JPH0620883A - Manufacture of chip-type solid-state electrolytic capacitor - Google Patents

Manufacture of chip-type solid-state electrolytic capacitor

Info

Publication number
JPH0620883A
JPH0620883A JP4172397A JP17239792A JPH0620883A JP H0620883 A JPH0620883 A JP H0620883A JP 4172397 A JP4172397 A JP 4172397A JP 17239792 A JP17239792 A JP 17239792A JP H0620883 A JPH0620883 A JP H0620883A
Authority
JP
Japan
Prior art keywords
layer
cathode
conductor layer
cathode conductor
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4172397A
Other languages
Japanese (ja)
Inventor
Hideto Yamaguchi
秀人 山口
Nobuo Hasegawa
信男 長谷川
Koji Kamioka
浩二 上岡
Sumio Nishiyama
澄夫 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4172397A priority Critical patent/JPH0620883A/en
Publication of JPH0620883A publication Critical patent/JPH0620883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To easily obtain a capacitor which is excellent in mechanical adhesion, where a cathode metal layer is hardly separated off a cathode conductor layer even if thermal stress is applied. CONSTITUTION:The outer surfaces of a capacitive element 11a, a cathode conductor layer 16, and a cathode layer 15 are covered with a sheathing resin layer 19 excluding the tip of an anode lead-out wire 12 and a part of the cathode conductor layer 16, the exposed particles of inorganic metal particles 18 contained in the cathode conductor layer 16 and partially exposed out of the layer 16 are dissolved by etching for the formation of irregularities 16b on the surface of the cathode conductor layer 16, and then a cathode metal layer 21 is formed on the surface of the cathode conductor layer 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチップ状固体電解コンデ
ンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a chip solid electrolytic capacitor.

【0002】[0002]

【従来の技術】近年、電子機器の軽薄短小化と面実装技
術の進展に伴ってチップ部品が急増している。チップ状
固体電解コンデンサにおいても小形大容量化が進展する
中でチップ部品自身の一層の小形化が要求されている。
2. Description of the Related Art In recent years, the number of chip parts has been rapidly increasing with the progress of light and thin electronic devices and surface mounting technology. In the chip-type solid electrolytic capacitor, further miniaturization of the chip component itself is required as the size and capacity of the chip solid electrolytic capacitor are increasing.

【0003】以下に従来のチップ状固体電解コンデンサ
の製造方法について説明する。図5は従来のチップ状固
体電解コンデンサの断面図を示したもので、この図5に
おいて、1は弁作用金属であるタンタル金属粉末を成形
焼結した多孔質の陽極体で、この陽極体1より導出した
タンタル線からなる陽極導出線2の一部と陽極体1の全
面に陽極酸化により誘電体性酸化皮膜を形成し、さらに
この表面に二酸化マンガンなどの電解質層を形成してい
る。3は陽極導出線2に装着したテフロン板で、このテ
フロン板3は前記電解質層の形成時に陽極導出線2へ硝
酸マンガンが這い上がって二酸化マンガンが付着するの
を防止する絶縁板である。また前記電解質層の上には浸
漬法によりカーボン層および銀塗料層よりなる陰極層4
を順次積層形成してコンデンサ素子1aを構成してい
る。そしてこのコンデンサ素子1aの陰極層4における
陽極導出線2と反対側に位置する部分には銀塗料層より
なる陰極導電体層5を形成し、その後、コンデンサ素子
1aおよび陰極導電体層5を、陽極導出線2が片側に引
き出されるように外装樹脂6で被覆し、その後外装樹脂
6の陽極導出面7および陰極導出面8に陽極金属層9お
よび陰極金属層10を形成して構成していた。
A conventional method for manufacturing a chip-shaped solid electrolytic capacitor will be described below. FIG. 5 shows a cross-sectional view of a conventional chip-shaped solid electrolytic capacitor. In FIG. 5, reference numeral 1 denotes a porous anode body formed by molding and sintering tantalum metal powder which is a valve metal. A dielectric oxide film is formed by anodic oxidation on a part of the anode lead wire 2 made of tantalum wire and the entire surface of the anode body 1, and an electrolyte layer such as manganese dioxide is further formed on this surface. Reference numeral 3 denotes a Teflon plate attached to the anode lead-out wire 2, and this Teflon plate 3 is an insulating plate for preventing manganese nitrate from creeping up and adhering manganese dioxide to the anode lead-out wire 2 during the formation of the electrolyte layer. A cathode layer 4 composed of a carbon layer and a silver coating layer is formed on the electrolyte layer by a dipping method.
Are sequentially laminated to form the capacitor element 1a. Then, a cathode conductor layer 5 made of a silver coating layer is formed on a portion of the capacitor element 1a opposite to the anode lead wire 2 in the cathode layer 4, and then the capacitor element 1a and the cathode conductor layer 5 are formed. The anode lead wire 2 is coated with the exterior resin 6 so as to be drawn out to one side, and then the anode metal layer 9 and the cathode metal layer 10 are formed on the anode lead-out surface 7 and the cathode lead-out surface 8 of the exterior resin 6, respectively. ..

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなチップ状固体電解コンデンサにおいては、表出した
陰極導電体層5とその上に形成した陰極金属層10との
密着性が弱いため、チップ状固体電解コンデンサに、溶
融半田浴への浸漬、遠赤外炉への出し入れの繰り返しに
よる熱ストレスを加えると陰極金属層10が容易に剥離
して不良を起こすという問題点を有していた。
However, in such a chip-shaped solid electrolytic capacitor, since the adhesion between the exposed cathode conductor layer 5 and the cathode metal layer 10 formed thereon is weak, the chip-shaped solid electrolytic capacitor is chip-shaped. When the solid electrolytic capacitor is subjected to thermal stress due to repeated immersion in a molten solder bath and insertion into and removal from a far-infrared furnace, there is a problem that the cathode metal layer 10 is easily peeled off to cause a defect.

【0005】本発明は上記従来の問題点を解決するもの
で、熱ストレスが加えられても、陰極導電体層から陰極
金属層が容易に剥離することのない機械的密着性に優れ
たコンデンサを容易に得ることができるチップ状固体電
解コンデンサの製造方法を提供することを目的とするも
のである。
The present invention solves the above-mentioned conventional problems and provides a capacitor excellent in mechanical adhesion in which the cathode metal layer is not easily peeled off from the cathode conductor layer even when heat stress is applied. It is an object of the present invention to provide a method for manufacturing a chip solid electrolytic capacitor that can be easily obtained.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明のチップ状固体電解コンデンサの製造方法は、
陽極導出線の一端が表出するように陽極導出線を埋設し
た弁作用金属からなる陽極体に誘電体性酸化皮膜、電解
質層、陰極層を設けてコンデンサ素子を構成し、このコ
ンデンサ素子の前記陰極層における陽極導出線と反対側
に位置する部分には金属、無機物の粒子を含む陰極導電
体層を形成し、その後、前記コンデンサ素子、陰極導電
体層および陰極層の外表面を前記陽極導出線の先端部、
陰極導電体層の一部を除いて外装樹脂質で被覆し、さら
に前記陰極導電体層に含有され、かつ表出した金属、無
機物の粒子の表出部分をエッチングにより溶解させて陰
極導電体層の表出面に凹凸を形成し、その後、外装樹脂
層の陽極導出線表出側に、陽極導出線と接続される陽極
金属層を形成するとともに、外装樹脂層の陰極導電体層
表出側に前記陰極層および陰極導電体層と接続される陰
極金属層を形成したものである。
In order to achieve the above object, a method for manufacturing a chip solid electrolytic capacitor of the present invention comprises:
A capacitor element is formed by providing a dielectric oxide film, an electrolyte layer, and a cathode layer on an anode body made of a valve metal in which the anode lead wire is embedded so that one end of the anode lead wire is exposed. A cathode conductor layer containing metal and inorganic particles is formed on the portion of the cathode layer opposite to the anode lead wire, and then the outer surfaces of the capacitor element, the cathode conductor layer and the cathode layer are connected to the anode lead layer. The tip of the wire,
The cathode conductor layer is covered with an exterior resin material except for a part of the cathode conductor layer, and the exposed portion of the exposed metal and inorganic particles contained in the cathode conductor layer is dissolved by etching to form the cathode conductor layer. On the exposed surface of the exterior resin layer, the anode metal layer connected to the anode lead wire is formed on the anode lead-out surface of the exterior resin layer, and on the cathode conductor layer exterior side of the exterior resin layer. A cathode metal layer connected to the cathode layer and the cathode conductor layer is formed.

【0007】[0007]

【作用】上記した製造方法によれば、コンデンサ素子の
陰極層における陽極導出線と反対側に位置する部分に金
属、無機物の粒子を含む陰極導電体層を形成し、その後
前記コンデンサ素子および陰極層の外表面を前記陽極導
出線の先端部、陰極導電体層の一部を除いて外装樹脂層
で被覆し、さらに前記陰極導電体層に含有され、かつ表
出した金属、無機物の粒子の表出部分をエッチングによ
り溶解させて陰極導電体層の表出面に凹凸を形成してい
るため、外装樹脂層より表出した陰極導電体層の表出面
の表面の粗さを高めることができ、その結果、このよう
な陰極導電体層の表出面に陰極金属層を形成することに
より、陰極導電体層の表出面と陰極金属層との間にはア
ンカー効果が生じるため、両者の機械的密着性は非常に
優れたものとなり、これにより溶融半田浴への浸漬、遠
赤外炉への出し入れの繰り返しによる熱ストレスが加え
られても、陰極金属層が陰極導電体層から剥離するとい
うことはなくなるものである。
According to the above-mentioned manufacturing method, the cathode conductor layer containing the particles of the metal and the inorganic material is formed in the portion of the cathode layer of the capacitor element opposite to the anode lead-out line, and then the capacitor element and the cathode layer are formed. The outer surface of the anode lead wire is covered with an exterior resin layer excluding a part of the cathode conductor layer, and is further contained in the cathode conductor layer, and exposed metal, a surface of inorganic particles. Since the unevenness is formed on the exposed surface of the cathode conductor layer by dissolving the exposed portion by etching, it is possible to increase the roughness of the surface of the exposed surface of the cathode conductor layer exposed from the exterior resin layer. As a result, by forming a cathode metal layer on the exposed surface of such a cathode conductor layer, an anchor effect occurs between the exposed surface of the cathode conductor layer and the cathode metal layer, so that mechanical adhesion between the two Will be very good Thus immersion into the molten solder bath, even if thermal stress is applied due to repeated loading and unloading of the far-infrared furnace, in which no longer that the cathode metal layer is peeled off from the cathode conductor layer.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例におけるチップ状
タンタル固体電解コンデンサの断面図を示し、また図2
はコンデンサ素子に陰極導電体層を形成した状態を示し
たものである。図1,図2において、11は弁作用金属
であるタンタル金属粉末を成形焼結した多孔質の陽極体
で、この陽極体11の表面には陽極酸化により誘電体性
酸化被膜を形成し、さらにこの誘電体性酸化被膜の表面
に二酸化マンガンの電解質層を形成している。また陽極
導出線12はタンタル線からなり、前記陽極体11から
導出しているものである。この陽極体11の表面への一
連の処理工程は金属リボン13に陽極導出線12を接続
した状態で行われる。
FIG. 1 is a sectional view of a chip-shaped tantalum solid electrolytic capacitor according to an embodiment of the present invention, and FIG.
Shows the state where the cathode conductor layer is formed on the capacitor element. In FIGS. 1 and 2, reference numeral 11 denotes a porous anode body formed by molding and sintering tantalum metal powder which is a valve metal, and a dielectric oxide film is formed on the surface of the anode body 11 by anodic oxidation. An electrolyte layer of manganese dioxide is formed on the surface of this dielectric oxide film. The anode lead wire 12 is made of tantalum wire and is led out from the anode body 11. A series of processing steps on the surface of the anode body 11 is performed with the anode lead wire 12 connected to the metal ribbon 13.

【0010】14は陽極導出線12に装着したテフロン
板で、このテフロン板14は前記陽極体11への電解質
層の形成時に陽極導出線12へ硝酸マンガンが這い上が
って二酸化マンガンが付着するのを防止する絶縁板であ
る。さらに前記陽極体11の電解質層上には浸漬法によ
り陰極層15を順次積層形成してコンデンサ素子11a
を構成している。16は陰極導電体層で、この陰極導電
体層16は、コンデンサ素子11aの周囲に設けた陰極
層15のうち、陽極導出線12と反対側に位置する対向
面17と、この対向面17に隣接する隣接面の陰極層1
5の一部に形成されるもので、この場合、陰極導電体層
16は金属、無機物の粒子18を含有する導電性樹脂の
粘稠液にコンデンサ素子11aを浸漬するか、あるいは
ディスペンサーを用いて形成している。19は外装樹脂
層で、この外装樹脂層19は、陽極導出線12が片側に
引き出されるようにコンデンサ素子11aを金型にセッ
トし、そして図1の陽極導出線12の先端部、陰極導電
体層16の一部を除いて陰極導電体層16、陰極層15
およびコンデンサ素子11a全体が樹脂外装されるよう
に、エポキシ樹脂を用いてトランスファーモールドまた
はインジェクションモールドにより形成する。
Reference numeral 14 denotes a Teflon plate attached to the anode lead-out wire 12. This Teflon plate 14 prevents manganese nitrate from crawling up and adhering manganese dioxide to the anode lead-out wire 12 when the electrolyte layer is formed on the anode body 11. It is an insulating plate to prevent. Further, a cathode layer 15 is sequentially formed on the electrolyte layer of the anode body 11 by a dipping method to form a capacitor element 11a.
Are configured. Reference numeral 16 denotes a cathode conductor layer. The cathode conductor layer 16 is formed on the opposing surface 17 of the cathode layer 15 provided around the capacitor element 11a on the side opposite to the anode lead wire 12, and on the opposing surface 17. Adjacent adjacent cathode layer 1
5, the cathode conductor layer 16 is formed by immersing the capacitor element 11a in a viscous liquid of a conductive resin containing particles of metal or inorganic material 18 or by using a dispenser. Is forming. Reference numeral 19 denotes an exterior resin layer. The exterior resin layer 19 sets the capacitor element 11a in a mold so that the anode lead wire 12 is pulled out to one side, and the tip portion of the anode lead wire 12 in FIG. Cathode conductor layer 16 and cathode layer 15 except for a part of layer 16
Further, it is formed by transfer molding or injection molding using epoxy resin so that the entire capacitor element 11a is covered with resin.

【0011】図4(a)(b)(c)(d)(e)は本
発明の一実施例におけるチップ状タンタル固体電解コン
デンサの製造工程を示したもので、図4(a)におい
て、12aは外装樹脂層19における陽極導出面であ
り、陽極導出線12と反対側に位置する対向面17に形
成した陰極導電体層16が製品の外形寸法より長くなっ
ているため、外装樹脂層19の成形体は製品の外形寸法
より長くなっているものである。
FIGS. 4 (a), (b), (c), (d), and (e) show the manufacturing process of the chip-shaped tantalum solid electrolytic capacitor in one embodiment of the present invention. Reference numeral 12a denotes an anode lead surface of the exterior resin layer 19, and since the cathode conductor layer 16 formed on the facing surface 17 located on the opposite side of the anode lead wire 12 is longer than the external dimensions of the product, the exterior resin layer 19 is formed. The molded product of is longer than the external dimensions of the product.

【0012】図4(b)は図4(a)における外装樹脂
層19の成形体を製品の外形寸法に切断または研削した
状態を示す。この図4(b)において、16aは陰極導
出面で、この陰極導出面16aは外装樹脂層19と陰極
導電体層16を切断することにより、図1に示すように
表出するもので、この陰極導出面16aに陰極導電体層
16が表出する。この後、陰極導電体層16に含有され
ている銀、銅、ニッケル、鉄、鉛、錫、アルミニウム等
の金属粒子18の表出部分を硝酸、塩酸、硫酸等の溶液
でエッチングして溶解させるとともに、陰極導電体層1
6に含有されているシリカ等のセラミック粒子無機物粒
子18をフッ化水素溶液でエッチングして溶解させるこ
とにより、図3に示すように、金属、無機物の粒子18
の溶解部分が凹状になるため、陰極導電体層16の表出
面には凹凸16bが形成されることになる。
FIG. 4B shows a state in which the molded body of the exterior resin layer 19 in FIG. 4A is cut or ground to the external dimensions of the product. In FIG. 4B, reference numeral 16a denotes a cathode lead-out surface, and this cathode lead-out surface 16a is exposed as shown in FIG. 1 by cutting the exterior resin layer 19 and the cathode conductor layer 16. The cathode conductor layer 16 is exposed on the cathode lead-out surface 16a. After that, exposed portions of the metal particles 18 such as silver, copper, nickel, iron, lead, tin and aluminum contained in the cathode conductor layer 16 are etched and dissolved with a solution of nitric acid, hydrochloric acid, sulfuric acid or the like. Together with the cathode conductor layer 1
As shown in FIG. 3, the ceramic particles such as silica particles contained in No. 6 and the inorganic material particles 18 are dissolved by etching with a hydrogen fluoride solution.
Since the melted portion of 1 is concave, the unevenness 16b is formed on the exposed surface of the cathode conductor layer 16.

【0013】図4(c)は金属リボン13より陽極導出
線12を切り離した状態を示したものである。
FIG. 4 (c) shows a state in which the anode lead wire 12 is separated from the metal ribbon 13.

【0014】図4(d)は陽極金属層20、陰極金属層
21を形成した状態を示したもので、この金属層は図1
に示すように、陽極導出線12と陽極導出面12aおよ
び外装樹脂層19の成形体の一部の表面に形成される陽
極金属層20と、陰極導出面16aおよび外装樹脂層1
9の成形体の一部の表面に形成される陰極金属層21と
からなり、両極の金属層20,21は無電解メッキ、電
解メッキの湿式の形成方法や蒸着、イオンスパッターの
乾式の形成方法により形成されるもので、この場合、導
電性樹脂層を含んでもよい。
FIG. 4D shows a state in which the anode metal layer 20 and the cathode metal layer 21 are formed. This metal layer is shown in FIG.
As shown in FIG. 3, the anode lead wire 12, the anode lead surface 12a, and the anode metal layer 20 formed on the surface of a part of the molded body of the exterior resin layer 19, the cathode lead surface 16a, and the exterior resin layer 1 are formed.
The cathode metal layer 21 formed on a part of the surface of the molded body of No. 9 and the metal layers 20 and 21 of both electrodes are electroless plating, electrolytic plating, wet forming method, vapor deposition, and ion sputtering dry forming method. And a conductive resin layer may be included in this case.

【0015】図4(e)は陽極金属層20および陰極金
属層21を半田金属層で被覆した状態を示したもので、
22は陽極側の半田金属層、23は陰極側の半田金属層
である。これらの半田金属層22,23は溶融半田によ
る半田コーティングまたは電解半田メッキにより形成さ
れる。
FIG. 4 (e) shows a state in which the anode metal layer 20 and the cathode metal layer 21 are covered with a solder metal layer.
Reference numeral 22 is a solder metal layer on the anode side, and 23 is a solder metal layer on the cathode side. These solder metal layers 22 and 23 are formed by solder coating with molten solder or electrolytic solder plating.

【0016】(表1)は従来のチップ状固体電解コンデ
ンサと、本発明の一実施例におけるチップ状固体電解コ
ンデンサを、260℃の溶融半田浴に5秒間ずつ浸漬す
るという動作を5回あるいは10回繰り返した場合の陰
極金属層の剥離不良率を比較した試験結果を示したもの
である。
Table 1 shows that the conventional chip-shaped solid electrolytic capacitor and the chip-shaped solid electrolytic capacitor according to one embodiment of the present invention are immersed in a molten solder bath at 260 ° C. for 5 seconds each, 5 times or 10 times. It shows the test results comparing the peeling failure rate of the cathode metal layer when repeated twice.

【0017】[0017]

【表1】 [Table 1]

【0018】この(表1)から明らかなように、従来の
チップ状固体電解コンデンサは陰極金属層の剥離不良が
発生していたが、本発明の一実施例のチップ状固体電解
コンデンサにおいては、陰極金属層の剥離不良は発生し
なかった。
As is clear from this (Table 1), the conventional chip-shaped solid electrolytic capacitor had a defective peeling of the cathode metal layer. However, in the chip-shaped solid electrolytic capacitor of one embodiment of the present invention, No peeling failure of the cathode metal layer occurred.

【0019】上記した本発明の一実施例においては、コ
ンデンサ素子11aの陰極層15における陽極導出線1
2と反対側に位置する部分に金属、無機物の粒子18を
含む陰極導電体層16を形成し、その後、前記コンデン
サ素子11aおよび陰極層15の外表面を前記陽極導出
線12の先端部、陰極導電体層16の一部を除いて外装
樹脂層19で被覆し、さらに前記陰極導電体層16に含
有され、かつ表出した金属、無機物の粒子18の表出部
分を硝酸、塩酸、硫酸等の溶液、フッ化水素溶液でエッ
チングして溶解させることにより、陰極導電体層16の
表出面に凹凸16bを形成しているため、外装樹脂層1
9より表出した陰極導電体層16の表出面の表面の粗さ
を高めることができ、その結果、このような陰極導電体
層16の表出面に陰極金属層21を形成することによ
り、陰極導電体層16の表出面と陰極金属層21との間
にはアンカー効果が生じるため、両者の機械的密着性は
非常に優れたものとなり、これにより、溶融半田浴への
浸漬、遠赤外炉への出し入れの繰り返しによる熱ストレ
スが加えられても陰極金属層21が陰極導電体層16か
ら剥離するということはなくなる。
In the above-described embodiment of the present invention, the anode lead wire 1 in the cathode layer 15 of the capacitor element 11a.
2, a cathode conductor layer 16 containing particles 18 of a metal or an inorganic material is formed on a portion located on the side opposite to 2, and then the outer surfaces of the capacitor element 11a and the cathode layer 15 are connected to the tip of the anode lead wire 12 and the cathode. Except for a part of the conductor layer 16, the exterior resin layer 19 is coated, and the exposed portion of the metal or inorganic particles 18 contained in the cathode conductor layer 16 and exposed is nitric acid, hydrochloric acid, sulfuric acid, or the like. Since the unevenness 16b is formed on the exposed surface of the cathode conductor layer 16 by etching and dissolving with the solution of No. 1 and hydrogen fluoride solution, the exterior resin layer 1
9 can increase the surface roughness of the exposed surface of the cathode conductor layer 16, and as a result, by forming the cathode metal layer 21 on the exposed surface of the cathode conductor layer 16 as described above, An anchor effect is generated between the exposed surface of the conductor layer 16 and the cathode metal layer 21, so that the mechanical adhesion between the two becomes very excellent, which results in immersion in a molten solder bath and far infrared rays. The cathode metal layer 21 does not peel off from the cathode conductor layer 16 even if thermal stress is applied by repeated loading and unloading in the furnace.

【0020】[0020]

【発明の効果】以上のように本発明のチップ状固体電解
コンデンサの製造方法によれば、コンデンサ素子の陰極
層における陽極導出線と反対側に位置する部分に金属、
無機物の粒子を含む陰極導電体層を形成し、その後、前
記コンデンサ素子および陰極層の外表面を前記陽極導出
線の先端部、陰極導電体層の一部を除いて外装樹脂層で
被覆し、さらに前記陰極導電体層に含有され、かつ表出
した金属、無機物の粒子の表出部分をエッチングにより
溶解させて陰極導電体層の表出面に凹凸を形成している
ため、外装樹脂層より表出した陰極導電体層の表出面の
表面の粗さを高めることができ、その結果、このような
陰極導電体層の表出面に陰極金属層を形成することによ
り、陰極導電体層の表出面と陰極金属層との間にはアン
カー効果が生じるため、両者の機械的密着性は非常に優
れたものとなり、これにより、溶融半田浴への浸漬、遠
赤外線炉への出し入れの繰り返しによる熱ストレスが加
えられても、陰極金属層が陰極導電体層から剥離すると
いうことはなくなるものである。
As described above, according to the method for manufacturing a chip solid electrolytic capacitor of the present invention, a metal is provided in a portion of the capacitor element on the side opposite to the anode lead wire in the cathode layer,
A cathode conductor layer containing inorganic particles is formed, and then the outer surfaces of the capacitor element and the cathode layer are covered with an exterior resin layer excluding the tip of the anode lead wire and a part of the cathode conductor layer. Further contained in the cathode conductor layer, and exposed metal, because the exposed portion of the particles of the inorganic substance is dissolved by etching to form irregularities on the exposed surface of the cathode conductor layer, so that the surface from the exterior resin layer It is possible to increase the surface roughness of the exposed surface of the cathode conductor layer, and as a result, by forming a cathode metal layer on the exposed surface of such a cathode conductor layer, the exposed surface of the cathode conductor layer. Since an anchor effect occurs between the cathode metal layer and the cathode metal layer, the mechanical adhesion between the two becomes extremely excellent, which results in thermal stress due to repeated immersion in the molten solder bath and removal from and in the far infrared furnace. Even if the cathode is added Genus layers are made rather than that separated from the cathode conductor layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すチップ状タンタル固体
電解コンデンサの断面図
FIG. 1 is a sectional view of a chip-shaped tantalum solid electrolytic capacitor showing an embodiment of the present invention.

【図2】同固体電解コンデンサにおけるコンデンサ素子
に陰極導電体層を形成した状態を示す断面図
FIG. 2 is a sectional view showing a state in which a cathode conductor layer is formed on a capacitor element in the solid electrolytic capacitor.

【図3】同固体電解コンデンサにおける陰極導電体層に
含有される金属、無機物の粒子の表出部分をエッチング
により溶解させた状態を示す断面図
FIG. 3 is a cross-sectional view showing a state in which exposed portions of metal and inorganic particles contained in a cathode conductor layer of the solid electrolytic capacitor are dissolved by etching.

【図4】(a)〜(e)同固体電解コンデンサの製造工
程を示す斜視図
4A to 4E are perspective views showing manufacturing steps of the solid electrolytic capacitor.

【図5】従来のチップ状タンタル固体電解コンデンサの
断面図
FIG. 5 is a sectional view of a conventional chip-shaped tantalum solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

11 陽極体 11a コンデンサ素子 12 陽極導出線 12a 陽極導出面 15 陰極層 16 陰極導電体層 16a 陰極導出面 16b 凹凸 18 金属、無機物の粒子 19 外装樹脂層 20 陽極金属層 21 陰極金属層 DESCRIPTION OF SYMBOLS 11 Anode body 11a Capacitor element 12 Anode lead wire 12a Anode lead surface 15 Cathode layer 16 Cathode conductor layer 16a Cathode lead surface 16b Concavo-convex 18 Metal or inorganic particle 19 Exterior resin layer 20 Anode metal layer 21 Cathode metal layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 澄夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sumio Nishiyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陽極導出線の一端が表出するように陽極導
出線を埋設した弁作用金属からなる陽極体に誘電体性酸
化皮膜、電解質層、陰極層を設けてコンデンサ素子を構
成し、このコンデンサ素子の前記陰極層における陽極導
出線と反対側に位置する部分には金属、無機物の粒子を
含む陰極導電体層を形成し、その後、前記コンデンサ素
子、陰極導電体層、および陰極層の外表面を前記陽極導
出線の先端部、陰極導電体層の一部を除いて外装樹脂層
で被覆し、さらに前記陰極導電体層に含有され、かつ表
出した金属、無機物の粒子の表出部分をエッチングによ
り溶解させて陰極導電体層の表出面に凹凸を形成し、そ
の後、外装樹脂層の陽極導出線表出側に陽極導出線と接
続される陽極金属層を形成するとともに、外装樹脂層の
陰極導電体層表出側に前記陰極層および陰極導電体層と
接続される陰極金属層を形成したチップ状固体電解コン
デンサの製造方法。
1. A capacitor element is constructed by providing a dielectric oxide film, an electrolyte layer, and a cathode layer on an anode body made of a valve metal in which an anode lead wire is embedded so that one end of the anode lead wire is exposed. A metal, a cathode conductor layer containing particles of an inorganic material is formed on a portion of the capacitor element located on the side opposite to the anode lead-out line in the cathode layer, and thereafter, the capacitor element, the cathode conductor layer, and the cathode layer. The outer surface is covered with an outer resin layer excluding the tip of the anode lead wire and a part of the cathode conductor layer, and is further contained in the cathode conductor layer, and the exposed metal and inorganic particles are exposed. A part is dissolved by etching to form irregularities on the exposed surface of the cathode conductor layer, and then an anode metal layer connected to the anode lead wire is formed on the anode lead wire exposed side of the exterior resin layer, and the exterior resin Layer cathodic conductor layer exposure The cathode layer and chip solid electrolytic method for producing a capacitor to form a cathode metal layer to be connected to the cathode conductor layer.
JP4172397A 1992-06-30 1992-06-30 Manufacture of chip-type solid-state electrolytic capacitor Pending JPH0620883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172397A JPH0620883A (en) 1992-06-30 1992-06-30 Manufacture of chip-type solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172397A JPH0620883A (en) 1992-06-30 1992-06-30 Manufacture of chip-type solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0620883A true JPH0620883A (en) 1994-01-28

Family

ID=15941185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172397A Pending JPH0620883A (en) 1992-06-30 1992-06-30 Manufacture of chip-type solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0620883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104048A (en) * 2002-09-13 2004-04-02 Nec Tokin Corp Chip type solid electrolytic capacitor
US10662109B2 (en) 2016-03-31 2020-05-26 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
CN113396464A (en) * 2019-02-07 2021-09-14 株式会社村田制作所 Thin film capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104048A (en) * 2002-09-13 2004-04-02 Nec Tokin Corp Chip type solid electrolytic capacitor
US10662109B2 (en) 2016-03-31 2020-05-26 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
CN113396464A (en) * 2019-02-07 2021-09-14 株式会社村田制作所 Thin film capacitor
CN113396464B (en) * 2019-02-07 2023-05-09 株式会社村田制作所 Thin film capacitor

Similar Documents

Publication Publication Date Title
US5036434A (en) Chip-type solid electrolytic capacitor and method of manufacturing the same
CN100337302C (en) Low-pressure discharge lamp and method for manufacturing same
US5168434A (en) Fuse-incorporated, chip-type solid electrolytic capacitor
JP3227242B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JPH0620883A (en) Manufacture of chip-type solid-state electrolytic capacitor
JP3478041B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
JP2973504B2 (en) Chip type solid electrolytic capacitor
JP2001196266A (en) Method of manufacturing chip-like electronic component
TWI760706B (en) Electronic component packaging structure and manufacturing method thereof
JP3033647B2 (en) Fused solid electrolytic capacitor and method of manufacturing the same
JPH0260208B2 (en)
JPH01246814A (en) Chip-like solid electrolyte capacitor and manufacture thereof
KR970004302B1 (en) Solid electrolytic condenser and manufacturing method therefor
JPH05226198A (en) Solid-state chip electrolytic capacitor
JP2620672B2 (en) Manufacturing method of coaxial dielectric resonator
JP3185275B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JPH0217603A (en) Chip component and manufacture thereof
JPH0287613A (en) Manufacture of chip-type solid electrolytic capacitor
JPH09246101A (en) Chip solid electrolytic capacitor
JPH07226337A (en) Manufacture of chip-type solid-state electrolytic capacitor
JPH05152172A (en) Chip type solid electrolytic capacitor and manufacture thereof
JPH0590088A (en) Chip type solid electrolytic capacitor and its manufacture
JPH06252012A (en) Chip-shaped solid electrolytic capacitor and its manufacture
JPH05267107A (en) Manufacture of solid electrolyte capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041215

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Effective date: 20050209

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100325

LAPS Cancellation because of no payment of annual fees