JPH06207871A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH06207871A
JPH06207871A JP1918993A JP1918993A JPH06207871A JP H06207871 A JPH06207871 A JP H06207871A JP 1918993 A JP1918993 A JP 1918993A JP 1918993 A JP1918993 A JP 1918993A JP H06207871 A JPH06207871 A JP H06207871A
Authority
JP
Japan
Prior art keywords
type
pressure sensor
well regions
gauge
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1918993A
Other languages
Japanese (ja)
Other versions
JP2789291B2 (en
Inventor
Keizo Otani
圭三 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP1918993A priority Critical patent/JP2789291B2/en
Publication of JPH06207871A publication Critical patent/JPH06207871A/en
Application granted granted Critical
Publication of JP2789291B2 publication Critical patent/JP2789291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To lessen a leak current due to disjunction of a p-n junction and thereby to reduce a drift in a pressure sensor. CONSTITUTION:A p-type silicon substrate 1a having a large-thickness part 2 and a small-thickness diaphragm part 3 is used and a plurality of n-type well regions 10 are formed in a prescribed area of the small-thickness diaphragm part 3. In these n-type well regions 10, gage resistors 4A to 4D each constituted of a p-type diffused region and having a piezo-resistance effect are formed respectively and each of the gage resistors 4A to 4D, is incorporated in a bridge. In this case, each of the n-type well regions 10 is connected electrically by an electrode wiring 11 onto the high-potential side of each of the p-type gage resistors 4A to 4D constructing a bridge circuit and is fixed at the potential.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン等の半導体のピ
エゾ抵抗効果を利用して圧力を電気信号に変換する圧力
センサに関し、特にその抵抗素子間の絶縁分離に用いる
pn接合による逆方向の電流(リーク電流)を減らして
ドリフトを低減化した圧力センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor for converting pressure into an electric signal by utilizing the piezoresistive effect of a semiconductor such as silicon, and in particular, a reverse current due to a pn junction used for insulation separation between resistance elements. The present invention relates to a pressure sensor in which (leakage current) is reduced to reduce drift.

【0002】[0002]

【従来の技術】一般に、この種の圧力センサは、圧力の
導入によってゲージ抵抗の歪を発生させ、その抵抗素子
のピエゾ抵抗効果による抵抗変化を電気信号に変換して
圧力の値を測定するものであり、工業計測をはじめとす
る種々の用途に広く用いられている。この圧力センサ
は、その基本構造を図3(a)及び(b)に示すように、固定
部となる厚肉部2と薄肉ダイアフラム部3とを備えたチ
ップ状のn形シリコン基板1を用い、その薄肉ダイアフ
ラム部3内に、p形拡散領域からなるピエゾ抵抗効果を
有するゲージ抵抗4(4A〜4D)を形成した構成を有し
ている。
2. Description of the Related Art Generally, this type of pressure sensor measures strain by generating strain in gauge resistance by introducing pressure and converting resistance change due to the piezoresistive effect of the resistance element into an electric signal to measure the pressure value. And is widely used for various purposes including industrial measurement. As shown in FIGS. 3 (a) and 3 (b), the pressure sensor uses a chip-shaped n-type silicon substrate 1 having a thick part 2 serving as a fixing part and a thin diaphragm part 3 as shown in FIGS. In the thin diaphragm portion 3, a gauge resistor 4 (4 A to 4 D ) having a piezoresistive effect formed of a p-type diffusion region is formed.

【0003】そして、このシリコン基板1は厚肉部2に
おいて圧力導入口22を備えたガラスチューブ等の支持
部材21に固定されていて、この導入口22から圧力が
加えられると、薄肉ダイアフラム部3は歪み、それによ
ってゲージ抵抗4は抵抗値が変化する。そのため、これ
らゲージ抵抗4をブリッジ回路に組み込み、これに電圧
を印加すれば、そのブリッジ回路から圧力、つまり薄肉
ダイヤフラム部3の表裏の圧力PHおよびPLの差に応じ
た出力信号を取り出すことができる。
The silicon substrate 1 is fixed to a supporting member 21 such as a glass tube having a pressure introducing port 22 at the thick portion 2, and when pressure is applied from the introducing port 22, the thin diaphragm portion 3 is formed. Is distorted, which changes the resistance value of the gauge resistor 4. Therefore, if these gauge resistors 4 are incorporated in a bridge circuit and a voltage is applied to the bridge circuit, an output signal corresponding to the pressure, that is, the difference between the pressures P H and P L on the front and back sides of the thin diaphragm portion 3 is taken out from the bridge circuit. You can

【0004】ここで、ゲージ抵抗4を形成したシリコン
基板1の表面は、SiO2 などの絶縁膜5によって覆わ
れ、これを開口したコンタクト孔を通してゲージ抵抗4
と電気的に接続するアルミニウム(Al)等からなる引
出し電極6が形成され、外部との接続は通常ワイヤボン
ディングにより行われている。
Here, the surface of the silicon substrate 1 on which the gauge resistor 4 is formed is covered with an insulating film 5 such as SiO 2, and the gauge resistor 4 is passed through a contact hole that opens this.
The extraction electrode 6 made of aluminum (Al) or the like is formed so as to be electrically connected to the outside, and the connection with the outside is usually performed by wire bonding.

【0005】ところで、かかる構成の圧力センサにおい
て、シリコン基板上に形成される各ゲージ抵抗を絶縁分
離するには、一般的にpn接合分離法が用いられてい
る。これは、図4に示すように、n形のシリコン基板1
上に各々のp形ゲージ抵抗4を形成したうえ、その基板
1の一部にバイアス用電極7を形成して、この電極7に
電源8より最高電位を印加することにより、そのpn接
合9の逆バイアス時の高抵抗を利用して絶縁分離しよう
とするものである。なお、図4において図3と同一符号
のものは同一または相当のものを示している。
By the way, in the pressure sensor having such a structure, the pn junction separation method is generally used to insulate and separate each gauge resistor formed on the silicon substrate. This is an n-type silicon substrate 1 as shown in FIG.
After each p-type gauge resistor 4 is formed on the substrate 1, a bias electrode 7 is formed on a part of the substrate 1, and the highest potential is applied to this electrode 7 from a power source 8 so that the pn junction 9 is formed. It is intended to perform insulation separation by utilizing high resistance at the time of reverse bias. In FIG. 4, the same reference numerals as those in FIG. 3 indicate the same or corresponding ones.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うなpn接合分離を用いた従来の圧力センサは、そのp
n接合特性を図5に示すように、逆バイアス時に流れる
逆方向の電流つまりリーク電流IL が0.4mA程度
(例えば駆動電圧VB =5v,ブレーク電圧VBK=8v
の場合)と比較的大きいため、そのリーク電流によって
センサ出力が大きくドリフトするという課題があった。
However, the conventional pressure sensor using such pn junction isolation has the p
As shown in FIG. 5 for the n-junction characteristic, the reverse current flowing at the time of reverse bias, that is, the leak current I L is about 0.4 mA (for example, drive voltage V B = 5 v, break voltage V BK = 8 v).
However, there is a problem that the sensor output largely drifts due to the leak current.

【0007】本発明は以上の点に鑑み、上記のような課
題を解決するためになされたものであり、その目的は、
pn接合分離によるリーク電流を減らしてドリフトを低
減化した圧力センサを提供することにある。
In view of the above points, the present invention has been made to solve the above problems, and its purpose is to:
It is an object of the present invention to provide a pressure sensor in which the leakage current due to the pn junction separation is reduced to reduce the drift.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め本発明は、半導体のピエゾ抵抗効果を利用して圧力を
電気信号に変換する圧力センサにおいて、第1導電形の
半導体単結晶基板上にこの基板と異なる第2導電形を有
して形成された複数のウエル領域と、これらウエル領域
にそれぞれ形成されたピエゾ抵抗を有する第1導電形の
ゲージ抵抗とを備え、前記各ウエル領域をそれぞれのゲ
ージ抵抗の高電位側にクランプするようにしたものであ
る。
To achieve the above object, the present invention provides a pressure sensor for converting pressure into an electric signal by utilizing the piezoresistive effect of a semiconductor, on a semiconductor single crystal substrate of the first conductivity type. A plurality of well regions formed having a second conductivity type different from that of the substrate, and a first conductivity type gauge resistor having a piezoresistor formed in each of the well regions. The gauge resistance is clamped to the high potential side.

【0009】[0009]

【作用】本発明においては、第1導電形の各ゲージ抵抗
に別個に第2導電形のウエル領域を形成してそれぞれの
電位に固定することにより、これらウエル領域がそのゲ
ージ抵抗に近い電位に上げられるため、その接合部の電
位が小さくなってリーク電流は最少となる。
According to the present invention, the well regions of the second conductivity type are separately formed in each of the gauge resistors of the first conductivity type and fixed to their respective potentials, so that the well regions have potentials close to the gauge resistance. Since it is raised, the potential of the junction becomes small and the leak current is minimized.

【0010】[0010]

【実施例】図1は本発明による圧力センサの一実施例を
説明するための概略図であり、同図(a)はその平面図
を、同図(b)はその薄肉ダイアフラム部分のB−B線拡
大断面図をそれぞれ示す。この実施例は、図1に示すよ
うに、固定部となる厚肉部2と薄肉ダイアフラム部3と
を備えたチップ状のp形シリコン基板1aを第1導電形
の半導体基板として用い、その薄肉ダイアフラム部3の
所定領域にその基板と異なる第2導電形つまりn形のウ
エル領域10を複数個(この例では4個)形成する。
1 is a schematic view for explaining an embodiment of a pressure sensor according to the present invention. FIG. 1 (a) is a plan view thereof, and FIG. 1 (b) is a thin diaphragm portion B- The B line expanded sectional view is shown, respectively. In this embodiment, as shown in FIG. 1, a chip-shaped p-type silicon substrate 1a having a thick portion 2 serving as a fixing portion and a thin diaphragm portion 3 is used as a semiconductor substrate of the first conductivity type, Plural (four in this example) well regions 10 of the second conductivity type, that is, n-type, different from the substrate are formed in a predetermined region of the diaphragm portion 3.

【0011】そして、これらn形ウエル領域10内にそ
れぞれにp形拡散領域からなるピエゾ抵抗効果をもつゲ
ージ抵抗4(4A〜4D)を形成して、その表面にSiO
2 などの絶縁膜5を被覆形成したうえ、この絶縁膜5上
に所定パターンを有するAl等からなる電極配線11を
形成することにより、図2に示すように、各ゲージ抵抗
A〜4Dをブリッジ回路12に組み込むものとなってい
る。
Gauge resistors 4 (4 A to 4 D ) having a piezoresistive effect, which are p-type diffusion regions, are formed in the n-type well regions 10 and SiO 2 is formed on the surface thereof.
The insulating film 5, such as 2 after having formed by coating, by forming the electrode wiring 11 made of Al or the like having a predetermined pattern on the insulating film 5, as shown in FIG. 2, the gauge resistors 4 A to 4 D Is incorporated in the bridge circuit 12.

【0012】この場合、p形シリコン基板1a上の各n
形ウエル領域10は、ブリッジ回路12を構成するp形
ゲージ抵抗4A〜4Dのそれぞれの高電位側に前記電極配
線11により電気的に接続されてその電位に固定されて
いる。なお、図1において図3と同一または相当のもの
は同一符号を付記している。
In this case, each n on the p-type silicon substrate 1a
The well region 10 is electrically connected to the high potential side of each of the p-type gauge resistors 4 A to 4 D forming the bridge circuit 12 by the electrode wiring 11 and fixed at that potential. 1 that are the same as or equivalent to those in FIG. 3 are designated by the same reference numerals.

【0013】このように本実施例の圧力センサによる
と、p形シリコン基板1aを最低電位に接続し、駆動電
源13より正の電圧VBをブリッジ回路12の入力端子
121,122 間に供給したとき、各n形ウエル領域1
0はそのシリコン基板1aとの間にpn接合を形成し
て、その接合が逆バイアスされて絶縁分離される。ま
た、これらn形ウエル領域10内のp形ゲージ抵抗4A
〜4Dは、図2に示すように、それぞれn形ウエル領域
10との間に形成されるpn接合14A〜14Dが逆バイ
アスされて絶縁分離される。
As described above, according to the pressure sensor of this embodiment, the p-type silicon substrate 1a is connected to the lowest potential, and the positive voltage V B from the drive power source 13 is applied between the input terminals 12 1 and 12 2 of the bridge circuit 12. When supplied, each n-type well region 1
0 forms a pn junction with the silicon substrate 1a, and the junction is reverse biased and isolated. In addition, the p-type gauge resistance 4 A in these n-type well regions 10
To 4 D, as shown in FIG. 2, it is insulated and isolated pn junction 14 A to 14 D are formed is reverse biased between the n-type well region 10, respectively.

【0014】そのため、これらp形ゲージ抵抗4A〜4D
の圧力に対する抵抗値の変化をブリッジ回路12で電気
信号に変換することにより、その出力端子123,124
間から圧力に対応した出力電圧を取り出すことができ
る。この時、各n形ウエル領域10は、それぞれp形ゲ
ージ抵抗4A〜4Dに近い電位に上げられているため、そ
のpn接合のバイアスが小さくなって、そのリーク電流
を最少に抑えることができる。
Therefore, these p-type gauge resistors 4 A to 4 D
By converting the change of the resistance value with respect to the pressure of the bridge circuit 12 into an electric signal, its output terminals 12 3 , 12 4
The output voltage corresponding to the pressure can be taken out from between. At this time, since each n-type well region 10 is raised to a potential close to the p-type gauge resistors 4 A to 4 D , the bias of the pn junction becomes small, and the leak current can be suppressed to the minimum. it can.

【0015】なお、上述の実施例では半導体単結晶基板
としてp形シリコン基板を用いた場合について示した
が、本発明はこれに限定されるものではなく、n形シリ
コン基板やSOI構造の基板を用いたり、あるいは薄肉
ダイアフラム内のゲージ抵抗も所定の領域に任意の数だ
け形成したりすることなど、幾多の変形が可能である。
Although the p-type silicon substrate is used as the semiconductor single crystal substrate in the above embodiments, the present invention is not limited to this, and an n-type silicon substrate or a substrate having an SOI structure may be used. Many variations are possible, such as by using, or by forming an arbitrary number of gauge resistors in the thin diaphragm in a predetermined region.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、半
導体単結晶基板上の薄肉ダイアフラム内の領域にゲージ
抵抗を形成し、そのゲージ抵抗のピエゾ抵抗効果を利用
して圧力を測定する圧力センサにおいて、各ゲージ抵抗
をそれと逆導電形のウエル領域に別個に形成して、これ
らウエル領域をそれぞれのゲージ抵抗の高電位側にクラ
ンプすることにより、それらウエル領域がそのゲージ抵
抗に近い電位に上げられるため、リーク電流が最少とな
る。そのため、リーク電流によるドリフトが減少して出
力の安定な圧力センサが得られる効果がある。
As described above, according to the present invention, a gauge resistance is formed in a region inside a thin diaphragm on a semiconductor single crystal substrate, and the pressure is measured by utilizing the piezoresistive effect of the gauge resistance. In the sensor, each gauge resistor is formed separately in its opposite conductivity type well region, and these well regions are clamped to the high potential side of each gauge resistor so that the well regions are brought to a potential close to that gauge resistor. The leakage current is minimized because it is increased. Therefore, there is an effect that the drift due to the leak current is reduced and a pressure sensor with stable output can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による圧力センサの一実施例を説明する
概略図であり、(a) はその平面図、(b)はそのダイアフ
ラム部分のB−B線拡大断面図である。
1A and 1B are schematic views illustrating an embodiment of a pressure sensor according to the present invention, in which FIG. 1A is a plan view thereof, and FIG. 1B is an enlarged cross-sectional view of a diaphragm portion taken along line BB.

【図2】図1の実施例の等価的な回路構成図である。FIG. 2 is an equivalent circuit configuration diagram of the embodiment of FIG.

【図3】従来例による圧力センサの基本構成図であり、
(a)はその平面図、(b)は断面図である。
FIG. 3 is a basic configuration diagram of a pressure sensor according to a conventional example,
(a) is the top view, (b) is sectional drawing.

【図4】従来技術のpn接合分離の説明図である。FIG. 4 is an explanatory diagram of pn junction separation according to the related art.

【図5】図4の説明に供するpn接合特性図である。5 is a pn junction characteristic diagram used for the description of FIG. 4. FIG.

【符号の説明】[Explanation of symbols]

1a p形シリコン基板 2 厚肉部 3 薄肉ダイアフラム部 4,4A〜4D p形ゲージ抵抗 5 絶縁膜 10 n形ウエル領域 11 電極配線 12 ブリッジ回路 13 駆動電源 14A〜14D ゲージ抵抗とウエル領域との間のpn接
1a p-type silicon substrate 2 thick part 3 thin diaphragm part 4,4 A to 4 D p-type gauge resistance 5 insulating film 10 n-type well region 11 electrode wiring 12 bridge circuit 13 drive power supply 14 A to 14 D gauge resistance and well Pn junction with region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体のピエゾ抵抗効果を利用して圧力
を電気信号に変換する圧力センサにおいて、 第1導電形の半導体単結晶基板上にこの基板と異なる第
2導電形を有して形成された複数のウエル領域と、これ
らウエル領域にそれぞれ形成されたピエゾ抵抗効果を有
する第1導電形のゲージ抵抗とを備え、前記各ウエル領
域をそれぞれのゲージ抵抗の高電位側にクランプするよ
うにしたことを特徴とする圧力センサ。
1. A pressure sensor for converting pressure into an electric signal by utilizing the piezoresistive effect of a semiconductor, which is formed on a semiconductor single crystal substrate of the first conductivity type and has a second conductivity type different from this substrate. A plurality of well regions and a first conductive type gauge resistor having a piezoresistive effect formed in each of the well regions, and each well region is clamped to the high potential side of the respective gauge resistor. A pressure sensor characterized in that.
JP1918993A 1993-01-12 1993-01-12 Pressure sensor Expired - Fee Related JP2789291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1918993A JP2789291B2 (en) 1993-01-12 1993-01-12 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1918993A JP2789291B2 (en) 1993-01-12 1993-01-12 Pressure sensor

Publications (2)

Publication Number Publication Date
JPH06207871A true JPH06207871A (en) 1994-07-26
JP2789291B2 JP2789291B2 (en) 1998-08-20

Family

ID=11992397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1918993A Expired - Fee Related JP2789291B2 (en) 1993-01-12 1993-01-12 Pressure sensor

Country Status (1)

Country Link
JP (1) JP2789291B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014131A (en) * 2008-06-30 2010-01-21 Ulvac Seimaku Kk Micro valve, its manufacturing method, and opening/closing detecting method of micro valve
WO2011092563A1 (en) * 2010-01-29 2011-08-04 パナソニック電工株式会社 Pressure sensor
WO2012080811A1 (en) * 2010-12-15 2012-06-21 パナソニック株式会社 Semiconductor pressure sensor
JP2012127793A (en) * 2010-12-15 2012-07-05 Panasonic Corp Semiconductor pressure sensor
JP2012127792A (en) * 2010-12-15 2012-07-05 Panasonic Corp Semiconductor pressure sensor
EP3581903A1 (en) * 2018-06-14 2019-12-18 Melexis Technologies NV N-implant electrical shield for piezo-resistor sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011013A (en) * 2013-07-02 2015-01-19 アルプス電気株式会社 Physical quantity sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014131A (en) * 2008-06-30 2010-01-21 Ulvac Seimaku Kk Micro valve, its manufacturing method, and opening/closing detecting method of micro valve
CN102770743A (en) * 2010-01-29 2012-11-07 松下电器产业株式会社 Pressure sensor
WO2011092563A1 (en) * 2010-01-29 2011-08-04 パナソニック電工株式会社 Pressure sensor
JP2011158317A (en) * 2010-01-29 2011-08-18 Panasonic Electric Works Co Ltd Pressure sensor
WO2012080811A1 (en) * 2010-12-15 2012-06-21 パナソニック株式会社 Semiconductor pressure sensor
JP2012127792A (en) * 2010-12-15 2012-07-05 Panasonic Corp Semiconductor pressure sensor
JP2012127793A (en) * 2010-12-15 2012-07-05 Panasonic Corp Semiconductor pressure sensor
US8809975B2 (en) 2010-12-15 2014-08-19 Panasonic Corporation Semiconductor pressure sensor
USRE46486E1 (en) 2010-12-15 2017-07-25 Panasonic Corporation Semiconductor pressure sensor
EP3581903A1 (en) * 2018-06-14 2019-12-18 Melexis Technologies NV N-implant electrical shield for piezo-resistor sensor
CN110608819A (en) * 2018-06-14 2019-12-24 迈来芯科技有限公司 N-type injection electrical shield for piezoresistor sensor
US10955304B2 (en) 2018-06-14 2021-03-23 Melexis Technologies Nv N-implant electrical shield for piezo-resistor sensor
CN110608819B (en) * 2018-06-14 2022-03-29 迈来芯科技有限公司 N-type injection electrical shield for piezoresistor sensor

Also Published As

Publication number Publication date
JP2789291B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
US7278319B2 (en) Pressure and temperature sensing element
US6861276B2 (en) Method for fabricating a single chip multiple range pressure transducer device
JP2789291B2 (en) Pressure sensor
US4930347A (en) Solid state microanemometer with improved sensitivity and response time
US7015706B2 (en) Semiconductor sensing device using different resistance types
JP2573535Y2 (en) Pressure sensor
JP2005513434A (en) Sensor formed on a silicon-on-insulator structure and having reduced power-up drift
JP2715738B2 (en) Semiconductor stress detector
JPH0554710B2 (en)
JP2694594B2 (en) Pressure sensor
JPH02205077A (en) Power sensor
JPH04162779A (en) Semiconductor pressure sensor
JP3019549B2 (en) Semiconductor acceleration sensor
JPH0979928A (en) Semiconductor pressure sensor device
JPH0786618A (en) Semiconductor pressure sensor
JPH08193901A (en) Semiconductor strain sensor
JP3420808B2 (en) Manufacturing method of semiconductor pressure sensor
JPS60100026A (en) Semiconductor pressure sensor
JP2748077B2 (en) Pressure sensor
JPH08181331A (en) Dynamic quantity sensor
JPH04247667A (en) Semiconductor pressure sensor
JPH0426051B2 (en)
JPH08136598A (en) Capacitance detection circuit
JPH08162645A (en) Sensor for mechanical quantity
JPS59150480A (en) Semiconductor pressure conversion device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees