JPH06209019A - Hetero junction field-effect transistor - Google Patents

Hetero junction field-effect transistor

Info

Publication number
JPH06209019A
JPH06209019A JP309793A JP309793A JPH06209019A JP H06209019 A JPH06209019 A JP H06209019A JP 309793 A JP309793 A JP 309793A JP 309793 A JP309793 A JP 309793A JP H06209019 A JPH06209019 A JP H06209019A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
channel
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP309793A
Other languages
Japanese (ja)
Inventor
Nobutaka Fuchigami
伸隆 渕上
Junji Shigeta
淳二 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP309793A priority Critical patent/JPH06209019A/en
Publication of JPH06209019A publication Critical patent/JPH06209019A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4884Polyurethanes; Polyisocyanates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To realize a high speed and low noise by providing an undoped semiconductor layer wherein energy level of a conductive band is lower than energy level of a channel layer between a channel layer and a barrier layer at a specified thickness. CONSTITUTION:An i-InAlAs buffer layer 7 and a p-InGaAs buffer layer 6 are formed on an InP substrate, and an n-InGaAs channel layer 1, an i-InAs carrier storage layer 2, an i-InAlAs barrier layer 3 and an i-InGaAs cap layer 4 are formed thereon at thicknesses of 15, 1, 10, and 5nm, respectively. After a gate electrode 9 is formed and a surface thereof is coated with an SiO2 film 8, the SiO2 film 8 is removed only in an ohmic layer formation region. The channel layer 1 in the ohmic layer formation region is etched using the SiO2 film 8 as a mask. An ohmic layer 5 is formed by selectively forming the n-InGaAs layer 5 using the SiO2 film 8 as a mask, and an ohmic electrode (Ti/Au) 10 is formed thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヘテロ接合電界効果トラ
ンジスタに関し、特に高速性と低ノイズ化を図ったデバ
イス構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heterojunction field effect transistor, and more particularly to a device structure which has high speed and low noise.

【0002】[0002]

【従来の技術】GaAs MESFET(Metal Semicondu
ctor FET)の高性能化の為にゲート長短縮を図る場合、
ゲート長短縮に伴ってチャネルの薄層化も行なう必要が
あるが、しきい電圧(Vth)を一定に保つ為には薄層化と
同時にチャネルの高濃度化が必要となる。しかし、チャ
ネルの高濃度化はゲート電極のショットキー特性を低下
させ、ゲート順方向許容電圧(Vf)とゲート耐圧(BVg
s)の低下を招く問題がある。VfとBVgsの低下の問題
に対してはチャネルとゲート電極との間にバンドギャッ
プの大きい他の半導体層を挾むことで対処する方法が特
開昭50−3786号で報告されており、この従来技術
によるデバイス構造の一例を図3に示す。n-GaAsチ
ャネル層1上にi-Al03Ga07Asバリア層3を設けてヘ
テロ接合構造とすることでVfを約0.3V、BVgsを
約1V向上させることが可能となる。
BACKGROUND OF THE INVENTION GaAs MESFET (Me tal S emicondu
To shorten the gate length in order to improve the performance of the ctor FET ),
Although it is necessary to thin the channel as the gate length is shortened, in order to keep the threshold voltage (Vth) constant, it is necessary to thin the layer and simultaneously increase the concentration of the channel. However, increasing the concentration of the channel deteriorates the Schottky characteristics of the gate electrode, and the gate forward direction allowable voltage (Vf) and the gate breakdown voltage (BVg
There is a problem that causes a decrease in s). A method for dealing with the problem of Vf and BVgs lowering by inserting another semiconductor layer having a large band gap between the channel and the gate electrode has been reported in Japanese Patent Laid-Open No. 3786/50. An example of a device structure according to the prior art is shown in FIG. By providing the i-Al 03 Ga 07 As barrier layer 3 on the n-GaAs channel layer 1 to form a heterojunction structure, it is possible to improve Vf by about 0.3V and BVgs by about 1V.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術のヘテロ
接合FETでは、バリア層3を設けることでチャネルの
高濃度化に伴うVfとBVgsの低下を抑えることはでき
るが、キャリア移動度の低下とチャネル電流のノイズ
(以下、単にノイズと記す)が増大するのを抑えることは
できない。実際には、ゲート長短縮によってキャリアの
走行距離が短くなる為、移動度の低下とノイズの増大は
差し引かれ、両者が大きな問題となることはないが、も
しチャネルの高濃度化を緩和させることができれば、移
動度の向上とIdsノイズの低減で上記従来技術のヘテロ
接合FETは更に高性能化を達成できるはずである。そ
こで、本発明の目的はチャネルのドーピング濃度(ND
の増加量を抑えることで、従来よりも高速、低ノイズ化
を図ったヘテロ接合FETを提供することにある。
In the above-mentioned prior art heterojunction FET, the barrier layer 3 is provided to suppress the decrease in Vf and BVgs due to the increase in the concentration of the channel, but the decrease in carrier mobility results. Channel current noise
It is impossible to suppress the increase of (hereinafter, simply referred to as noise). Actually, since the travel distance of carriers is shortened by shortening the gate length, the decrease in mobility and the increase in noise are deducted, and both do not become a big problem, but if the concentration of the channel is increased, it should be mitigated. If it is possible, the heterojunction FET of the prior art described above can achieve higher performance by improving the mobility and reducing the Ids noise. Therefore, the purpose of the present invention is to increase the doping concentration (N D ) of the channel.
The object is to provide a heterojunction FET that achieves higher speed and lower noise than the conventional one by suppressing the increase amount of.

【0004】[0004]

【課題を解決するための手段】上記目的は、nチャネル
の場合は伝導帯のエネルギー準位(EC)がチャネル層の
Cよりも下にあるアンドープの半導体層をチャネル層
とバリア層の間に1〜10原子層の厚さで設けることで
達成できる。又、pチャネルの場合は価電子帯のエネル
ギー準位(EV)がチャネル層のEVよりも上にあるアンド
ープの半導体層(以下、キャリア蓄積層と記す)をチャネ
ル層とバリア層の間に1〜10原子層の厚さで設けるこ
とで達成できる。
The above-mentioned object is to provide an undoped semiconductor layer whose energy level (E C ) of the conduction band is lower than E C of the channel layer in the case of an n-channel, to form a channel layer and a barrier layer. It can be achieved by providing a thickness of 1 to 10 atomic layers in between. Further, the undoped semiconductor layer in the case of p-channel energy level of the valence band (E V) is above than E V of the channel layer (hereinafter, referred to as a carrier accumulation layer) between the channel layer and the barrier layer It can be achieved by providing a thickness of 1 to 10 atomic layers.

【0005】[0005]

【作用】ヘテロ接合FETのVthは、バリア層の厚さを
1、チャネル層の厚さをd2とし、バリア層とチャネル
層の比誘電率の違いを無視して両者の誘電率をεとする
と、nチャネルの場合は(1)式で、pチャネルの場合は
(2)式で近似できる。
The Vth of the heterojunction FET is such that the barrier layer thickness is d 1 and the channel layer thickness is d 2, and the dielectric constants of the barrier layer and the channel layer are ε, ignoring the difference in relative dielectric constant between them. Then, in the case of n channel, the formula (1) is used, and in the case of p channel,
It can be approximated by equation (2).

【0006】 ここに、φBn、φBp:ゲート電極のショットキー障壁高
さ ND、NA:チャネルのキャリア濃度 ΔEC :バリア層とチャネル層の伝導帯のバンド不連続
量 ΔEV :バリア層とチャネル層の価電子帯のバンド不連
続量 従来はd2を小さくする場合、ND或いはNAを増加させ
ることで(1)式 或いは(2)式の第3項が保たれるよう
にしてきた。本発明ではキャリア蓄積層によって(1)式
のΔEC、或いは(2)式のΔEVが大きくなるので、この
ΔEC或いはΔEVの変化分だけ第3項を小さくすること
ができ、Vthを一定に保つ為に必要なND、或いはNA
増加量を低減することができる。このND或いはNAの低
減によって、キャリア移動度は向上し、ノイズは低減す
るので、本発明のFETは従来のFETよりも高速、低
ノイズ化を達成することができる。
[0006] Here, φ Bn , φ Bp : Schottky barrier height N D of gate electrode, N A : Carrier concentration of channel ΔE C : Band discontinuity of conduction band between barrier layer and channel layer ΔE V : Barrier layer and channel Band discontinuity in the valence band of a layer Conventionally, when d 2 was made small, the third term of equation (1) or (2) was maintained by increasing N D or N A. . In the present invention, the carrier accumulation layer increases ΔE C in the equation (1) or ΔE V in the equation (2), so that the third term can be reduced by the change in ΔE C or ΔE V , and Vth can be reduced. It is possible to reduce the amount of increase in N D or N A required to keep it constant. By reducing N D or N A , carrier mobility is improved and noise is reduced. Therefore, the FET of the present invention can achieve higher speed and lower noise than conventional FETs.

【0007】但し、このキャリア蓄積層に用いる半導体
材料はチャネル層と格子不整合である場合が多く、チャ
ネル層との接合で転位や欠陥等を誘起する可能性がある
ので、キャリア蓄積層の厚さは1〜10原子層程度に抑
えることが必要となる。この厚さならばキャリア蓄積層
の結晶格子はチャネル層と格子整合をとることができ、
転位や欠陥等の発生を抑えることができる。
However, the semiconductor material used for the carrier storage layer is often lattice-mismatched with the channel layer, and dislocations, defects, etc. may be induced at the junction with the channel layer. It is necessary to control the thickness to about 1 to 10 atomic layers. With this thickness, the crystal lattice of the carrier storage layer can be lattice matched with the channel layer,
Generation of dislocations and defects can be suppressed.

【0008】キャリア蓄積層はチャネル層のキャリアを
ゲート側に引き寄せる効果もあるので、本発明は実効的
なチャネル深さ(ゲート電極とチャネル間の距離)が短く
なることによる相互コンダクタンス(gm)の向上と、基
板側への漏れ電流(基板電流)の低減による短チャネル効
果の改善が達成できる効果もある。
Since the carrier storage layer also has the effect of attracting the carriers of the channel layer to the gate side, the present invention reduces the transconductance (gm) due to the reduction of the effective channel depth (the distance between the gate electrode and the channel). There is also an effect that the improvement of the short channel effect can be achieved by improving the leakage current to the substrate side (substrate current).

【0009】以下、本発明の効果を図4で説明する。同
図はInAlAs/InGaAs HIGFETのエネルギー
バンド図であり、HIGFETはゲート電圧(Vgs)の印
加条件によって異なる動作モードを示す。Vgsがチャネ
ルのフラットバンド電圧(VF B)よりも小さい場合、HI
GFETはゲートのショットキー接合による空乏層の広
がりでIdsが制御されるMESFETモードとなるが、
VgsがVFBよりも大きい場合、チャネル層1とバリア層
3の界面に蓄積されるキャリア量でIdsが制御されるM
ISFET(Metal Insulator Semiconductor FET)モー
ドとなる。
The effect of the present invention will be described below with reference to FIG. This figure is an energy band diagram of InAlAs / InGaAs HIGFET, and the HIGFET shows different operation modes depending on the application condition of the gate voltage (Vgs). If Vgs is less than the flat band voltage (V F B ) of the channel, then HI
The GFET becomes a MESFET mode in which Ids is controlled by the expansion of the depletion layer due to the Schottky junction of the gate.
When Vgs is larger than V FB , Ids is controlled by the amount of carriers accumulated at the interface between the channel layer 1 and the barrier layer M
The ISFET (M etal I nsulator S emiconductor FET) mode.

【0010】図4(a)はVgs<VFBの場合であり、i-
InAlAsバリア層3の厚さを10nm、n-InGaAsチ
ャネル層1の厚さを15nm、p-GaAs(3×1016/cm3)緩
衝層6の厚さを300nmとすると、キャリア蓄積層2を
設けない場合はVthを−0.6Vに調整する為にはチャ
ネル層1のドーピング濃度はND=4×1018/cm3にしな
ければならない。しかし、キャリア蓄積層2としてi-
InAsを2原子層挿入する場合はND=3×1018/cm3
低減することができ、電子移動度は約8%向上する。
FIG. 4A shows the case of Vgs <V FB , i-
Assuming that the thickness of the InAlAs barrier layer 3 is 10 nm, the thickness of the n-InGaAs channel layer 1 is 15 nm, and the thickness of the p-GaAs (3 × 10 16 / cm 3 ) buffer layer 6 is 300 nm, the carrier storage layer 2 is If not provided, the doping concentration of the channel layer 1 must be N D = 4 × 10 18 / cm 3 in order to adjust Vth to −0.6V. However, as the carrier storage layer 2, i-
When InAs is inserted in a two-atom layer, N D can be reduced to 3 × 10 18 / cm 3 , and the electron mobility is improved by about 8%.

【0011】電子移動度の8%の向上はgmを数%(電
圧の印加条件に依存)向上させ、Idsノイズを約4%低
減させる効果をもつ。
An increase of 8% in electron mobility has the effect of improving gm by several% (depending on the voltage application condition) and reducing Ids noise by about 4%.

【0012】図4(b)はVgs=VFBの場合であり、電子
の一部はチャネル層1からInAs層2に移動する。アン
ドープのInAs層2の移動度は不純物をドープしたチャ
ネル層1よりも大きい為、InAs層2に移動した電子の
分だけ全体的な電子速度は向上し、電子速度の向上分だ
けノイズも低減する。従って、本モードではチャネル層
のND の低減以外に、一部の電子がアンドープのInAs
層2に移動する効果も加わる為、gmの向上とノイズの
低減は図4(a)の場合よりも大きくなる。
FIG. 4B shows the case where Vgs = VFB , and some electrons move from the channel layer 1 to the InAs layer 2. Since the mobility of the undoped InAs layer 2 is higher than that of the impurity-doped channel layer 1, the overall electron velocity is increased by the amount of the electrons moved to the InAs layer 2, and the noise is also reduced by the increased amount of the electron velocity. . Therefore, in this mode, in addition to the reduction of N D in the channel layer, some electrons are undoped InAs
Since the effect of moving to the layer 2 is also added, the improvement of gm and the reduction of noise are larger than in the case of FIG.

【0013】図4(c)はVgs>VFBの場合であり、本モ
ードでは大部分の電子がInAs層2に引き寄せられる
為、実効的なチャネル深さ(ゲート電極とチャネル間の
距離)が短くなる効果も加わって、gmを図4(b)の場
合よりも更に向上させる。
FIG. 4C shows the case of Vgs> V FB . In this mode, most of the electrons are attracted to the InAs layer 2, so the effective channel depth (distance between the gate electrode and the channel) is The effect of shortening is also added to further improve gm as compared with the case of FIG.

【0014】[0014]

【実施例】【Example】

〔実施例1〕本発明の一実施例としてInAlAs/InG
aAs構造のDC(Doped Channel)−HIGFET(Hetero
structure Insulated Gate FET)のデバイス断面図を図
1に示す。同図はnチャネルのHIGFETであり、製
造工程を図2で説明する。
[Embodiment 1] As one embodiment of the present invention, InAlAs / InG
DC of aAs structure (D oped C hannel) -HIGFET ( H etero
The device cross-sectional view of the structure I nsulated G ate FET) shown in FIG. The figure is an n-channel HIGFET, and the manufacturing process will be described with reference to FIG.

【0015】(a)InP基板上にi-InAlAs緩衝層
7、p-InGaAs(2×1016/cm3)緩衝層6を成長し、そ
の上にn-InGaAs(2×1018/cm3)チャネル層1、i-
InAsキャリア蓄積層2、i-InAlAsバリア層3、i
-InGaAsキャップ層4を各々15、1、10、5nmの
厚さでMBE(分子線エピタキシャル)法で形成する。
(A) An i-InAlAs buffer layer 7 and a p-InGaAs (2 × 10 16 / cm 3 ) buffer layer 6 are grown on an InP substrate, and n-InGaAs (2 × 10 18 / cm 3 ) is grown thereon. ) Channel layer 1, i-
InAs carrier storage layer 2, i-InAlAs barrier layer 3, i
-InGaAs cap layers 4 are formed by MBE (Molecular Beam Epitaxial) with a thickness of 15, 1, 10, 5 nm respectively.

【0016】(b)ウエットエッチによって素子間分離
を行なった後、ゲート電極(WSix)9を形成し、表面を
SiO2膜8で被覆した後、ドライエッチによってオーミ
ック層形成領域だけSiO2膜8を除去する。
[0016] After performing element isolation by (b) wet etching to form a gate electrode (WSix) 9, after the surface is coated with the SiO 2 film 8, only ohmic layer forming region by dry etching the SiO 2 film 8 To remove.

【0017】(c)SiO2膜8をマスクにして、オーミ
ック層形成領域のチャネル層1をエッチングした後、エ
ッチングダメージを回復させる為にアニールを行なう。
(C) After etching the channel layer 1 in the ohmic layer forming region using the SiO 2 film 8 as a mask, annealing is performed to recover etching damage.

【0018】(d)SiO2膜8をマスクにしてn-InG
aAs(1×1019/cm3)層5をMOVPE(有機金属気相成
長)法で選択成長させることでオーミック層5を形成
し、その上にオーミック電極(Ti/Au)10を形成し、配
線を行なうことで本発明のHIGFETは完成する。
(D) n-InG using the SiO 2 film 8 as a mask
The ohmic layer 5 is formed by selectively growing the aAs (1 × 10 19 / cm 3 ) layer 5 by MOVPE (metal organic chemical vapor deposition) method, and the ohmic electrode (Ti / Au) 10 is formed thereon. The HIGFET of the present invention is completed by wiring.

【0019】キャリア蓄積層2にはi-InAsの替わり
にn-InAsを用いることも可能であるが、FETのピ
ンチオフ特性の悪化を招くので、この場合 n-InAs層
の濃度はチャネル層1の一桁以下に抑えることが望まし
い。
It is possible to use n-InAs instead of i-InAs for the carrier storage layer 2, but this causes deterioration of the pinch-off characteristics of the FET. In this case, therefore, the concentration of the n-InAs layer is lower than that of the channel layer 1. It is desirable to keep it within one digit.

【0020】バリア層3はn-InGaAs層1との接合に
よって全体が空乏化する程度に低濃度のp-InAlAs層
を用いることも可能である。
As the barrier layer 3, it is also possible to use a p-InAlAs layer having a low concentration such that the entire layer is depleted by the junction with the n-InGaAs layer 1.

【0021】本実施例はInAlAs/InAs/InGaAs
構造で説明したが、キャリア蓄積層2はInAsの他にI
nSbやGaSb等を用いることも可能であり、チャネル層
1はGaAsやInP、GaSb等の材料を用いることも可
能である。又、バリア層3はAlGaAsやAlAs、InG
aP、AlGaP、InGaAsP、AlGaSb、AlGaSb等
の材料を用いることも可能である。
In this embodiment, InAlAs / InAs / InGaAs is used.
As described in the structure, the carrier storage layer 2 has IAs as well as InAs.
It is also possible to use nSb, GaSb, or the like, and the channel layer 1 can be made of a material such as GaAs, InP, or GaSb. The barrier layer 3 is made of AlGaAs, AlAs, InG.
It is also possible to use materials such as aP, AlGaP, InGaAsP, AlGaSb, and AlGaSb.

【0022】又、上記実施例はnチャネルの場合につい
て説明したが、本発明はpチャネルのFETに適用する
ことも可能である。
Although the above embodiment has been described for the case of an n-channel, the present invention can be applied to a p-channel FET.

【0023】〔実施例2〕実施例1はHIGFET構造
の場合について説明したが、本発明はヘテロ接合のME
SFETやJFET(Junction FET)に適用することも可
能であり、ヘテロ接合MESFETの場合はバリア層3
をチャネル層1と同じ導電型にすればよい。
[Embodiment 2] In Embodiment 1, the case of the HIGFET structure was described, but the present invention is a heterojunction ME.
It is also possible to apply the SFET or JFET (J unction FET), in the case of the heterojunction MESFET barrier layer 3
May have the same conductivity type as the channel layer 1.

【0024】この場合、キャリア蓄積層2によってチャ
ネル層1とバリア層3のドーピング濃度を低減すること
ができ、ドーピング濃度の減少によるキャリア移動度の
向上とノイズの低減(図4(a)参照)を達成することがで
きる。
In this case, the carrier storage layer 2 can reduce the doping concentration of the channel layer 1 and the barrier layer 3, and the carrier mobility can be improved and the noise can be reduced by reducing the doping concentration (see FIG. 4A). Can be achieved.

【0025】JFETの場合はバリア層3をチャネル層
1と逆の導電型にすればよく、この場合はキャリア蓄積
層がキャリアをゲート側に引き寄せる効果(図4(c)参
照)によってgmの向上を達成することができる。
In the case of a JFET, the barrier layer 3 may have a conductivity type opposite to that of the channel layer 1. In this case, the effect that the carrier storage layer attracts carriers to the gate side (see FIG. 4C) improves gm. Can be achieved.

【0026】〔実施例3〕本発明はMISFETに適用
することも可能であり、例えばチャネル層1にi-GaA
s、或いは低濃度のp-GaAsを用い、バリア層3にCa
2、或いはAlN層を用いたnチャネルのMISFET
ではi-InAsキャリア蓄積層2を設けることで電子を
ゲート側に引き寄せ、gmの向上を図ることができる。
[Third Embodiment] The present invention can also be applied to a MISFET, for example, i-GaA is used for the channel layer 1.
s, or a low concentration of p-GaAs, is used for the barrier layer 3 with Ca.
N channel MISFET using F 2 or AlN layer
Then, by providing the i-InAs carrier storage layer 2, electrons can be attracted to the gate side and gm can be improved.

【0027】バリア層3にSiO2やSi34等の絶縁膜
を用いる場合、InAsはGaAsよりも絶縁膜との界面準
位が小さいので、i-InAsキャリア蓄積層2を設ける
ことでGaAsやInGaAsのチャネル層1とバリア層3
との界面準位を低減することができ、更なる低ノイズ化
を達成することができる。
When an insulating film such as SiO 2 or Si 3 N 4 is used for the barrier layer 3, InAs has a smaller interface state with the insulating film than GaAs. Therefore, by providing the i-InAs carrier storage layer 2, GaAs is formed. And InGaAs channel layer 1 and barrier layer 3
It is possible to reduce the interface state between and, and it is possible to achieve further noise reduction.

【0028】バリア層3は絶縁膜以外に、非晶質(アモ
ルファス)半導体を用いることも可能である。
The barrier layer 3 may be made of an amorphous semiconductor other than the insulating film.

【0029】〔実施例4〕以上の実施例は化合物半導体
の場合で説明したが、本発明はSi系の半導体に適用す
ることも可能であり、チャネル層1にSiやSiCを用い
たJFETやMISFETにおいて、チャネル層1とバ
リア層3の界面にSiGeからなるキャリア蓄積層2を1
〜10原子層設けることで、gmの向上を図ることがで
きる。
[Embodiment 4] Although the above embodiment has been described in the case of a compound semiconductor, the present invention can be applied to a Si-based semiconductor, and a JFET using Si or SiC for the channel layer 1 or In the MISFET, a carrier storage layer 2 made of SiGe is formed at the interface between the channel layer 1 and the barrier layer 3.
By providing 10 to 10 atomic layers, gm can be improved.

【0030】[0030]

【発明の効果】本発明によればヘテロ接合FETのチャ
ネルのドーピング濃度を低減することが可能となり、F
ETの高速化と低ノイズ化を図ることができる。
According to the present invention, it becomes possible to reduce the doping concentration of the channel of the heterojunction FET.
It is possible to speed up ET and reduce noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のHIGFETの断面図であ
る。
FIG. 1 is a sectional view of a HIGFET according to a first embodiment of the present invention.

【図2】図1のHIGFETの製造工程図である。FIG. 2 is a manufacturing process diagram of the HIGFET of FIG.

【図3】従来のヘテロ接合FETの断面図である。FIG. 3 is a sectional view of a conventional heterojunction FET.

【図4】本発明の効果を説明する為のエネルギーバンド
図である。
FIG. 4 is an energy band diagram for explaining the effect of the present invention.

【符号の説明】[Explanation of symbols]

1…チャネル層、2…キャリア蓄積層、3…バリア層、
4…キャップ層、5…オーミック層、6、7…緩衝層、
8…絶縁膜、9…ショットキー電極、10…オーミック
電極。
1 ... Channel layer, 2 ... Carrier storage layer, 3 ... Barrier layer,
4 ... Cap layer, 5 ... Ohmic layer, 6, 7 ... Buffer layer,
8 ... Insulating film, 9 ... Schottky electrode, 10 ... Ohmic electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/808 7376−4M H01L 29/80 C (72)発明者 重田 淳二 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01L 29/808 7376-4M H01L 29/80 C (72) Inventor Junji Shigeta 1 Higashi Koikeku, Kokubunji, Tokyo 280-chome, Central Research Laboratory, Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】n型導電性の第1の半導体層と、該第1の
半導体層よりも電子親和力が小さい半導体からなる第2
の半導体層と、該第2の半導体層の上記第1の半導体層
とは反対側に形成されたゲート電極を有するヘテロ接合
電界効果トランジスタにおいて、上記第1の半導体層と
上記第2の半導体層の間に上記第1の半導体層よりも電
子親和力の大きい半導体からなり且つ不純物を故意にド
ープしないか、或いはn型導電性を呈する不純物を上記
第1の半導体層よりも低濃度でドープしている第3の半
導体層を1〜10原子層の厚さで設けることを特徴とす
るヘテロ接合電界効果トランジスタ。
1. A first semiconductor layer having n-type conductivity and a second semiconductor made of a semiconductor having an electron affinity smaller than that of the first semiconductor layer.
A semiconductor layer and a heterojunction field effect transistor having a gate electrode formed on a side of the second semiconductor layer opposite to the first semiconductor layer, wherein the first semiconductor layer and the second semiconductor layer are Between the first semiconductor layer and an impurity having an electron affinity higher than that of the first semiconductor layer and not intentionally doped with impurities or having an n-type conductivity at a lower concentration than that of the first semiconductor layer. A heterojunction field effect transistor, characterized in that the third semiconductor layer having a thickness of 1 to 10 atomic layers is provided.
【請求項2】p型導電型の第1の半導体層と、該第1の
半導体層よりも電子親和力とエネルギーギャップの和が
大きい半導体からなる第2の半導体層と、該第2の半導
体層の上記第1の半導体層とは反対側に形成されたゲー
ト電極を有するヘテロ接合電界効果トランジスタにおい
て、上記第1の半導体層と上記第2の半導体層の間に上
記第1の半導体層よりも電子親和力とエネルギーギャッ
プの和が小さい半導体からなり且つ不純物を故意にドー
プしないか、或いはp型導電性を呈する不純物を上記第
1の半導体層よりも低濃度でドープしている第3の半導
体層を1〜10原子層の厚さで設けることを特徴とする
ヘテロ接合電界効果トランジスタ。
2. A first semiconductor layer of p-type conductivity type, a second semiconductor layer made of a semiconductor having a larger sum of electron affinity and energy gap than that of the first semiconductor layer, and the second semiconductor layer. In the heterojunction field effect transistor having a gate electrode formed on the side opposite to the first semiconductor layer, between the first semiconductor layer and the second semiconductor layer more than the first semiconductor layer. A third semiconductor layer formed of a semiconductor having a small sum of electron affinity and energy gap and not intentionally doped with impurities or doped with impurities exhibiting p-type conductivity at a concentration lower than that of the first semiconductor layer. Is provided with a thickness of 1 to 10 atomic layers.
【請求項3】n型導電性の第1の半導体層と、絶縁体或
いは非晶質半導体からなるポテンシャル障壁層と、該ポ
テンシャル障壁層の上記第1の半導体層とは反対側に形
成されたゲート電極を有するヘテロ接合電界効果トラン
ジスタにおいて、上記第1の半導体層と上記ポテンシャ
ル障壁層の間に上記第1の半導体層よりも電子親和力の
大きい半導体からなり且つ不純物を故意にドープしない
か、或いはn型導電性を呈する不純物を上記第1の半導
体層よりも低濃度でドープしている第2の半導体層を1
〜10原子層の厚さで設けることを特徴とするヘテロ接
合電界効果トランジスタ。
3. An n-type conductive first semiconductor layer, a potential barrier layer made of an insulator or an amorphous semiconductor, and a potential barrier layer formed on a side of the potential barrier layer opposite to the first semiconductor layer. In a heterojunction field effect transistor having a gate electrode, a heterojunction field effect transistor is made of a semiconductor having an electron affinity higher than that of the first semiconductor layer and is not intentionally doped with impurities between the first semiconductor layer and the potential barrier layer, or The second semiconductor layer doped with impurities exhibiting n-type conductivity at a concentration lower than that of the first semiconductor layer is
A heterojunction field effect transistor, which is provided with a thickness of 10 atomic layers.
【請求項4】p型導電型の第1の半導体層と、絶縁体或
いは非晶質半導体からなるポテンシャル障壁層と、該ポ
テンシャル障壁層の上記第1の半導体層とは反対側に形
成されたゲート電極を有するヘテロ接合電界効果トラン
ジスタにおいて、上記第1の半導体層と上記ポテンシャ
ル障壁層の間に上記第1の半導体層よりも電子親和力と
エネルギーギャップの和が小さい半導体からなり且つ不
純物を故意にドープしないか、或いはp型導電性を呈す
る不純物を上記第1の半導体層よりも低濃度でドープし
ている第2の半導体層を1〜10原子層の厚さで設ける
ことを特徴とするヘテロ接合電界効果トランジスタ。
4. A first semiconductor layer of p-type conductivity type, a potential barrier layer made of an insulator or an amorphous semiconductor, and a potential barrier layer formed on the opposite side of the first semiconductor layer. In a heterojunction field effect transistor having a gate electrode, the heterojunction field effect transistor is made of a semiconductor having a sum of electron affinity and energy gap smaller than that of the first semiconductor layer and intentionally containing impurities between the first semiconductor layer and the potential barrier layer. A second semiconductor layer, which is not doped or is doped with an impurity exhibiting p-type conductivity in a concentration lower than that of the first semiconductor layer, is provided in a thickness of 1 to 10 atomic layers. Junction field effect transistor.
JP309793A 1993-01-12 1993-01-12 Hetero junction field-effect transistor Withdrawn JPH06209019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP309793A JPH06209019A (en) 1993-01-12 1993-01-12 Hetero junction field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP309793A JPH06209019A (en) 1993-01-12 1993-01-12 Hetero junction field-effect transistor

Publications (1)

Publication Number Publication Date
JPH06209019A true JPH06209019A (en) 1994-07-26

Family

ID=11547847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP309793A Withdrawn JPH06209019A (en) 1993-01-12 1993-01-12 Hetero junction field-effect transistor

Country Status (1)

Country Link
JP (1) JPH06209019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168768A (en) * 2016-03-18 2017-09-21 三菱電機株式会社 Field-effect transistor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168768A (en) * 2016-03-18 2017-09-21 三菱電機株式会社 Field-effect transistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7964896B2 (en) Buried channel MOSFET using III-V compound semiconductors and high k gate dielectrics
JPH0435904B2 (en)
US20070194295A1 (en) Semiconductor device of Group III nitride semiconductor having oxide protective insulating film formed on part of the active region
JPH0783107B2 (en) Field effect transistor
EP0482726B1 (en) Heterojunction field-effect transistor
JP2914049B2 (en) Compound semiconductor substrate having heterojunction and field effect transistor using the same
JP3177951B2 (en) Field effect transistor and method of manufacturing the same
US5250822A (en) Field effect transistor
US5351128A (en) Semiconductor device having reduced contact resistance between a channel or base layer and a contact layer
JP3200142B2 (en) Field-effect transistor
JPH06342811A (en) Field effect transistor and its manufacture
US20120018782A1 (en) Semiconductor device
US4600932A (en) Enhanced mobility buried channel transistor structure
EP0602671B1 (en) Heterojunction field effect transistor having an improved transistor characteristic
JP2000349096A (en) Compound field effect transistor and its manufacture
JPH06209019A (en) Hetero junction field-effect transistor
Prost et al. High speed, high gain InP-based heterostructure FETs with high breakdown voltage and low leakage
JP3021894B2 (en) Heterojunction field effect transistor
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
JP3493205B2 (en) Field effect transistor and method of manufacturing the same
JP2701632B2 (en) Enhancement type field effect transistor
JP3653652B2 (en) Semiconductor device
JP2659181B2 (en) Semiconductor device
JP2695832B2 (en) Heterojunction field effect transistor
EP0237029A2 (en) A heterojunction field effect device operable at a high output current with a high withstand voltage

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404