater desalination method and seawater desalination system
EP2693050B1 (en) Concentration difference power generation device and method for operating same
JP7428127B2 (en) Membrane separation equipment, water production system, membrane separation method and water production method
AU2010325544B2 (en) Reciprocal enhancement of reverse osmosis and forward osmosis
KR20200089223A (en) Pressure-reduced saline water treatment system
KR101489855B1 (en) Desalination system capable of recovering osmotic energy and method thereof
WO2017170013A1 (en) Water production system
JP2005279540A (en) Desalination system
KR101817685B1 (en) See water desalination system using pressure-retarded osmosis
JP6690547B2 (en) Desalination system and method
KR102423788B1 (en) Complex desalination system using pressure-retarded osmosis for sea water desalination
WO2017170014A1 (en) Desalination system
WO2019208645A1 (en) Water treatment device
JP2002085941A (en) Fresh water making process and fresh water maker
JP2016097331A (en) Water generation system and water generation method
KR20160054230A (en) See water desalination system using pressure-retarded osmosis
KR101421103B1 (en) Device for water treatment and electricity generation using pressure retarded membrane distillation
WO2014133101A1 (en) Method for producing desalinated water
JP3375070B2 (en) Membrane processing device and fresh water method
WO2022059737A1 (en) Seawater desalination system
KR20140128496A (en) desalination system capable of recovering osmotic energy for ultra-high salinity water bodies and method thereof
WO2016006344A1 (en) Desalination system
Stover et al. Reverse osmosis and osmotic power generation with isobaric energy recovery
WO2024052721A1 (en) Saline water treatment pre-treatment or treatment system
JP2017074532A (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774554

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774554

Country of ref document: EP

Kind code of ref document: A1