JP3478041B2 - Manufacturing method of chip-shaped solid electrolytic capacitor - Google Patents

Manufacturing method of chip-shaped solid electrolytic capacitor

Info

Publication number
JP3478041B2
JP3478041B2 JP03588497A JP3588497A JP3478041B2 JP 3478041 B2 JP3478041 B2 JP 3478041B2 JP 03588497 A JP03588497 A JP 03588497A JP 3588497 A JP3588497 A JP 3588497A JP 3478041 B2 JP3478041 B2 JP 3478041B2
Authority
JP
Japan
Prior art keywords
layer
cathode
conductor layer
high temperature
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03588497A
Other languages
Japanese (ja)
Other versions
JPH10233346A (en
Inventor
秀人 山口
浩二 上岡
哲也 小藪
澄夫 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03588497A priority Critical patent/JP3478041B2/en
Publication of JPH10233346A publication Critical patent/JPH10233346A/en
Application granted granted Critical
Publication of JP3478041B2 publication Critical patent/JP3478041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はチップ状固体電解コ
ンデンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a chip solid electrolytic capacitor.

【0002】[0002]

【従来の技術】近年、電子機器の軽薄短小化と面実装技
術の進展からチップ部品が急増している。チップ状固体
電解コンデンサにおいても小形大容量化が進展する中で
チップ部品自身の一層の小形化、低コスト化が要求され
ている。
2. Description of the Related Art In recent years, the number of chip parts has rapidly increased due to the miniaturization of electronic equipment and the progress of surface mounting technology. In the chip-type solid electrolytic capacitor, further miniaturization and cost reduction of the chip component itself are required as the miniaturization and the increase in capacity progress.

【0003】以下に従来のチップ状固体電解コンデンサ
の製造方法について説明する。図3は従来のチップ状固
体電解コンデンサの断面図を示したものである。この図
3において、1は弁作用金属であるタンタル金属粉末を
成形焼結した多孔質の陽極体で、この陽極体1より導出
したタンタル線からなる陽極導出線2の一部と陽極体1
の全面に陽極酸化により誘電体酸化皮膜3を形成し、さ
らにこの誘電体酸化皮膜3の表面に二酸化マンガンなど
の固体電解質層4を形成している。
A conventional method for manufacturing a chip-shaped solid electrolytic capacitor will be described below. FIG. 3 is a sectional view of a conventional chip-shaped solid electrolytic capacitor. In FIG. 3, reference numeral 1 denotes a porous anode body formed by molding and sintering tantalum metal powder which is a valve metal, and a part of an anode lead wire 2 composed of a tantalum wire led from the anode body 1 and the anode body 1.
A dielectric oxide film 3 is formed on the entire surface of the substrate by anodic oxidation, and a solid electrolyte layer 4 of manganese dioxide or the like is further formed on the surface of the dielectric oxide film 3.

【0004】5は陽極導出線2に装着した絶縁板で、こ
の絶縁板5は前記固体電解質層4の形成時に陽極導出線
2へ硝酸マンガンが這い上がって二酸化マンガンが付着
するのを防止するものである。また前記固体電解質層4
の上には浸漬法によりカーボン層および銀金属を含む導
電性樹脂層を順次積層した陰極層6を形成してコンデン
サ素子7を構成している。8は陰極導電体層で、この陰
極導電体層8はコンデンサ素子7の陰極層6における陽
極導出線2と反対側に位置する部分に銀、銅、ニッケ
ル、鉄金属からなるチップ状の金属9を銀金属を含むエ
ポキシ系の導電性樹脂層10で接続することにより構成
している。この後、コンデンサ素子7および陰極導電体
層8を、陽極導出線2が片側に引き出されかつ陰極導電
体層8の一部が外部に表出されるように外装樹脂層11
で被覆する。
Reference numeral 5 denotes an insulating plate mounted on the anode lead-out wire 2. The insulating plate 5 prevents manganese nitrate from crawling up and adhering to manganese dioxide on the anode lead-out wire 2 when the solid electrolyte layer 4 is formed. Is. In addition, the solid electrolyte layer 4
A capacitor layer 7 is formed by forming a cathode layer 6 on which a carbon layer and a conductive resin layer containing silver metal are sequentially laminated by an immersion method. Reference numeral 8 denotes a cathode conductor layer, and this cathode conductor layer 8 is a chip-shaped metal 9 made of silver, copper, nickel, or iron metal in a portion of the capacitor element 7 located on the side opposite to the anode lead-out line 2 of the cathode layer 6. Are connected by an epoxy-based conductive resin layer 10 containing silver metal. Thereafter, the capacitor element 7 and the cathode conductor layer 8 are covered with the exterior resin layer 11 so that the anode lead wire 2 is drawn out to one side and a part of the cathode conductor layer 8 is exposed to the outside.
Cover with.

【0005】次に150℃以下の高温で電圧を印加する
処理を施してコンデンサの電気特性の改善を行うが、こ
の場合、コンデンサの基板実装の耐熱に対する信頼性を
向上させるために300℃以下の高温空気中で熱処理を
施す場合もある。その後、外装樹脂層11における陽極
導出線2の表出側の陽極導出面12と陽極導出線2およ
び陰極導電体層8の表出側の陰極導出面13に無電解メ
ッキ層を形成した後、電解メッキまたは導電性樹脂層の
導電体層、半田金属層を含む陽極側外部端子層14およ
び陰極側外部端子層15を形成していた。
Next, a process of applying a voltage at a high temperature of 150 ° C. or lower is applied to improve the electric characteristics of the capacitor. In some cases, heat treatment is performed in high temperature air. Then, after forming an electroless plating layer on the anode lead-out surface 12 of the anode lead-out wire 2 and the anode lead-out wire 2 and the cathode lead-out surface 13 of the cathode conductor layer 8 on the expose side in the exterior resin layer 11, The conductor layer of electrolytic plating or a conductive resin layer, the anode side external terminal layer 14 including the solder metal layer, and the cathode side external terminal layer 15 are formed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た従来のチップ状固体電解コンデンサにおいては、陰極
導出面13に陰極導電体層8が表出した状態で高温での
電圧印加処理を行う場合、マイナス端子としてのコンタ
クトピンを接続する側の陰極導電体層8の表出面積が小
さいため、コンタクトピンを用いた簡便で確実な電圧印
加が困難となるものであり、また陰極導出面13に陰極
導電体層8が表出した状態で行う高温の熱処理は、表出
した陰極導電体層8の表面を酸化させたり、あるいは陰
極導電体層8の表面に不純物が付着したりして陰極側外
部端子層15と陰極導電体層8との電気的接続性や表面
形状が悪くなるという問題点を有していた。
However, in the above-described conventional chip-shaped solid electrolytic capacitor, when the voltage application process at a high temperature is performed with the cathode conductor layer 8 exposed on the cathode lead-out surface 13, Since the exposed surface area of the cathode conductor layer 8 on the side to which the contact pin as a terminal is connected is small, it is difficult to apply a simple and reliable voltage using the contact pin. The high-temperature heat treatment performed in the state where the body layer 8 is exposed oxidizes the surface of the exposed cathode conductor layer 8, or impurities are attached to the surface of the cathode conductor layer 8 to cause an external terminal on the cathode side. There is a problem that the electrical connection between the layer 15 and the cathode conductor layer 8 and the surface shape are deteriorated.

【0007】本発明は上記従来の問題点を解決するもの
で、コンデンサの電気的特性の改善を行うための高温中
での電圧印加処理(エージング処理)を確実に容易に行
うことができ、また耐熱の信頼性を向上させるための高
温雰囲気中での熱処理もコンデンサの電気的接続性、表
面形状を損なうことなく容易に行うことができるチップ
状固体電解コンデンサの製造方法を提供することを目的
とするものである。
The present invention solves the above-mentioned problems of the prior art, and voltage application processing (aging processing) at high temperature for improving the electrical characteristics of a capacitor can be reliably and easily performed, and An object of the present invention is to provide a method for manufacturing a chip solid electrolytic capacitor, which can easily perform heat treatment in a high-temperature atmosphere to improve the reliability of heat resistance without damaging the electrical connection property and surface shape of the capacitor. To do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明のチップ状固体電解コンデンサの製造方法は、
陽極導出線の一端が表出するように陽極導出線を埋設し
た弁作用金属からなる陽極体に誘電体酸化皮膜、固体電
解質層、陰極層を設けてコンデンサ素子を構成し、さら
に前記陰極層には陰極導電体層を形成し、その後、前記
陽極導出線の一部と陰極導電体層の一部が外部に表出す
るように前記コンデンサ素子を外装樹脂層で被覆し、次
に前記陰極導電体層の一部が外部に表出した外装樹脂層
における陰極導出面に表面導電体層を形成し、この状態
で高温中での電圧印加処理(エージング処理)と高温雰
囲気中での熱処理のいずれか一方もしくは両方を施し、
その後、前記表面導電体層を除去し、さらにその後、前
記外装樹脂層より表出した陽極導出線の一部および陰極
導電体層の一部と接続されるように陽極側外部端子層お
よび陰極側外部端子層を形成したもので、この製造方法
によれば、コンデンサの電気的特性の改善を行うための
高温中での電圧印加処理(エージング処理)を確実に容
易に行うことができ、また耐熱の信頼性を向上させるた
めの高温雰囲気中での熱処理もコンデンサの電気的接続
性、表面形状を損なうことなく容易に行うことができる
ものである。
In order to achieve the above object, a method for manufacturing a chip solid electrolytic capacitor of the present invention comprises:
A dielectric oxide film, a solid electrolyte layer, and a cathode layer are provided on an anode body made of a valve metal in which the anode lead wire is embedded so that one end of the anode lead wire is exposed to form a capacitor element. Form a cathode conductor layer, and then coat the capacitor element with an exterior resin layer so that a part of the anode lead wire and a part of the cathode conductor layer are exposed to the outside, and then the cathode conductor layer. A surface conductor layer is formed on the cathode lead-out surface of the exterior resin layer in which part of the body layer is exposed to the outside, and in this state, either voltage application treatment (aging treatment) at high temperature or heat treatment in high temperature atmosphere is performed. Give one or both,
Thereafter, the surface conductor layer is removed, and thereafter, the anode side external terminal layer and the cathode side are connected so as to be connected to a part of the anode lead wire exposed from the exterior resin layer and a part of the cathode conductor layer. An external terminal layer is formed. According to this manufacturing method, the voltage application process (aging process) at high temperature for improving the electrical characteristics of the capacitor can be reliably and easily performed, and heat resistance is improved. The heat treatment in a high temperature atmosphere for improving the reliability of can be easily performed without damaging the electrical connection property and surface shape of the capacitor.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、陽極導出線の一端が表出するように陽極導出線を埋
設した弁作用金属からなる陽極体に誘電体酸化皮膜、固
体電解質層、陰極層を設けてコンデンサ素子を構成し、
さらに前記陰極層には陰極導電体層を形成し、その後、
前記陽極導出線の一部と陰極導電体層の一部が外部に表
出するように前記コンデンサ素子を外装樹脂層で被覆
し、次に前記陰極導電体層の一部が外部に表出した外装
樹脂層における陰極導出面に表面導電体層を形成し、こ
の状態で高温中での電圧印加処理(エージング処理)と
高温雰囲気中での熱処理のいずれか一方もしくは両方を
施し、その後、前記表面導電体層を除去し、さらにその
後、前記外装樹脂層より表出した陽極導出線の一部およ
び陰極導電体層の一部と接続されるように陽極側外部端
子層および陰極側外部端子層を形成したもので、この製
造方法によれば、陰極導電体層の一部が外部に表出した
外装樹脂層における陰極導出面に表面導電体層を形成し
ているため、この表面導電体層の存在により、陰極導電
体層と電気的に導通する面積は拡大することになり、こ
れにより、コンデンサの電気的特性の改善を行うための
高温中での電圧印加処理(エージング処理)も、電圧印
加のマイナス端子としてのコンタクトピンを用いて確実
に容易に行うことができ、また耐熱の信頼性を向上させ
るために高温雰囲気中で熱処理を行う場合においても、
表面導電体層が外装樹脂層の外部に表出した陰極導電体
層の一部を覆って保護膜としての機能を果たしているた
め、陰極導電体層の表面が酸化したり、陰極導電体層の
表面に不純物が付着したりするということはなくなり、
これにより、陰極側外部端子層と陰極導電体層との電気
的接続性や表面形状が悪くなるということもなく、熱処
理を容易に行うことができるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is directed to an anode body made of a valve metal in which an anode lead-out wire is embedded so that one end of the anode lead-out wire is exposed. An electrolyte layer and a cathode layer are provided to form a capacitor element,
Further, a cathode conductor layer is formed on the cathode layer, and thereafter,
The capacitor element was covered with an exterior resin layer so that a part of the anode lead wire and a part of the cathode conductor layer were exposed to the outside, and then a part of the cathode conductor layer was exposed to the outside. A surface conductor layer is formed on the cathode lead-out surface of the exterior resin layer, and in this state, one or both of voltage application treatment (aging treatment) in high temperature and heat treatment in high temperature atmosphere is performed, and then the surface The conductor layer is removed, and thereafter, the anode-side external terminal layer and the cathode-side external terminal layer are connected so as to be connected to a part of the anode lead wire exposed from the exterior resin layer and a part of the cathode conductor layer. According to this manufacturing method, since the surface conductor layer is formed on the cathode lead-out surface of the exterior resin layer where a part of the cathode conductor layer is exposed to the outside, the surface conductor layer By its presence, it is electrically conductive with the cathode conductor layer Therefore, the voltage application process (aging process) at high temperature to improve the electrical characteristics of the capacitor can be ensured by using the contact pin as the negative terminal of the voltage application. It can be easily performed, and even when performing heat treatment in a high temperature atmosphere to improve the reliability of heat resistance,
Since the surface conductor layer covers a part of the cathode conductor layer exposed to the outside of the exterior resin layer and functions as a protective film, the surface of the cathode conductor layer is oxidized or the surface of the cathode conductor layer is No more impurities attached to the surface,
This makes it possible to easily perform the heat treatment without deteriorating the electrical connectivity and surface shape of the cathode-side external terminal layer and the cathode conductor layer.

【0010】請求項2に記載の発明は、表面導電体層を
カーボンペースト、導電性ペーストの少なくとも1種類
により構成したもので、この構成によれば、コンデンサ
の電気的特性の改善を行うための高温中での電圧印加処
理(エージング処理)を行う場合においても、陰極導電
体層との電気的導通が確実となっているため、電圧印加
処理(エージング処理)が確実に行えるものである。
According to the second aspect of the present invention, the surface conductor layer is formed of at least one of carbon paste and conductive paste. According to this structure, the electrical characteristics of the capacitor are improved. Even when the voltage application process (aging process) is performed at a high temperature, the voltage application process (aging process) can be reliably performed because the electrical conduction with the cathode conductor layer is ensured.

【0011】請求項3に記載の発明は、表面導電体層の
除去をサンドブラストにより行うようにしたもので、こ
の構成によれば、コスト的にも安価にして表面導電体層
を簡単に除去することができるものである。
According to the third aspect of the invention, the surface conductor layer is removed by sandblasting. According to this structure, the surface conductor layer can be easily removed at low cost. Is something that can be done.

【0012】請求項4に記載の発明は、高温雰囲気が金
属の溶融状態、恒温炉、赤外炉の高温雰囲気の少なくと
も1種類からなるものである。
According to a fourth aspect of the present invention, the high temperature atmosphere comprises at least one of a molten metal state, a constant temperature furnace and a high temperature atmosphere of an infrared furnace.

【0013】以下、本発明の一実施の形態について図面
を参照しながら説明する。図1は本発明の一実施の形態
におけるチップ状固体電解コンデンサの断面図を示し、
また図2(a),(b),(c),(d),(e),
(f)は本発明の一実施の形態におけるチップ状固体電
解コンデンサの製造工程を示した外観斜視図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a chip solid electrolytic capacitor according to an embodiment of the present invention,
2 (a), (b), (c), (d), (e),
FIG. 6F is an external perspective view showing the manufacturing process of the chip solid electrolytic capacitor according to the embodiment of the present invention.

【0014】図1において、21は弁作用金属であるタ
ンタル金属粉末を成形焼結した多孔質の陽極体で、この
陽極体21には陽極導出線22の一端が表出するように
陽極導出線22を埋設している。そして表出した陽極導
出線22の一端には撥水性の絶縁板23を装着してい
る。陽極体21の表面への一連の処理工程は、図2
(a)に示す金属リボン24に陽極導出線22を接続し
た状態で行う。まず陽極体21の全面と陽極導出線22
の一部に陽極酸化により誘電体酸化皮膜25を形成し、
さらにこの誘電体酸化皮膜25の表面に硝酸マンガンを
高温雰囲気で熱分解することにより二酸化マンガンの固
体電解質層26を形成している。
In FIG. 1, reference numeral 21 denotes a porous anode body formed by molding and sintering tantalum metal powder which is a valve metal, and the anode lead wire 22 is exposed at one end of the anode body 21. 22 is buried. A water-repellent insulating plate 23 is attached to one end of the exposed anode lead wire 22. A series of processing steps on the surface of the anode body 21 is shown in FIG.
It is performed in a state where the anode lead wire 22 is connected to the metal ribbon 24 shown in (a). First, the entire surface of the anode body 21 and the anode lead wire 22
A dielectric oxide film 25 is formed by anodic oxidation on a part of
Further, the solid electrolyte layer 26 of manganese dioxide is formed on the surface of the dielectric oxide film 25 by thermally decomposing manganese nitrate in a high temperature atmosphere.

【0015】そしてこの固体電解質層26の上には浸漬
法によりカーボン層および銀を含む導電性樹脂層を順次
積層した陰極層27を形成してコンデンサ素子28を構
成している。29は陰極導電体層で、この陰極導電体層
29はコンデンサ素子28の陰極層27における陽極導
出線22と反対側に位置する部分に銀、銅、ニッケル、
鉄金属からなるチップ状の金属30を銀金属を含むエポ
キシ系の導電性樹脂層31で接続することにより構成し
ている。32は外装樹脂層で、この外装樹脂層32は、
陽極導出線22が片側に引き出されるようにコンデンサ
素子28を成形金型にセットし、そして陰極導電体層2
9とコンデンサ素子28の全体が樹脂外装されるよう
に、エポキシ樹脂を用いたトランスファーモールドまた
はインジェクションモールドにより形成している。
A cathode layer 27 in which a carbon layer and a conductive resin layer containing silver are sequentially laminated is formed on the solid electrolyte layer 26 by a dipping method to form a capacitor element 28. Reference numeral 29 denotes a cathode conductor layer, and this cathode conductor layer 29 is provided on a portion of the capacitor element 28 on the side opposite to the anode lead wire 22 of the cathode layer 27 with silver, copper, nickel,
A chip-shaped metal 30 made of iron metal is connected by an epoxy-based conductive resin layer 31 containing silver metal. 32 is an exterior resin layer, and this exterior resin layer 32 is
The capacitor element 28 is set in a molding die so that the anode lead wire 22 is drawn out to one side, and the cathode conductor layer 2
It is formed by transfer molding or injection molding using epoxy resin so that 9 and the capacitor element 28 are entirely covered with resin.

【0016】そして樹脂外装後の外装樹脂層32の成形
体33における陽極導出線22とは反対側の部分を切断
または研削することにより、図2(a)に示すように陰
極導出面34を形成するとともに、陰極導電体層29の
一部を表出させているものである。
Then, by cutting or grinding the portion of the molded body 33 of the exterior resin layer 32 after the resin exterior, which is opposite to the anode lead wire 22, a cathode lead-out surface 34 is formed as shown in FIG. 2 (a). In addition, a part of the cathode conductor layer 29 is exposed.

【0017】35は図2(b)に示すように外装樹脂層
32における陰極導出面34に形成された表面導電体層
で、この表面導電体層35はカーボン水溶液またはアク
リル系樹脂のカーボンペーストを陰極導出面34に浸漬
法、ディスペンサ法により塗布し、乾燥させることによ
り形成している。なお、この表面導電体層35はカーボ
ンペーストに限定されるものではなく、銀、銅、ニッケ
ルの金属とアクリル系樹脂、ポリエステル系樹脂、エポ
キシ系樹脂のいずれからなる導電性ペーストを用いて表
面導電体層35を形成してもよいものである。
Reference numeral 35 denotes a surface conductor layer formed on the cathode lead-out surface 34 of the exterior resin layer 32 as shown in FIG. 2B. The surface conductor layer 35 is an aqueous carbon solution or a carbon paste of acrylic resin. It is formed by applying it to the cathode lead-out surface 34 by a dipping method or a dispenser method and drying it. The surface conductor layer 35 is not limited to the carbon paste, and the surface conductive layer 35 is made of a conductive paste made of a metal such as silver, copper, or nickel and any of acrylic resin, polyester resin, and epoxy resin. The body layer 35 may be formed.

【0018】図2(c)は高温中での電圧印加処理(エ
ージング処理)の状態を示したもので、金属リボン24
にプラス端子としてのコンタクトピン36aを接触さ
せ、一方、表面導電体層35にマイナス端子としてのコ
ンタクトピン36bを接触させ、150℃以下の高温中
で電圧を印加することにより、高温中での電圧印加処理
(エージング処理)を行っている。
FIG. 2C shows the state of the voltage application process (aging process) at a high temperature.
The contact pin 36a as a positive terminal is contacted with the contact pin 36b, while the contact pin 36b as a negative terminal is contacted with the surface conductor layer 35, and a voltage is applied at a high temperature of 150 ° C. or less The application process (aging process) is performed.

【0019】図2(d)は高温雰囲気中での熱処理の状
態を示したもので、37は高温雰囲気で、この高温雰囲
気37は半田、錫からなる金属が300℃以下の温度で
溶融した状態を示し、この金属の溶融状態で、この溶融
金属中に表面導電体層35が形成された外装樹脂層32
の成形体33を浸漬することにより、高温雰囲気37中
での熱処理を行っている。なお、この高温雰囲気37
は、金属の溶融状態に限定されるものではなく、恒温
炉、赤外炉の高温雰囲気でもよいものである。
FIG. 2 (d) shows the state of heat treatment in a high temperature atmosphere, 37 is a high temperature atmosphere, and this high temperature atmosphere 37 is a state in which a metal composed of solder and tin is melted at a temperature of 300 ° C. or less. In the molten state of this metal, the exterior resin layer 32 in which the surface conductor layer 35 is formed in this molten metal is shown.
By immersing the molded body 33 in No. 3, heat treatment is performed in the high temperature atmosphere 37. In addition, this high temperature atmosphere 37
Is not limited to the molten state of the metal, and may be a high temperature atmosphere of a constant temperature furnace or an infrared furnace.

【0020】図2(e)は、図2(c)に示した高温中
での電圧印加処理(エージング処理)および図2(d)
に示した高温雰囲気37中での熱処理を終えた後、表面
導電体層35をサンドブラストにより除去し、その後、
外装樹脂層32と、この外装樹脂層32より表出した陽
極導出線22の一部および陰極導出面34をサンドブラ
スト処理により粗面化し、さらにその後、金属リボン2
4から陽極導出線22を切り離してほぼ製品の外形寸法
長さとしている。
FIG. 2 (e) shows a voltage application process (aging process) at a high temperature shown in FIG. 2 (c) and FIG. 2 (d).
After finishing the heat treatment in the high temperature atmosphere 37 shown in (4), the surface conductor layer 35 is removed by sandblasting,
The exterior resin layer 32, a part of the anode lead wire 22 exposed from the exterior resin layer 32, and the cathode lead-out surface 34 are roughened by sandblasting, and then the metal ribbon 2
The anode lead-out wire 22 is separated from No. 4 to make the outside dimension length of the product almost.

【0021】図2(f)は外装樹脂層32より表出した
陽極導出線22の一部および陰極導電体層29の一部と
接続されるように陽極側外部端子層38および陰極側外
部端子層39を形成した状態を示したもので、陽極側外
部端子層38は陽極導出線22の一部と、外装樹脂層3
2における陽極導出面40およびその周辺に位置する外
装樹脂層32の表面に形成され、一方、陰極側外部端子
層39は外装樹脂層32における陰極導出面34および
その周辺に位置する外装樹脂層32の表面に形成されて
いる。
FIG. 2 (f) shows an anode side external terminal layer 38 and a cathode side external terminal so as to be connected to a part of the anode lead wire 22 exposed from the exterior resin layer 32 and a part of the cathode conductor layer 29. The state in which the layer 39 is formed is shown. The anode-side external terminal layer 38 includes a part of the anode lead wire 22 and the exterior resin layer 3
2 is formed on the surface of the anode lead-out surface 40 and the exterior resin layer 32 located around it, while the cathode side external terminal layer 39 is the cathode lead-out surface 34 of the exterior resin layer 32 and the exterior resin layer 32 located around it. Is formed on the surface of.

【0022】そしてこの陽極側外部端子層38および陰
極側外部端子層39は図1に示すように陽極側半田金属
層41および陰極側半田金属層42で被覆されているも
のである。また前記陽極側外部端子層38および陰極側
外部端子層39はニッケル、銅の無電解メッキを施した
無電解メッキ層や、電解メッキの湿式方法、蒸着、イオ
ンスパッタの乾式方法により形成され、一方、陽極側半
田金属層41および陰極側半田金属層42は溶融半田に
よる半田コーティングまたは電解半田メッキにより形成
されている。
The anode-side external terminal layer 38 and the cathode-side external terminal layer 39 are covered with an anode-side solder metal layer 41 and a cathode-side solder metal layer 42 as shown in FIG. The anode-side external terminal layer 38 and the cathode-side external terminal layer 39 are formed by an electroless plating layer obtained by electroless plating of nickel or copper, a wet method of electrolytic plating, a dry method of vapor deposition, or ion sputtering. The anode side solder metal layer 41 and the cathode side solder metal layer 42 are formed by solder coating with molten solder or electrolytic solder plating.

【0023】上記した本発明の一実施の形態において
は、陰極導電体層29の一部が外部に表出した外装樹脂
層32における陰極導出面34に表面導電体層35を形
成しているため、この表面導電体層35の存在により、
陰極導電体層29と電気的に導通する面積は拡大するこ
とになり、これにより、コンデンサの電気的特性の改善
を行うために、図2(c)に示すように高温中での電圧
印加処理(エージング処理)を行う場合においても、電
圧印加のマイナス端子としてのコンタクトピン36bを
用いて確実に容易に行うことができ、また耐熱の信頼性
を向上させるために、図2(d)に示すように高温雰囲
気37中で熱処理を行う場合においても、表面導電体層
35が外装樹脂層32の外部に表出した陰極導電体層2
9の一部を覆って保護膜としての機能を果たしているた
め、陰極導電体層29の表面が酸化したり、陰極導電体
層29の表面に不純物が付着したりするということはな
くなり、これにより、陰極側外部端子層39と陰極導電
体層29との電気的接続性や表面形状が悪くなるという
こともなく、熱処理を容易に行うことができるものであ
る。
In the above-described embodiment of the present invention, the surface conductor layer 35 is formed on the cathode lead-out surface 34 of the exterior resin layer 32 in which a part of the cathode conductor layer 29 is exposed to the outside. Due to the presence of the surface conductor layer 35,
The area electrically connected to the cathode conductor layer 29 is increased, and as a result, in order to improve the electrical characteristics of the capacitor, a voltage application process at a high temperature as shown in FIG. 2C is performed. Even when the (aging treatment) is performed, it can be surely and easily performed by using the contact pin 36b as a negative terminal for voltage application, and in order to improve the reliability of heat resistance, it is shown in FIG. 2 (d). Even when the heat treatment is performed in the high temperature atmosphere 37 as described above, the cathode conductor layer 2 in which the surface conductor layer 35 is exposed to the outside of the exterior resin layer 32.
Since it covers a part of 9 and functions as a protective film, the surface of the cathode conductor layer 29 is not oxidized and impurities are not attached to the surface of the cathode conductor layer 29. The heat treatment can be easily carried out without deterioration in the electrical connectivity and surface shape between the cathode side external terminal layer 39 and the cathode conductor layer 29.

【0024】なお、上記本発明の一実施の形態において
は、高温中での電圧印加処理(エージング処理)と高温
雰囲気37中での熱処理の両方を行うようにしたものに
ついて説明したが、いずれか一方のみを行うようにして
もよいものである。
In the above-described embodiment of the present invention, the case where both the voltage application process (aging process) at a high temperature and the heat treatment in the high temperature atmosphere 37 are performed has been described. Only one of them may be performed.

【0025】[0025]

【発明の効果】以上のように本発明のチップ状固体電解
コンデンサの製造方法は、陽極導出線の一端が表出する
ように陽極導出線を埋設した弁作用金属からなる陽極体
に誘電体酸化皮膜、固体電解質層、陰極層を設けてコン
デンサ素子を構成し、さらに前記陰極層には陰極導電体
層を形成し、その後、前記陽極導出線の一部と陰極導電
体層の一部が外部に表出するように前記コンデンサ素子
を外装樹脂層で被覆し、次に前記陰極導電体層の一部が
外部に表出した外装樹脂層における陰極導出面に表面導
電体層を形成し、この状態で高温中での電圧印加処理
(エージング処理)と高温雰囲気中での熱処理のいずれ
か一方もしくは両方を施し、その後、前記表面導電体層
を除去し、さらにその後、前記外装樹脂層より表出した
陽極導出線の一部および陰極導電体層の一部と接続され
るように陽極側外部端子層および陰極側外部端子層を形
成したもので、この製造方法によれば、陰極導電体層の
一部が外部に表出した外装樹脂層における陰極導出面に
表面導電体層を形成しているため、この表面導電体層の
存在により陰極導電体層と電気的に導通する面積は拡大
することになり、これにより、コンデンサの電気的特性
の改善を行うための高温中での電圧印加処理(エージン
グ処理)も、電圧印加のマイナス端子としてのコンタク
トピンを用いて確実に容易に行うことができ、また耐熱
の信頼性を向上させるために高温雰囲気中で熱処理を行
う場合においても、表面導電体層が外装樹脂層の外部に
表出した陰極導電体層の一部を覆って保護膜としての機
能を果たしているため、陰極導電体層の表面が酸化した
り、陰極導電体層の表面に不純物が付着したりするとい
うことはなくなり、これにより、陰極側外部端子層と陰
極導電体層との電気的接続性や表面形状が悪くなるとい
うこともなく、熱処理を容易に行うことができるもので
ある。
As described above, according to the method for manufacturing the chip solid electrolytic capacitor of the present invention, the anode body made of the valve action metal in which the anode lead wire is embedded so that one end of the anode lead wire is exposed is dielectrically oxidized. A capacitor, a solid electrolyte layer, and a cathode layer are provided to form a capacitor element, and a cathode conductor layer is formed on the cathode layer. Thereafter, a part of the anode lead wire and a part of the cathode conductor layer are externally formed. To cover the capacitor element with an exterior resin layer, and then a surface conductor layer is formed on the cathode lead-out surface of the exterior resin layer in which a part of the cathode conductor layer is exposed to the outside. In this state, one or both of a voltage application treatment (aging treatment) in a high temperature and a heat treatment in a high temperature atmosphere is performed, and then the surface conductor layer is removed, and then exposed from the exterior resin layer. Part of the anode lead wire The anode-side external terminal layer and the cathode-side external terminal layer are formed so as to be connected to a part of the cathode conductor layer, and according to this manufacturing method, a part of the cathode conductor layer is exposed to the outside. Since the surface conductor layer is formed on the cathode lead-out surface of the exterior resin layer, the presence of this surface conductor layer expands the area electrically connected to the cathode conductor layer, thereby increasing the capacitor. The voltage application process (aging process) at a high temperature to improve the electrical characteristics of the can be reliably and easily performed by using the contact pin as the negative terminal of the voltage application, and the reliability of heat resistance can be improved. Even when performing heat treatment in a high-temperature atmosphere to improve, because the surface conductor layer covers a part of the cathode conductor layer exposed to the outside of the exterior resin layer and functions as a protective film, Conductor layer The surface does not oxidize and impurities do not adhere to the surface of the cathode conductor layer, which deteriorates the electrical connectivity and surface shape between the cathode side external terminal layer and the cathode conductor layer. Without that, the heat treatment can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態におけるチップ状固体電
解コンデンサを示す断面図
FIG. 1 is a sectional view showing a chip solid electrolytic capacitor according to an embodiment of the present invention.

【図2】(a)〜(f)同チップ状固体電解コンデンサ
の製造工程を示した外観斜視図
2A to 2F are perspective views showing the appearance of the same chip solid electrolytic capacitor manufacturing process.

【図3】従来のチップ状固体電解コンデンサを示す断面
FIG. 3 is a sectional view showing a conventional chip solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

21 陽極体 22 陽極導出線 25 誘電体酸化皮膜 26 固体電解質層 27 陰極層 28 コンデンサ素子 29 陰極導電体層 32 外装樹脂層 34 陰極導出面 35 表面導電体層 37 高温雰囲気 38 陽極側外部端子層 39 陰極側外部端子層 21 Anode body 22 Anode lead wire 25 Dielectric oxide film 26 Solid electrolyte layer 27 cathode layer 28 Capacitor element 29 Cathode conductor layer 32 Exterior resin layer 34 Cathode derivation surface 35 Surface Conductor Layer 37 High temperature atmosphere 38 Anode side external terminal layer 39 Cathode side external terminal layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西山 澄夫 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平7−240346(JP,A) 特開 平5−226192(JP,A) 特開 昭54−127564(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/04 307 H01G 9/00 H01G 9/012 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sumio Nishiyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-7-240346 (JP, A) JP-A-5- 226192 (JP, A) JP-A-54-127564 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01G 9/04 307 H01G 9/00 H01G 9/012

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極導出線の一端が表出するように陽極
導出線を埋設した弁作用金属からなる陽極体に誘電体酸
化皮膜、固体電解質層、陰極層を設けてコンデンサ素子
を構成し、さらに前記陰極層には陰極導電体層を形成
し、その後、前記陽極導出線の一部と陰極導電体層の一
部が外部に表出するように前記コンデンサ素子を外装樹
脂層で被覆し、次に前記陰極導電体層の一部が外部に表
出した外装樹脂層における陰極導出面に表面導電体層を
形成し、この状態で高温中での電圧印加処理(エージン
グ処理)と高温雰囲気中での熱処理のいずれか一方もし
くは両方を施し、その後、前記表面導電体層を除去し、
さらにその後、前記外装樹脂層より表出した陽極導出線
の一部および陰極導電体層の一部と接続されるように陽
極側外部端子層および陰極側外部端子層を形成したチッ
プ状固体電解コンデンサの製造方法。
1. A capacitor element is constructed by providing a dielectric oxide film, a solid electrolyte layer, and a cathode layer on an anode body made of a valve metal in which the anode lead wire is embedded so that one end of the anode lead wire is exposed. Further, a cathode conductor layer is formed on the cathode layer, and then the capacitor element is covered with an exterior resin layer so that a part of the anode lead wire and a part of the cathode conductor layer are exposed to the outside, Next, a surface conductor layer is formed on the cathode lead-out surface of the exterior resin layer in which a part of the cathode conductor layer is exposed to the outside, and in this state, a voltage application process (aging process) at high temperature and a high temperature atmosphere are performed. Either one or both of the heat treatments in the above step, and then removing the surface conductor layer,
After that, a chip-shaped solid electrolytic capacitor in which an anode-side external terminal layer and a cathode-side external terminal layer are formed so as to be connected to a part of the anode lead wire and a part of the cathode conductor layer exposed from the exterior resin layer. Manufacturing method.
【請求項2】 表面導電体層をカーボンペースト、導電
性ペーストの少なくとも1種類により構成した請求項1
に記載のチップ状固体電解コンデンサの製造方法。
2. The surface conductor layer is composed of at least one of carbon paste and conductive paste.
A method for manufacturing the chip-shaped solid electrolytic capacitor described in.
【請求項3】 表面導電体層の除去をサンドブラストに
より行うようにした請求項1に記載のチップ状固体電解
コンデンサの製造方法。
3. The method for manufacturing a chip solid electrolytic capacitor according to claim 1, wherein the removal of the surface conductor layer is performed by sandblasting.
【請求項4】 高温雰囲気が金属の溶融状態、恒温炉、
赤外炉の高温雰囲気の少なくとも1種類からなる請求項
1に記載のチップ状固体電解コンデンサの製造方法。
4. The high temperature atmosphere is a molten state of metal, a constant temperature furnace,
The method for manufacturing a chip solid electrolytic capacitor according to claim 1, wherein the solid electrolyte capacitor has at least one type of high temperature atmosphere in an infrared furnace.
JP03588497A 1997-02-20 1997-02-20 Manufacturing method of chip-shaped solid electrolytic capacitor Expired - Fee Related JP3478041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03588497A JP3478041B2 (en) 1997-02-20 1997-02-20 Manufacturing method of chip-shaped solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03588497A JP3478041B2 (en) 1997-02-20 1997-02-20 Manufacturing method of chip-shaped solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH10233346A JPH10233346A (en) 1998-09-02
JP3478041B2 true JP3478041B2 (en) 2003-12-10

Family

ID=12454450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03588497A Expired - Fee Related JP3478041B2 (en) 1997-02-20 1997-02-20 Manufacturing method of chip-shaped solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3478041B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304427B1 (en) 2000-01-07 2001-10-16 Kemet Electronics Corporation Combinations of materials to minimize ESR and maximize ESR stability of surface mount valve-metal capacitors after exposure to heat and/or humidity
JP5020432B2 (en) * 2000-08-04 2012-09-05 パナソニック株式会社 Chip type multilayer capacitor
JP5041107B2 (en) * 2012-04-04 2012-10-03 パナソニック株式会社 Chip type multilayer capacitor

Also Published As

Publication number Publication date
JPH10233346A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
US9978531B2 (en) Solid electrolytic capacitor and method for manufacturing same
JP3350846B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JP4056531B2 (en) Surface mount type chip capacitor and manufacturing method thereof
GB2289988A (en) Method of manufacturing a tantalum solid electrolytic capacitor
JP3158453B2 (en) Manufacturing method of chip type solid electrolytic capacitor with fuse
JP3478041B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP2003045753A (en) Laminated solid electrolytic capacitor
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
JP4337423B2 (en) Circuit module
JP2641010B2 (en) Chip electronic components
JPH0620883A (en) Manufacture of chip-type solid-state electrolytic capacitor
JP3338396B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH10125558A (en) Solid-state capacitor using conductive functional high polymer film as solid electrolyte
JP2895907B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP3196783B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JPH03116812A (en) Solid electrolytic capacitor
JPH06275477A (en) Chip-like solid electrolytic capacitor and its production
JP3185275B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JPS6342522Y2 (en)
JPH05291087A (en) Chip-type solid electrolytic capacitor
JPH09246101A (en) Chip solid electrolytic capacitor
JPH06224079A (en) Chip-type solid electrolytic capacitor and its manufacture
JPH0590095A (en) Chip type solid electrolytic capacitor and its manufacture
JPS6255290B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees