JPH0590095A - Chip type solid electrolytic capacitor and its manufacture - Google Patents

Chip type solid electrolytic capacitor and its manufacture

Info

Publication number
JPH0590095A
JPH0590095A JP25108191A JP25108191A JPH0590095A JP H0590095 A JPH0590095 A JP H0590095A JP 25108191 A JP25108191 A JP 25108191A JP 25108191 A JP25108191 A JP 25108191A JP H0590095 A JPH0590095 A JP H0590095A
Authority
JP
Japan
Prior art keywords
anode
anode lead
cathode
layer
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25108191A
Other languages
Japanese (ja)
Inventor
Hideto Yamaguchi
秀人 山口
Nobuo Hasegawa
信男 長谷川
Sumio Nishiyama
澄夫 西山
Takashi Ida
隆 伊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25108191A priority Critical patent/JPH0590095A/en
Publication of JPH0590095A publication Critical patent/JPH0590095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To provide a downsized high capacity chip type solid electrolytic capacitor, which is excellent in the points of electric properties and volume efficiency and a method for mass-producing the capacitors at a low cost. CONSTITUTION:This capacitor is equipped with armor resin 18, which covers a capacitor element 11a so that it may be exposed in the direction where the phases of the anode lead wire 12 and the cathode part oppose each other, and is provided, at the anode lead face 12a of this armor resin 18, with an anode metallic layer 20 so that it may cover all the faces of the anode lead wire 12 exposed from the armor resin 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチップ状固体電解コンデ
ンサおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip solid electrolytic capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器の軽薄短小化と面実装技
術の進展からチップ部品が急増している。チップ状固体
電解コンデンサにおいても小形大容量化が進展する中で
チップ部品自身の一層の小形化が要求されている。
2. Description of the Related Art In recent years, the number of chip parts has increased rapidly due to the miniaturization of electronic equipment and the progress of surface mounting technology. Even in the chip-type solid electrolytic capacitor, the miniaturization of the chip component itself is required as the size and capacity of the chip solid electrolytic capacitor are increasing.

【0003】以下に従来のチップ状タンタル固体電解コ
ンデンサについて、図4にもとづいて説明する。この図
4において、1は弁作用金属であるタンタル金属粉末を
成形焼結した多孔質の陽極体で、この陽極体1より導出
したタンタル線からなる陽極導出線2の一部と陽極体1
の全面に陽極酸化により誘電体性酸化皮膜を形成し、さ
らにこの表面に二酸化マンガンなどの電解質層を形成し
ている。3は陽極導出線2に装着したテフロン板で、こ
のテフロン板3は前記電解質層の形成時に陽極導出線2
へ硝酸マンガンが這い上がって二酸化マンガンが付着す
るのを防止する絶縁板である。また前記電解質層の上に
は浸漬法によりカーボン層および銀塗料層よりなる陰極
層4を順次積層形成してコンデンサ素子1aを構成して
いる。5は陽極端子で、この陽極端子5は前記陽極導出
線2に溶接により接続され、外装樹脂形成後折り曲げら
れる。6は陰極端子で、この陰極端子6は前記コンデン
サ素子1aにおける陰極層4に導電性接着剤7により接
合され、外装樹脂形成後折り曲げられる。8はコンデン
サ素子1a全体をモールド成形により被覆する外装樹脂
である。
A conventional chip-shaped tantalum solid electrolytic capacitor will be described below with reference to FIG. In FIG. 4, reference numeral 1 denotes a porous anode body formed by molding and sintering tantalum metal powder which is a valve metal, and a part of an anode lead wire 2 made of a tantalum wire led from the anode body 1 and the anode body 1.
A dielectric oxide film is formed on the entire surface of the anode by anodic oxidation, and an electrolyte layer of manganese dioxide or the like is further formed on this surface. Reference numeral 3 is a Teflon plate attached to the anode lead wire 2, and this Teflon plate 3 is used for forming the electrolyte layer.
It is an insulating plate that prevents manganese nitrate from creeping up and adhering to manganese dioxide. A cathode layer 4 composed of a carbon layer and a silver coating layer is sequentially formed on the electrolyte layer by a dipping method to form a capacitor element 1a. Reference numeral 5 denotes an anode terminal, which is connected to the anode lead wire 2 by welding, and is bent after the exterior resin is formed. Reference numeral 6 denotes a cathode terminal. The cathode terminal 6 is joined to the cathode layer 4 of the capacitor element 1a with a conductive adhesive 7 and is bent after the exterior resin is formed. Reference numeral 8 is an exterior resin that covers the entire capacitor element 1a by molding.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のチップ状タンタル固体電解コンデンサにおい
ては、コンデンサ素子1aから導出した陽極導出線2と
陽極端子5との溶接時において機械的および熱的なスト
レスが作用して漏れ電流が増加するとともに、さらにこ
の溶接部分のスペース寸法と陽極端子5を外部に取り出
すスペース寸法が大きいため、コンデンサ素子1aの大
きさ,形状について構造的な寸法制限があり、またコン
デンサ素子1aの体積が製品の体積に占める割合は、外
形寸法が3.2×1.6×1.6(mm)の製品の場合は
10%と低いため、コンデンサの体積効率や経済性の点
で問題点を有していた。また外装樹脂8に沿うように陽
極端子5および陰極端子6を折り曲げることが難しいこ
とから、外観不良が出たり、コンデンサ素子1aにスト
レスがかかって漏れ電流が大きくなるという問題点を有
していた。
However, in such a conventional chip-shaped tantalum solid electrolytic capacitor as described above, mechanically and thermally when the anode lead wire 2 and the anode terminal 5 led from the capacitor element 1a are welded. The stress acts to increase the leakage current, and the space size of the welded portion and the space size for taking out the anode terminal 5 to the outside are large, so that there is a structural size limitation on the size and shape of the capacitor element 1a. Further, the volume ratio of the capacitor element 1a to the volume of the product is as low as 10% in the case of the product having the external dimensions of 3.2 × 1.6 × 1.6 (mm), so that the volume efficiency and economical efficiency of the capacitor are reduced. There was a problem in that. Further, since it is difficult to bend the anode terminal 5 and the cathode terminal 6 along the exterior resin 8, there is a problem that a defective appearance occurs and a stress is applied to the capacitor element 1a to increase a leakage current. ..

【0005】本発明は上記従来の問題点を解決するもの
で、電気特性ならびに体積効率の点において優れ、かつ
小形化,大容量化がはかれるチップ状固体電解コンデン
サおよびそれを安価にして容易に量産することができる
チップ状固体電解コンデンサの製造方法を提供すること
を目的とするものである。
The present invention solves the above-mentioned problems of the prior art and is excellent in electrical characteristics and volume efficiency, and can be miniaturized and increased in capacity, and a chip-shaped solid electrolytic capacitor which is inexpensive and can be easily mass-produced. It is an object of the present invention to provide a method for manufacturing a chip-shaped solid electrolytic capacitor that can be manufactured.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明のチップ状固体電解コンデンサは、陽極導出線
の一端が表出するように陽極導出線を埋設した弁作用金
属からなる陽極体に誘電体性酸化皮膜,電解質層,陰極
層を設けて構成したコンデンサ素子と、このコンデンサ
素子を前記陽極導出線および陰極部が相対向する方向に
露出するように被覆した外装樹脂と、この外装樹脂の陽
極導出面に外装樹脂より露出した陽極導出線のすべての
面を覆うように設けられた陽極金属層と、前記外装樹脂
の陰極部に前記陰極層と電気的に接続されるように設け
られた陰極金属層とを備えたものである。
In order to achieve the above object, a chip solid electrolytic capacitor of the present invention is an anode body made of a valve action metal in which an anode lead wire is embedded so that one end of the anode lead wire is exposed. A capacitor element formed by providing a dielectric oxide film, an electrolyte layer, and a cathode layer on the outside, an exterior resin covering the capacitor element so that the anode lead wire and the cathode portion are exposed in opposite directions, and the exterior resin. Anode metal layer provided on the anode lead-out surface of the resin so as to cover all surfaces of the anode lead-out wire exposed from the exterior resin, and provided on the cathode portion of the exterior resin so as to be electrically connected to the cathode layer. And a cathode metal layer formed thereon.

【0007】[0007]

【作用】上記した構成によれば、外装樹脂の陽極導出面
に外装樹脂より露出した陽極導出線に陽極金属層を形成
するようにしているため、従来のような外部端子を外部
に取り出すスペースや外部端子の折り曲げスペースを省
くことができ、これにより、コンデンサの体積効率を上
げることができる。また陽極金属層を無電解メッキ層を
含む金属層で構成すれば、陽極端子となる陽極金属層と
陽極導出線との接続が同時に行われるため、生産性に優
れたものが得られ、さらに外装樹脂より表出した陽極導
出線のすべての面を覆うように陽極金属層を設けている
ため、自動実装における機械的ストレスや熱ストレスに
対しても、陽極導出線と陽極金属層との界面に物理的な
劣化は生じにくく、良好な電気的特性を得ることができ
る。
According to the above-mentioned structure, the anode metal layer is formed on the anode lead-out surface of the exterior resin on the anode lead-out wire exposed from the exterior resin. The space for bending the external terminal can be saved, and the volume efficiency of the capacitor can be increased. Further, if the anode metal layer is composed of a metal layer including an electroless plating layer, the anode metal layer serving as the anode terminal and the anode lead wire are connected at the same time, so that a product having excellent productivity can be obtained, and further the exterior Since the anode metal layer is provided so as to cover all the surfaces of the anode lead wire exposed from the resin, the interface between the anode lead wire and the anode metal layer is not affected by mechanical stress or thermal stress during automatic mounting. Physical deterioration is unlikely to occur, and good electrical characteristics can be obtained.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。図1は本発明の一実施例におけるチ
ップ状タンタル固体電解コンデンサの断面図を示し、ま
た図2はコンデンサ素子に陰極導電体層を形成した状態
を示したものである。図1,図2において、11は弁作
用金属であるタンタル金属粉末を成形焼結した多孔質の
陽極体で、この陽極体11の表面には陽極酸化により誘
電体性酸化皮膜を形成し、さらにこの表面に二酸化マン
ガンなどの電解質層を形成している。また陽極導出線1
2はタンタル線からなり、前記陽極体11から導出して
いるものである。そして、この陽極体11の表面への一
連の処理工程は金属リボン13に陽極導出線12を接続
した状態で行われる。14は陽極導出線12に装着した
テフロン板で、このテフロン板14は前記陽極体11へ
の電解質層の形成時に陽極導出線12へ硝酸マンガンが
這い上がって二酸化マンガンが付着するのを防止する絶
縁板である。さらに前記陽極体11の電解質層の上には
浸漬法によりカーボン層および銀塗料層よりなる陰極層
15を順次積層形成してコンデンサ素子11aを構成し
ている。16は陰極導電体層で、この陰極導電体層16
は、コンデンサ素子11aの陰極層15のうち、陽極導
出線12と反対側に位置する対向面17と、この対向面
17に隣接する隣接面の陰極層15の一部に形成され
る。この場合、陰極導電体層16は導電性樹脂の粘稠液
にコンデンサ素子11aを浸漬するか、あるいはディス
ペンサーを用いてコンデンサ素子11aに適量塗布した
後、乾燥,硬化させることにより形成している。18は
外装樹脂で、この外装樹脂18は、陽極導出線12が片
側に引き出されるようにコンデンサ素子11aを金型に
セットし、そして陰極導電体層16を含むコンデンサ素
子11a全体が樹脂外装されるように、エポキシ樹脂を
用いたトランスファーモールドにより形成するものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of a chip-shaped tantalum solid electrolytic capacitor in one embodiment of the present invention, and FIG. 2 shows a state in which a cathode conductor layer is formed on a capacitor element. In FIG. 1 and FIG. 2, 11 is a porous anode body formed by molding and sintering tantalum metal powder which is a valve metal, and a dielectric oxide film is formed on the surface of this anode body 11 by anodic oxidation. An electrolyte layer of manganese dioxide or the like is formed on this surface. In addition, anode lead wire 1
Reference numeral 2 is a tantalum wire, which is led out from the anode body 11. Then, a series of processing steps on the surface of the anode body 11 are performed in a state where the anode lead wire 12 is connected to the metal ribbon 13. Reference numeral 14 is a Teflon plate attached to the anode lead-out wire 12. The Teflon plate 14 is an insulating member that prevents manganese nitrate from crawling up and adhering to the anode lead-out wire 12 when the electrolyte layer is formed on the anode body 11. It is a plate. Further, a cathode layer 15 composed of a carbon layer and a silver coating layer is sequentially laminated on the electrolyte layer of the anode body 11 by a dipping method to form a capacitor element 11a. 16 is a cathode conductor layer, and this cathode conductor layer 16
Is formed on a facing surface 17 of the cathode layer 15 of the capacitor element 11 a that is located on the side opposite to the anode lead-out line 12, and a part of the cathode layer 15 that is an adjacent surface adjacent to the facing surface 17. In this case, the cathode conductor layer 16 is formed by immersing the capacitor element 11a in a viscous liquid of a conductive resin, or by applying an appropriate amount to the capacitor element 11a using a dispenser, followed by drying and curing. Reference numeral 18 denotes an exterior resin. The exterior resin 18 sets the capacitor element 11a in a mold so that the anode lead wire 12 is drawn out to one side, and the entire capacitor element 11a including the cathode conductor layer 16 is resin-covered. As described above, it is formed by transfer molding using an epoxy resin.

【0009】図3(a)(b)(c)(d)(e)
(f)(g)は本発明の一実施例におけるチップ状タン
タル固体電解コンデンサの製造工程を示したもので、図
3(a)において、12aは外装樹脂18における陽極
導出面で、この陽極導出面12aは外装樹脂18の成形
体において陽極導出線12の近傍に位置して凹形状に構
成されており、この凹形状により、陽極導出線12が外
装樹脂18の成形体の外形寸法からはみ出すことはな
く、露出面積を多くとることができる。一方、この外装
樹脂18における陽極導出線12と反対側に位置する対
向面17に形成した陰極導電体層16は製品の外形寸法
より長くなっているため、外装樹脂18の成形体は製品
の外形寸法より長くなっているものである。
3 (a) (b) (c) (d) (e)
(F) and (g) show the manufacturing process of the chip-shaped tantalum solid electrolytic capacitor in one embodiment of the present invention. In FIG. 3 (a), 12a is the anode lead-out surface of the exterior resin 18, and this anode lead-out surface. The surface 12a is located in the vicinity of the anode lead wire 12 in the molded body of the exterior resin 18 and has a concave shape, and the concave shape prevents the anode lead wire 12 from protruding from the external dimensions of the molded body of the exterior resin 18. However, the exposed area can be increased. On the other hand, the cathode conductor layer 16 formed on the facing surface 17 of the exterior resin 18 located on the opposite side of the anode lead wire 12 is longer than the external dimensions of the product. It is longer than the size.

【0010】図3(b)は、図3(a)における外装樹
脂18の成形体を製品の外形寸法に切断または研削した
状態を示す。この図3(b)において、16aは陰極導
出面で、この陰極導出面16aは外装樹脂18と陰極導
電体層16を切断することにより、図1に示すように表
出するもので、そしてこの図1における外装樹脂18の
成形体より表出している陽極導出線12,陰極導出面1
6aおよび外装樹脂18の成形体のそれぞれの表面にサ
ンドブラストを施すことにより、表面の粗面化と外装樹
脂18の成形体より表出している陽極導出線12の誘電
体性酸化皮膜の除去を行っている。
FIG. 3B shows a state in which the molded body of the exterior resin 18 in FIG. 3A is cut or ground to the external dimensions of the product. In FIG. 3 (b), 16a is a cathode lead-out surface, and this cathode lead-out surface 16a is exposed as shown in FIG. 1 by cutting the exterior resin 18 and the cathode conductor layer 16. Anode lead wire 12 and cathode lead surface 1 exposed from the molded body of the exterior resin 18 in FIG.
By subjecting the surfaces of the molded body 6a and the exterior resin 18 to sandblasting, the surface is roughened and the dielectric oxide film of the anode lead wire 12 exposed from the exterior resin 18 molding is removed. ing.

【0011】図3(c)は陽極導出線12が陽極導出面
12aの凹形状内に収まるように、金属リボン13より
陽極導出線12を切り離してL字形状に折り曲げた状態
を示したものである。
FIG. 3 (c) shows a state in which the anode lead-out wire 12 is separated from the metal ribbon 13 and bent into an L-shape so that the anode lead-out wire 12 fits within the concave shape of the anode lead-out surface 12a. is there.

【0012】図3(d)は陽極導出線12が陽極導出面
12aの凹形状内に収まるように金属リボン13より陽
極導出線12を切り離した状態を示したもので、図3
(c)のようにL字形状に折り曲げずに、図3(d)の
ような形にしてもよいものである。
FIG. 3D shows a state in which the anode lead-out wire 12 is separated from the metal ribbon 13 so that the anode lead-out wire 12 fits within the concave shape of the anode lead-out surface 12a.
Instead of bending it into an L-shape as shown in FIG. 3C, the shape shown in FIG.

【0013】図3(e)は金属層19の形成状態を示し
たもので、この金属層19は図1に示すように、陽極導
出線12と陽極導出面12aおよび外装樹脂18の成形
体の一部の表面に形成される陽極金属層20と、陰極導
出面16aおよび外装樹脂18の成形体の一部の表面に
形成される陰極金属層21とからなり、これらの陽極金
属層20と陰極金属層21は、まず、外装樹脂18より
露出した陽極導出線12のすべての面、陽極導出面12
a,陰極導出面16aおよび外装樹脂18の成形体全面
のそれぞれの表面に、脱脂,パラジウム触媒付与の前処
理を施した後、無電解メッキにより形成される。この無
電解メッキによる陽極金属層20および陰極金属層21
の金属はニッケル,銅のいずれかを用いることができ
る。そしてこの無電解メッキを用いることにより、金属
表面,非金属表面に関わらず、同時に、しかも凹形状の
ような複雑な形状にも均一に、かつ薄く形成することが
容易にできるため、生産性に優れており、また外形寸法
のばらつきも小さくすることができ、かつ機械的,熱的
ストレスも加わらないため、漏れ電流の増加は生じず、
非常に歩留まりがよいものであ。さらにこの無電解メッ
キにより形成される陽極金属層20と陰極金属層21の
厚さを0.5〜5μmの範囲にすることにより、下地と
の密着性にも優れ、かつ材料の使用量およびコストも従
来の製造方法より少なくすることができる。また無電解
メッキにより形成される陽極金属層20と陰極金属層2
1の上にさらに電気メッキによる金属層を形成して陽極
金属層20と陰極金属層21の機械強度の向上をはかる
ようにしてもよいものである。
FIG. 3 (e) shows the state of formation of the metal layer 19, which is formed of the anode lead wire 12, the anode lead surface 12a, and the molding resin 18 as shown in FIG. The anode metal layer 20 is formed on a part of the surface, and the cathode metal layer 21 is formed on the cathode lead-out surface 16a and a part of the surface of the molded body of the exterior resin 18, and the anode metal layer 20 and the cathode are formed. The metal layer 21 is formed on the entire surface of the anode lead wire 12 exposed from the exterior resin 18 and the anode lead surface 12 first.
The surface of a, the cathode lead-out surface 16a, and the entire surface of the molded body of the exterior resin 18 are subjected to degreasing and pretreatment of applying a palladium catalyst, and then formed by electroless plating. Anode metal layer 20 and cathode metal layer 21 formed by this electroless plating
As the metal, either nickel or copper can be used. By using this electroless plating, it is possible to easily and uniformly form a thin shape even on a complicated shape such as a concave shape, regardless of whether it is a metal surface or a non-metal surface. It is excellent, and the variation in external dimensions can be reduced, and since mechanical and thermal stress is not applied, increase in leakage current does not occur,
It has a very good yield. Further, by setting the thickness of the anode metal layer 20 and the cathode metal layer 21 formed by this electroless plating within the range of 0.5 to 5 μm, the adhesion to the base is excellent, and the amount of material used and the cost are reduced. Can be reduced compared with the conventional manufacturing method. Further, the anode metal layer 20 and the cathode metal layer 2 formed by electroless plating
It is also possible to further form a metal layer by electroplating on 1 to improve the mechanical strength of the anode metal layer 20 and the cathode metal layer 21.

【0014】図3(f)は陽極金属層20および陰極金
属層21を形成した状態を示したもので、この場合、無
電解メッキにより形成された金属層を陽極金属層20お
よび陰極金属層21が残るように除去する。
FIG. 3 (f) shows a state in which the anode metal layer 20 and the cathode metal layer 21 are formed. In this case, the metal layer formed by electroless plating is used as the anode metal layer 20 and the cathode metal layer 21. Remove so that it remains.

【0015】図3(g)は陽極金属層20および陰極金
属層21を半田金属層で被覆した状態を示したもので、
22は陽極側の半田金属層、23は陰極側の半田金属層
である。これらの半田金属層22,23は溶融半田によ
る半田コーティングまたは電解半田メッキにより形成さ
れる。
FIG. 3 (g) shows a state in which the anode metal layer 20 and the cathode metal layer 21 are covered with a solder metal layer.
22 is a solder metal layer on the anode side, and 23 is a solder metal layer on the cathode side. These solder metal layers 22 and 23 are formed by solder coating with molten solder or electrolytic solder plating.

【0016】なお、上記本発明の一実施例においては、
コンデンサ素子11aの陰極層15とは別個に陰極導電
体層16を設けたものについて説明したが、コンデンサ
素子11aを外装樹脂18で被覆した場合、前記陰極層
15が外装樹脂18の端面より直接露出するように構成
してもよく、要は外装樹脂18の端面より陰極部が露出
するように構成すればよいものである。
In the above embodiment of the present invention,
The capacitor element 11a provided with the cathode conductor layer 16 separately from the cathode layer 15 has been described. However, when the capacitor element 11a is covered with the exterior resin 18, the cathode layer 15 is directly exposed from the end surface of the exterior resin 18. May be configured so that the cathode part is exposed from the end surface of the exterior resin 18.

【0017】[0017]

【発明の効果】以上のように本発明によれば、外装樹脂
の陽極導出面に外装樹脂より露出した陽極導出線に陽極
金属層を形成するようにしているため、従来のような外
部端子を外部に取り出すスペースや外部端子の折り曲げ
スペースを省くことができ、これにより、コンデンサの
体積効率を2〜3倍に上げることができたるめ、コンデ
ンサの小形化,大容量化がはかれる。また陽極金属層を
無電解メッキ層を含む金属層で構成すれば、陽極端子と
なる陽極金属層と陽極導出線との接続が同時に行われる
ことになり、これにより、生産コストを大幅に低減する
ことができ、さらに外装樹脂より露出した陽極導出線の
すべての面を覆うように陽極金属層を設けているため、
半田耐熱性試験や60℃,90%RHの耐湿試験、自動
実装時における機械的ストレスに対しても、陽極導出線
と陽極金属層との界面に物理的な劣化は生じにくく、良
好な電気的特性を得ることができるものである。
As described above, according to the present invention, since the anode metal layer is formed on the anode lead-out surface of the exterior resin on the anode lead-out wire exposed from the exterior resin, the conventional external terminal is not used. It is possible to save a space for taking out to the outside and a space for bending an external terminal, which makes it possible to increase the volumetric efficiency of the capacitor by a factor of 2 to 3 and to reduce the size and capacity of the capacitor. Further, if the anode metal layer is composed of a metal layer including an electroless plating layer, the anode metal layer that will be the anode terminal and the anode lead wire will be connected at the same time, thereby significantly reducing the production cost. Since the anode metal layer is provided so as to cover all surfaces of the anode lead wire exposed from the exterior resin,
Even when subjected to a solder heat resistance test, a humidity resistance test at 60 ° C. and 90% RH, or mechanical stress during automatic mounting, physical deterioration is unlikely to occur at the interface between the anode lead wire and the anode metal layer, and good electrical The characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるチップ状タンタル固
体電解コンデンサの断面図
FIG. 1 is a sectional view of a chip-shaped tantalum solid electrolytic capacitor according to an embodiment of the present invention.

【図2】同コンデンサにおけるコンデンサ素子に陰極導
電体層を形成した状態を示す断面図
FIG. 2 is a sectional view showing a state in which a cathode conductor layer is formed on a capacitor element of the same capacitor.

【図3】(a)〜(g)本発明の一実施例におけるチッ
プ状タンタル固体電解コンデンサの製造工程を示す外観
斜視図
3 (a) to (g) are external perspective views showing a manufacturing process of a chip-shaped tantalum solid electrolytic capacitor in one embodiment of the present invention.

【図4】従来のチップ状タンタル固体電解コンデンサの
断面図
FIG. 4 is a sectional view of a conventional chip-shaped tantalum solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

11 陽極体 11a コンデンサ素子 12 陽極導出線 12a 陽極導出面 15 陰極層 16a 陰極導出面 18 外装樹脂 20 陽極金属層 21 陰極金属層 11 Anode body 11a Capacitor element 12 Anode lead wire 12a Anode lead surface 15 Cathode layer 16a Cathode lead surface 18 Exterior resin 20 Anode metal layer 21 Cathode metal layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊田 隆 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Ida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】陽極導出線の一端が表出するように陽極導
出線を埋設した弁作用金属からなる陽極体に誘電体性酸
化皮膜,電解質層,陰極層を設けて構成したコンデンサ
素子と、このコンデンサ素子を前記陽極導出線と陰極部
が相対向する方向に露出するように被覆した外装樹脂
と、この外装樹脂の陽極導出面に外装樹脂より露出した
陽極導出線のすべての面を覆うように設けられた陽極金
属層と、前記外装樹脂の陰極部に前記陰極層と電気的に
接続されるように設けられた陰極金属層とを備えたチッ
プ状固体電解コンデンサ。
Claim: What is claimed is: 1. A capacitor element comprising a dielectric oxide film, an electrolyte layer and a cathode layer provided on an anode body made of a valve metal in which an anode lead wire is embedded so that one end of the anode lead wire is exposed. This capacitor element is coated so as to be exposed in a direction in which the anode lead wire and the cathode portion are opposed to each other, and the anode lead-out surface of the outer cover resin covers all the surfaces of the anode lead wire exposed from the lead resin. And a cathode metal layer provided on the cathode portion of the exterior resin so as to be electrically connected to the cathode layer.
【請求項2】陽極金属層が無電解メッキ層を含む金属層
である請求項1記載のチップ状固体電解コンデンサ。
2. The chip solid electrolytic capacitor according to claim 1, wherein the anode metal layer is a metal layer including an electroless plating layer.
【請求項3】無電解メッキ層の厚さが0.5〜5.0μ
mである請求項2記載のチップ状固体電解コンデンサ。
3. The thickness of the electroless plating layer is 0.5 to 5.0 μm.
The chip-shaped solid electrolytic capacitor according to claim 2, wherein the solid electrolytic capacitor is m.
【請求項4】陽極導出線の一端が表出するように陽極導
出線を埋設した弁作用金属からなる陽極体に誘電体性酸
化皮膜、電解質層、陰極層を順次積層形成してコンデン
サ素子を構成し、さらにこのコンデンサ素子を前記陽極
導出線と陰極部が相対向する方向に露出するように外装
樹脂で被覆し、その後、外装樹脂の陽極導出面に外装樹
脂より露出した陽極導出線のすべての面を覆うように陽
極金属層を形成し、さらにその後、外装樹脂の陰極部に
前記陰極層と電気的に接続されるように陰極金属層を形
成したことを特徴とするチップ状固体電解コンデンサの
製造方法。
4. A capacitor element is formed by sequentially laminating a dielectric oxide film, an electrolyte layer and a cathode layer on an anode body made of a valve metal in which an anode lead wire is embedded so that one end of the anode lead wire is exposed. Further, the capacitor element is covered with an exterior resin so that the anode lead wire and the cathode portion are exposed in a direction opposite to each other, and then all the anode lead wires exposed from the exterior resin on the anode lead surface of the exterior resin. An anode metal layer is formed so as to cover the surface of the chip, and then a cathode metal layer is formed on the cathode portion of the exterior resin so as to be electrically connected to the cathode layer. Manufacturing method.
JP25108191A 1991-09-30 1991-09-30 Chip type solid electrolytic capacitor and its manufacture Pending JPH0590095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25108191A JPH0590095A (en) 1991-09-30 1991-09-30 Chip type solid electrolytic capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25108191A JPH0590095A (en) 1991-09-30 1991-09-30 Chip type solid electrolytic capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH0590095A true JPH0590095A (en) 1993-04-09

Family

ID=17217358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25108191A Pending JPH0590095A (en) 1991-09-30 1991-09-30 Chip type solid electrolytic capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH0590095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201661A (en) * 1993-12-28 1995-08-04 Nec Corp Solid electrolytic chip capacitor and its production
KR100914890B1 (en) * 2007-12-17 2009-08-31 삼성전기주식회사 Solid electrolytic condenser and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201661A (en) * 1993-12-28 1995-08-04 Nec Corp Solid electrolytic chip capacitor and its production
KR100914890B1 (en) * 2007-12-17 2009-08-31 삼성전기주식회사 Solid electrolytic condenser and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4090288A (en) Solid electrolyte capacitor with metal loaded resin end caps
JP2001267181A (en) Chip type solid electrolytic capacitor
JP7465547B2 (en) Solid electrolytic capacitor and method for manufacturing the same
JPH0590095A (en) Chip type solid electrolytic capacitor and its manufacture
JPH11274002A (en) Chip-laminated electrolytic capacitor
JPH0620882A (en) Chip-type solid-state electrolytic capacitor
JP3168584B2 (en) Solid electrolytic capacitors
JPH06224082A (en) Manufacture of chip-type solid electrolytic capacitor
JPH06224083A (en) Chip-type solid electrolytic capacitor
JPH11274003A (en) Chip-type laminated solid electrolytic capacitor
JPS6129135B2 (en)
JPH1092695A (en) Solid electrolytic chip capacitor and its manufacturing method
JPH0620881A (en) Chip-type solid-state electrolytic capacitor and manufacture thereof
JPH06224080A (en) Manufacture of chip-type solid electropolytic capacitor
JP3453999B2 (en) Chip-shaped solid electrolytic capacitors
JPH07226342A (en) Chip-like solid-state electrolytic capacitor
JPH09266136A (en) Chip-shaped solid-state electrolytic capacitor
JPH0590088A (en) Chip type solid electrolytic capacitor and its manufacture
JP3185275B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JPH05291087A (en) Chip-type solid electrolytic capacitor
JPH06224079A (en) Chip-type solid electrolytic capacitor and its manufacture
JPH05226198A (en) Solid-state chip electrolytic capacitor
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0590086A (en) Manufacture of chip type solid electrolytic capacitor
JPH0590089A (en) Chip type solid electrolytic capacitor and its manufacture