JPH0620632B2 - Continuous casting machine Mold cooling device - Google Patents

Continuous casting machine Mold cooling device

Info

Publication number
JPH0620632B2
JPH0620632B2 JP25585888A JP25585888A JPH0620632B2 JP H0620632 B2 JPH0620632 B2 JP H0620632B2 JP 25585888 A JP25585888 A JP 25585888A JP 25585888 A JP25585888 A JP 25585888A JP H0620632 B2 JPH0620632 B2 JP H0620632B2
Authority
JP
Japan
Prior art keywords
mold
pressure
cooling water
cooling
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25585888A
Other languages
Japanese (ja)
Other versions
JPH02104458A (en
Inventor
望 田村
隆 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25585888A priority Critical patent/JPH0620632B2/en
Publication of JPH02104458A publication Critical patent/JPH02104458A/en
Publication of JPH0620632B2 publication Critical patent/JPH0620632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、連続鋳造機鋳型の冷却装置、特に鋳型の冷却
水から熱が水蒸気として回収でき、かつ鋳型の受熱金属
プレート寿命の長い冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a cooling device for a continuous casting machine mold, particularly a cooling device capable of recovering heat from the cooling water of the mold as steam and having a long life of the heat-receiving metal plate of the mold. It is about.

<従来の技術> 従来の連続鋳造機鋳型の冷却装置を第5図に示した。タ
ンディッシュ1から鋳型2内へ注入された溶鋼3aは、
鋳型2の受熱金属プレート31壁面で抜熱冷却され凝固
し、凝固シェル3bを形成する。鋳型2の内部は冷却水
により冷却されており、冷却水は循環ポンプ4によって
流量調節弁14を介して鋳型内へ圧送されている。鋳型の
受熱金属プレート(以下プレートと略す)に伝達された
溶鋼からの熱は、鋳型冷却水に伝わり冷却水の温度上昇
としてあらわれる。そこで水温上昇による鋳型冷却能の
低下を防止するため、冷却水循環系の冷却水戻り配管12
bの末端に冷却塔5を設け、冷却水の温度をほぼ一定と
なるように冷却し、冷却水循環ポンプ4により冷却水送
給配管12aを介して循環させていた。従って、溶鋼の顕
熱及び凝固潜熱は冷却水を介して冷却塔によって大気中
へ放散されており、かつ鋳造速度及び鋳型・鋳片間潤滑
剤の種類や消費速度の変化によって凝固シェル3bとプ
レート31との間の伝熱条件が変化した際、プレートの温
度が上昇あるいは下降し、抜熱条件の一定性に欠けると
いう欠点があった。鋳型の温度が上昇した際にはプレー
ト(例えば銅板)の耐熱限界を越え、熱変形を生じたり
あるいは凝固シェルとプレートとの間で焼付き現象を生
じ、拘束性ブレイクアウトに至るといった不具合があ
る。逆に鋳型の温度が低くなり過ぎると、シェルの急速
不均一凝固収縮や変態による凝固シェルの破断即ち鋳片
表面の割れの多発を招くという不具合を生じている。
<Prior Art> A conventional continuous casting machine mold cooling device is shown in FIG. Molten steel 3a injected from the tundish 1 into the mold 2 is
The heat receiving metal plate 31 wall surface of the mold 2 removes heat and cools and solidifies to form a solidified shell 3b. The inside of the mold 2 is cooled by cooling water, and the cooling water is pumped into the mold by the circulation pump 4 via the flow rate control valve 14. The heat from the molten steel transferred to the heat receiving metal plate (hereinafter abbreviated as a plate) of the mold is transferred to the mold cooling water and appears as a rise in the temperature of the cooling water. Therefore, in order to prevent the mold cooling ability from decreasing due to the rise in water temperature, the cooling water return pipe 12 of the cooling water circulation system is used.
A cooling tower 5 was provided at the end of b, the cooling water was cooled to a substantially constant temperature, and was circulated by the cooling water circulation pump 4 through the cooling water supply pipe 12a. Therefore, the sensible heat and the latent heat of solidification of the molten steel are dissipated to the atmosphere by the cooling tower via the cooling water, and the solidification shell 3b and the plate are changed by the change of the casting speed and the type and consumption rate of the lubricant between the mold and the slab. When the heat transfer conditions between the plate 31 and 31 change, the temperature of the plate rises or drops, and there is a drawback that the heat removal conditions are not constant. When the temperature of the mold rises, the heat resistance limit of the plate (for example, copper plate) is exceeded and thermal deformation occurs, or seizure occurs between the solidified shell and the plate, resulting in a constraint breakout. . On the contrary, if the temperature of the mold becomes too low, there is a problem that rapid nonuniform solidification shrinkage of the shell and breakage of the solidified shell due to transformation, that is, frequent occurrence of cracks on the surface of the slab occur.

また、鋳型の出側の高温水の冷却は冷却塔を介した冷却
方法であるため、大気中の不純物質を冷却水にとりこ
み、プレートへの熱負荷が上昇した際に鋳型プレートの
温度が上昇し、プレート水冷面で冷却水の沸騰を生じる
ような場合には、不純物のプレート水冷壁への凝縮付着
を生じることにより更に伝熱を阻害することとなり、プ
レート温度のより一層の上昇をまねくという不具合もあ
った。よって冷却媒体に水以外のものを用い、更にこの
冷却媒体を水と熱交換させ水蒸気を発生させる循環冷却
系が特開昭59-92153号公報や特開昭59−192662号公報に
開示されており、冷却媒体として溶融塩や液体アルカリ
金属を使用している。しかしながらこれらの方法では以
下の問題が生じる。
Also, because the cooling of the hot water on the outlet side of the mold is a cooling method via a cooling tower, the temperature of the mold plate rises when the impurities in the atmosphere are taken into the cooling water and the heat load on the plate increases. However, in the case where cooling water boils on the plate water cooling surface, heat transfer will be further hindered by condensation and adhesion of impurities to the plate water cooling wall, leading to a further rise in plate temperature. There was also a defect. Therefore, a circulating cooling system that uses a cooling medium other than water and further heat-exchanges this cooling medium with water to generate steam is disclosed in JP-A-59-92153 and JP-A-59-192662. Therefore, molten salt or liquid alkali metal is used as a cooling medium. However, these methods have the following problems.

すなわち、冷却媒体として水を用いている既設連鋳機へ
の適用を考えた場合設備改造が大規模であり、溶融塩や
液体アルカリ金属の性状管理、溶融状態の維持に手間と
エネルギー(熱源)を要する。また循環系が溶融塩又は
液体アルカリ金属と水との2系統必要であり設備コスト
やメンテナンスコストが高い。又、前記冷却塔を有する
循環水系による冷却方法と同様、種々の鋳造条件の変化
によって生ずるプレート温度の変動が大きく、種々の弊
害を招く。
In other words, considering the application to an existing continuous casting machine that uses water as a cooling medium, facility remodeling is large-scale, and it takes time and energy (heat source) to manage the properties of molten salt and liquid alkali metal and maintain the molten state. Requires. In addition, the circulation system requires two systems of molten salt or liquid alkali metal and water, and the equipment cost and maintenance cost are high. Further, similarly to the cooling method using the circulating water system having the cooling tower, the variation of the plate temperature caused by the change of various casting conditions is large, which causes various problems.

<発明が解決しようとする課題> 従来の鋳型冷却装置には前述のとおり、つぎのような問
題があった。
<Problems to be Solved by the Invention> As described above, the conventional mold cooling device has the following problems.

すなわち、 冷却塔を有する循環水冷却では、熱の大気への放
散。
That is, in circulating water cooling with a cooling tower, heat is dissipated to the atmosphere.

冷媒として溶融塩や液体アルカリ金属を用いる場
合、設備コスト・メンテナンスコストの上昇、既設連鋳
機への適用の困難性。
When molten salt or liquid alkali metal is used as the refrigerant, equipment costs and maintenance costs rise, and it is difficult to apply it to existing continuous casting machines.

冷媒として溶融塩や液体アルカリ金属を用いる場
合、これ等冷媒の性状管理の困難さと溶融状態を維持す
るための補助熱源の必要性。
When a molten salt or liquid alkali metal is used as the refrigerant, it is difficult to control the properties of these refrigerants and an auxiliary heat source is required to maintain the molten state.

冷却塔を有する水冷却では、循環水量の増大、又は
プレート温度の高温化。
In water cooling with a cooling tower, the amount of circulating water is increased or the plate temperature is increased.

プレート温度変動の増大。 Increased plate temperature fluctuations.

によって、プレート熱変形の増大。 Due to the increase of plate thermal deformation.

による鋳片表面割れの多発。 Frequent occurrence of slab surface cracking due to.

本発明は、以上の問題を解決し構成が簡単で安価な連続
鋳造機鋳型の冷却装置を提供するためになされたもので
ある。
The present invention has been made to solve the above problems and to provide a cooling device for a continuous casting machine mold which has a simple structure and is inexpensive.

<課題を解決するための手段> 本発明は、循環熱水を鋳型に供給し鋳型内で蒸発させ
沸騰冷却する連続鋳造機鋳型の冷却装置であって、 鋳型とボイラードラムとの間に配設された含蒸気排水戻
り配管、該配管もしくはボイラードラム頂部に配設され
た蒸気圧力を測定し圧力信号を圧力調整装置に出力する
蒸気圧力測定手段、鋳型の二次側圧力の目標制御圧力値
を圧力調整装置に出力する適正圧力演算設定手段、前記
圧力信号と目標制御圧力値とが入力され圧力調整信号を
出力する圧力調整装置、該圧力調整信号によってボイラ
ードラム内の蒸気圧力を調整する蒸気放散弁、鋳型とボ
イラードラムとの間に配設された送給配管及びボイラー
ドラムとからなる連続鋳造機鋳型の冷却装置であり、
鋳型断面寸法、有効鋳型高さの設定手段、鋳造速度測定
手段、および/もしくは鋳型・鋳片間潤滑剤消費速度測
定手段を備え、それぞれの設定値、測定値を適正圧力設
定手段に入力する前項記載の連続鋳造機鋳型の冷却装
置で、また鋳型とボイラードラム間の冷却水送給管に
設けられた冷却水流量調節弁、この冷却水流量調節弁の
一次側の冷却水圧力検知手段と冷却水流量調節弁の開度
検知手段、これ等検知手段からの入力信号に基づき冷却
水流量を演算する演算手段(A)、および/もしくは前記
冷却水送給管路に設けられた冷却水流量検知手段とこの
冷却水流量検知手段の一次側の冷却水圧力検知手段、こ
れらの検知手段からの入力信号に基づき冷却水流量を演
算する演算手段(B)を備え、冷却水流量演算値を適正圧
力演算設定手段に入力する前項記載の連続鋳造機鋳型
の冷却装置で、かつ鋳型の受熱金属プレートに1個も
しくは複数個の温度測定センサ又は熱流束測定センサを
設け、その測定信号から温度又は熱流束を演算する温度
演算手段又は熱流束演算手段を備え、その演算値を適正
圧力演算設定手段に入力する前項記載の連続鋳造機鋳
型の冷却装置である。
<Means for Solving the Problems> The present invention is a cooling device for a continuous casting machine mold, in which circulating hot water is supplied to a mold to evaporate and boil in the mold, and the cooling device is provided between the mold and a boiler drum. The steam-containing drainage return pipe, the steam pressure measuring means for measuring the steam pressure arranged at the top of the pipe or the boiler drum and outputting the pressure signal to the pressure adjusting device, and the target control pressure value of the secondary side pressure of the mold Appropriate pressure calculation setting means for outputting to a pressure adjusting device, a pressure adjusting device for inputting the pressure signal and a target control pressure value and outputting a pressure adjusting signal, steam discharging for adjusting the steam pressure in the boiler drum by the pressure adjusting signal A valve, a cooling device for a continuous casting machine mold consisting of a feed pipe and a boiler drum arranged between the mold and the boiler drum,
A mold cross-sectional dimension, effective mold height setting means, casting speed measuring means, and / or mold / castle lubricant consumption speed measuring means are provided, and the respective set values and measured values are input to the proper pressure setting means. In a cooling device for a continuous casting machine mold as described above, and a cooling water flow rate control valve provided in a cooling water supply pipe between the mold and the boiler drum, cooling water pressure detecting means and cooling on the primary side of the cooling water flow rate control valve. Opening detecting means for the water flow rate control valve, calculating means (A) for calculating the cooling water flow rate based on the input signals from these detecting means, and / or cooling water flow rate detection provided in the cooling water supply pipeline Means, a cooling water pressure detecting means on the primary side of this cooling water flow rate detecting means, and a calculating means (B) for calculating the cooling water flow rate based on the input signals from these detecting means, and the cooling water flow rate calculation value is set to an appropriate pressure. Input to calculation setting means In the cooling device for a continuous casting machine mold according to the item 1, one or a plurality of temperature measuring sensors or heat flux measuring sensors are provided on the heat receiving metal plate of the mold, and temperature calculating means for calculating temperature or heat flux from the measurement signal. Alternatively, the cooling device for a continuous casting machine mold according to the preceding paragraph, which is provided with heat flux calculation means and inputs the calculated value to the appropriate pressure calculation setting means.

<作 用> 本発明の請求項1の連続鋳造機の鋳型の冷却装置は、循
環系の一部を形成する溶鋼と冷却水との間の熱交換器と
しての鋳型において、供給循環熱水を蒸気化し、蒸気含
有熱排水戻り配管経路又は、その末端に連結された蒸気
放散弁付設ボイラードラムの頭部のいずれかに設けた圧
力測定手段の出力信号と適正圧力演算設定手段から出力
された目標制御圧力値を圧力調整装置に入力し、この圧
力調整装置により大気放散弁を操作してボイラードラム
内圧力換言すれば鋳型の二次側圧力を一定値に制御する
ようにしたので、鋳型のプレート内面温度が前記の鋳型
の二次側圧力によって定まる一定の沸点温度に制御され
ると共に、鋳型内に鋳造された溶鋼の顕熱及び凝固潜熱
がボイラードラムにより水蒸気として回収される。また
従来のような冷却塔を用いる場合と異なり、熱水と蒸気
を分離して熱水を前記鋳型へ再び循環供給するので、大
気中の異物が循環水中へ混入し、循環水配管系や鋳型内
冷却水流路に析出固着して冷却能が低下するのを防止で
きる。
<Operation> In the mold cooling device of the continuous casting machine according to claim 1 of the present invention, in the mold as a heat exchanger between the molten steel forming a part of the circulation system and the cooling water, the supply circulating hot water is supplied. The target output from the output signal of the pressure measuring means and the appropriate pressure calculation setting means provided on either the steam-containing heat drainage return piping path or the head of the boiler drum with a steam diffusion valve connected to the end of the steam The control pressure value is input to the pressure adjusting device, and this pressure adjusting device operates the atmospheric diffusion valve to control the pressure inside the boiler drum, in other words, to control the secondary side pressure of the mold to a constant value. The inner surface temperature is controlled to a constant boiling temperature determined by the secondary pressure of the mold, and the sensible heat and latent heat of solidification of the molten steel cast in the mold are recovered as steam by the boiler drum. Also, unlike the case of using a conventional cooling tower, hot water and steam are separated and hot water is circulated and supplied again to the mold, so that foreign matter in the atmosphere is mixed into the circulating water, and the circulating water piping system or mold is used. It is possible to prevent the cooling ability from being deteriorated by depositing and sticking to the inner cooling water passage.

本発明の請求項2の鋳型の冷却装置は、さらに鋳型断面
寸法及び鋳型高さ設定手段と鋳造速度測定手段、および
/もしくは鋳型・鋳片間循環剤消費速度測定手段を備
え、これらによる設定値と測定値を適正圧力演算設定手
段に入力して、鋳造速度と有効鋳型内面積および/もし
くは鋳型単位周長当たりモールドパウダー供給速度によ
り鋳型の二次側設定圧力を変化させるようにしたので、
鋳片横断面寸法や鋳込速度および/もしくは鋳型・鋳片
間循環剤消費速度の変化によって生ずる鋳型のプレート
の受熱量の変化に応じて、鋳型のプレート冷却面におけ
る冷却水の沸点即ちプレートの内面側温度を適正な一定
値に変化させることができ、これによりプレート温度の
変動を小さく維持して前記請求項1の作用効果に加えプ
レート温度の変動増加に伴うプレートの熱変形や拘束性
ブレークアウトの誘発、鋳片シェルの割れ発生を防止で
きる。
The mold cooling device according to claim 2 of the present invention further comprises a mold cross-sectional dimension and mold height setting means, a casting speed measuring means, and / or a mold-castle circulating agent consumption speed measuring means, and a set value by these means. By inputting the measured value into the appropriate pressure calculation setting means, and changing the secondary side set pressure of the mold according to the casting speed and the effective mold internal area and / or the mold powder supply speed per unit peripheral length of the mold,
The boiling point of the cooling water on the plate cooling surface of the mold, that is, the plate temperature of the plate, changes according to the amount of heat received by the plate of the mold caused by changes in the transverse dimension of the slab and the casting speed and / or the consumption rate of the circulating agent between the mold and slab The temperature on the inner surface side can be changed to an appropriate constant value, thereby keeping the fluctuation of the plate temperature small, and in addition to the action and effect of claim 1, thermal deformation and restraint break of the plate due to the increase of fluctuation of the plate temperature. It is possible to prevent the occurrence of out and the occurrence of cracks in the slab shell.

本発明の請求項3の鋳型の冷却装置は、請求項1の冷却
装置に加えて、鋳型への冷却水供給経路に冷却水流量検
知手段および/もしくは開度検知手段を具備した冷却水
流量調節弁を設け、それぞれの1次側に設けた圧力検知
手段の出力値と前記流量検知手段および/もしくは、流
量調節弁開度検知手段の出力値とに基づき演算手段によ
り、冷却水流量を演算し冷却水流量に応じて鋳型の二次
側の設定圧力を変化させるようにしたので鋳型に供給さ
れる単位鋳型内面積当たりの冷却水の流量の変化に応じ
て鋳型のプレート冷却面における冷却水沸点、即ち鋳型
プレートの冷却水との接触面の温度を適正な値に調整す
ることができ、前記請求項2の作用・効果と同じ作用が
期待できる。
A mold cooling device according to a third aspect of the present invention is, in addition to the cooling device according to the first aspect, a cooling water flow rate adjusting means having a cooling water flow rate detecting means and / or an opening degree detecting means in a cooling water supply path to the mold. Valves are provided, and the cooling water flow rate is calculated by the calculation means based on the output value of the pressure detection means provided on each primary side and the output value of the flow rate detection means and / or the flow control valve opening detection means. Since the set pressure on the secondary side of the mold is changed according to the cooling water flow rate, the boiling point of the cooling water on the plate cooling surface of the mold is changed according to the change of the cooling water flow rate per unit internal area of the mold supplied to the mold. That is, the temperature of the contact surface of the mold plate with the cooling water can be adjusted to an appropriate value, and the same action and effect as those of claim 2 can be expected.

本発明の請求項4の鋳型の冷却装置は請求項1の冷却装
置に加えて鋳型のプレートに1個もしくは複数個の温度
測定用センサ又は熱流束測定センサを設け、その測定信
号を温度又は熱流束演算手段を介して温度値又は熱流束
値に変換し前記適正圧力演算設定手段により、鋳型の二
次側設定圧力を種々の鋳造条件の変化によって変動する
鋳型のプレートの温度もしくは熱流束の変動に応じて、
他の要因を介さずに直接的に対応変化させるようにした
ので種々の要因による鋳型のプレートの温度又は熱流束
の変化に対応して鋳型内冷却水の沸点、即ち鋳型のプレ
ートの冷却水との接触面の温度を適正な値に維持でき、
前記請求項2の作用・効果と同じ作用・効果が確実に期
待できる。
According to a fourth aspect of the present invention, in addition to the cooling apparatus according to the first aspect, a mold cooling device is provided with one or a plurality of temperature measuring sensors or heat flux measuring sensors on a plate of a mold, and a measurement signal thereof is used as a temperature or heat flow sensor. Fluctuations in the temperature or heat flux of the plate of the mold, which is converted to a temperature value or a heat flux value through the flux calculation means, and the appropriate pressure calculation setting means fluctuates the secondary side set pressure of the mold due to changes in various casting conditions. In response to the,
Since the change is made directly corresponding to the change of the temperature of the plate of the mold or the heat flux due to various factors, it corresponds to the boiling point of the cooling water in the mold, that is, the cooling water of the plate of the mold. The temperature of the contact surface of can be maintained at an appropriate value,
The same action and effect as the action and effect of claim 2 can be surely expected.

<実施例> 本発明の具体的構成を以下に説明する。<Example> A specific configuration of the present invention will be described below.

本発明の請求項1にかかわる連続鋳造機の鋳型の冷却装
置を第1図に示すフローシート兼測定制御回路図に基づ
いて説明する。ボイラードラム6が、鋳型2のプレート
31を介して鋳型内溶融金属3aの顕熱及び凝固潜熱を受
熱して蒸気化した蒸気含有熱排水の戻り配管12dの末端
に設けられ、ここで蒸気と熱水に分離される。
A mold cooling device of a continuous casting machine according to claim 1 of the present invention will be described with reference to the flow sheet / measurement control circuit diagram shown in FIG. The boiler drum 6 is a plate of the mold 2.
It is provided at the end of the return pipe 12d for the steam-containing heat wastewater that has been vaporized by receiving the sensible heat and the latent heat of solidification of the molten metal 3a in the mold via 31, and is separated into steam and hot water here.

蒸気は発生蒸気送給配管10を介して蒸気使用設備(図示
せず)に送られ、一方ボイラードラムの底部に貯った熱
水(缶水)は熱水循環ポンプ7により、熱水送給配管12
c、冷却水流量調節弁14を通って再び鋳型2へ送給循環
させられる。前記の発生蒸気送給配管10を介してボイラ
ードラムから送り出された蒸気量に等しい量の缶水を補
給するために配管10に設けられた蒸気流量計(図示せ
ず)の出力信号もしくはボイラードラム内液面計(図示
せず)の出力信号に基づいて、缶水貯蔵タンク8から缶
水補給配管12eの途中に設けられた缶水補給ポンプ9に
より缶水補給流量調節弁34を介してボイラードラム6へ
缶水が補給されるようになっている。
The steam is sent to a steam using facility (not shown) through the generated steam supply pipe 10, while hot water (canned water) stored at the bottom of the boiler drum is supplied by the hot water circulation pump 7. Plumbing 12
c, the water is again circulated through the cooling water flow rate control valve 14 to the mold 2. An output signal of a steam flow meter (not shown) provided in the pipe 10 or a boiler drum for replenishing can water in an amount equal to the amount of steam sent from the boiler drum through the generated steam feed pipe 10. Based on an output signal from an internal liquid level gauge (not shown), a boiler is supplied from a can water storage tank 8 to a can water replenishment pipe 12e by a can water replenishment pump 9 via a can water replenishment flow control valve 34. Can water is supplied to the drum 6.

前記鋳型2からの蒸気含有熱排水戻り配管12dの途中に
は鋳型二次側の蒸気圧力測定手段15が設けられており、
その出力信号は圧力調整装置(例えばPID圧力調整装
置)11に入力され、適正圧力演算設定手段16から前記圧
力調整装置に入力される目標制御圧力値と比較され、両
者に差がある場合は前記ボイラードラム6に付設された
蒸気放散弁13に操作信号を送りボイラードラム6内圧力
つまり鋳型の二次側圧力を前記設定目標制御圧力となる
よう制御する。
Steam pressure measuring means 15 on the secondary side of the mold is provided in the middle of the steam-containing heat drainage return pipe 12d from the mold 2.
The output signal is input to a pressure adjusting device (for example, a PID pressure adjusting device) 11 and compared with a target control pressure value input from the appropriate pressure calculation setting means 16 to the pressure adjusting device. An operation signal is sent to the steam diffusion valve 13 attached to the boiler drum 6 to control the internal pressure of the boiler drum 6, that is, the secondary side pressure of the mold so as to reach the set target control pressure.

次に本発明の請求項2に係る連鋳機鋳型の冷却装置の一
実施例を第2図のフロー図兼測定制御回路図に従って説
明する。第2図の実施例は第1図の前記実施例と異な
り、圧力計15が鋳型2からの蒸気含有熱排水戻り配管12
dではなく、ボイラードラム頂部に設けられている外、
以下のような違いがある。即ち連鋳機の鋳片3c引抜き
用ピンチロール18の回転軸の一端に連結されたセルシン
19aでピンチロールの回転を検出し、その信号を鋳造速
度演算手段19bへ送って、回転速度とセルシンを付設し
たピンチロールの外径とから鋳造速度を演算する。一
方、鋳型鋳片間の潤滑剤として一般的に用いられるモー
ルドパウダー28の貯蔵ホッパー20下端から、フレキシブ
ルチューブ24,スクリューフィーダー25を介して鋳型2
内の溶鋼の表面に供給撤布されるモールドパウダーの層
厚を、例えば溶鋼金属溶面高さを検知する公知の渦流式
もしくは電極式の鋳型内湯面検知装置とモールドパウダ
ー表面高さを検知する公知のITV撮像イメージ解析
式、もしくはマイクロ波式のパウダー表面高さ検知装置
との組み合わせにより測定し、鋳型内パウダー層厚が常
に適正な設定値となるようスクリューフィーダ駆動用可
変速モーター26の回転速度を制御するようにし、この可
変速モーターの回転速度をセルシン27aにより検出し、
この回転速度と予め計測設定された回転速度とモールド
パウダー供給速度との間の関係式からモールドパウダー
の供給速度つまりは消費速度をモールドパウダー供給速
度演算手段27bにより求める。なおモールドパウダーの
供給速度は、モールドパウダー28の貯蔵ホッパー20をそ
の外周にホッパーの中心対称に固設した3〜4個のブラ
ケットとモールドパウダー貯蔵ホッパー支持架台23との
間に介挿された3〜4個のロードセル21で支持し、これ
等ロードセルの出力電圧信号を加算器22bで加算した
後、ホッパー内モールドパウダー重量及びモールドパウ
ダー供給速度演算手段22cにより求めても良い。
Next, an embodiment of the continuous casting machine mold cooling device according to claim 2 of the present invention will be described with reference to the flow chart and measurement control circuit diagram of FIG. The embodiment of FIG. 2 is different from the embodiment of FIG. 1 in that the pressure gauge 15 has a steam-containing heat drainage return pipe 12 from the mold 2.
not on d, but on the top of the boiler drum,
There are the following differences. That is, the celsine connected to one end of the rotary shaft of the pinch roll 18 for pulling out the slab 3c of the continuous casting machine.
The rotation of the pinch roll is detected by 19a, and the signal is sent to the casting speed calculation means 19b to calculate the casting speed from the rotation speed and the outer diameter of the pinch roll provided with Celsin. On the other hand, from the lower end of the storage hopper 20 of the mold powder 28, which is generally used as a lubricant between the mold slabs, to the mold 2 via the flexible tube 24 and the screw feeder 25.
The layer thickness of the mold powder to be supplied and removed on the surface of the molten steel inside, for example, the well-known eddy current type or electrode type in-mold molten metal surface detection device for detecting the molten metal height of the molten metal and the mold powder surface height are detected. Rotation of the variable speed motor 26 for driving the screw feeder so that the powder layer thickness in the mold is always set to an appropriate set value, which is measured by combination with a well-known ITV imaging image analysis type or microwave type powder surface height detection device. The speed is controlled, and the rotation speed of the variable speed motor is detected by the Celsin 27a,
The mold powder supply speed, that is, the consumption speed, is obtained by the mold powder supply speed calculation means 27b from the relational expression between this rotation speed, the rotation speed set in advance and the mold powder supply speed. The supply speed of the mold powder is 3 between the mold powder storage hopper support frame 23 and 3 to 4 brackets having the storage hopper 20 for the mold powder 28 fixed to the outer periphery of the storage hopper 20 symmetrically about the center of the hopper. It is also possible to support by ~ 4 load cells 21, add the output voltage signals of these load cells with an adder 22b, and then obtain the weight of mold powder in the hopper and the mold powder supply speed calculation means 22c.

上記のようにして測定された鋳造速度値および/もしく
はモールドパウダー供給速度を適正圧力演算設定手段16
に入力する。一方、予めモールド内面断面寸法(厚さ及
び幅)及びモールド有効高さ入力手段17を介して手動に
よりもしくはプロセスコンピューターからこれ等の値を
適正圧力演算設定手段16に入力しておき、有効鋳型内面
積即ちメニスカス以下鋳型下端までのプレート12に有効
に伝熱される面積を前記寸法及び鋳込条件によって定ま
る定数の積として求め、又鋳型の水平断面の内面周長を
演算により求めておく。前記鋳造速度値と有効鋳型内面
積(有効プレート受熱面積)および/もしくは前記鋳型
の水平断面の内面周長の単位長さ当たりのモールドパウ
ダー供給速度から経験によって求まる関係式、又は表に
基づき適正目標制御圧力を前記演算設定手段16により求
め、その値を前記圧力調整装置11に入力してやる。この
圧力調整装置11で、前記ボイラードラム頂部の圧力計出
力信号と、前記適正目標制御圧力とを比較し、その偏差
に応じて前記蒸気放散弁13を操作して、ボイラードラム
内圧力つまり鋳型二次側圧力を適正目標圧力に制御する
のである。
The casting speed value and / or the mold powder supply speed measured as described above is set to the proper pressure calculation setting means 16
To enter. On the other hand, these values are input to the proper pressure calculation setting means 16 manually in advance through the mold inner surface cross-sectional dimensions (thickness and width) and the mold effective height input means 17 or from the process computer, and The area, that is, the area from the meniscus to the lower end of the mold to which heat is effectively transferred to the plate 12, is obtained as a product of constants determined by the above-described dimensions and casting conditions, and the inner circumferential length of the horizontal cross section of the mold is calculated. Proper target based on the relational expression or table obtained by experience from the casting speed value and the effective mold internal area (effective plate heat receiving area) and / or the mold powder supply speed per unit length of the inner peripheral surface of the horizontal section of the mold The control pressure is calculated by the calculation setting means 16, and the value is input to the pressure adjusting device 11. In this pressure adjusting device 11, the pressure gauge output signal at the top of the boiler drum is compared with the appropriate target control pressure, and the steam diffusion valve 13 is operated in accordance with the deviation thereof to operate the pressure inside the boiler drum, that is, the mold two. The secondary pressure is controlled to an appropriate target pressure.

次に本発明の請求項3に係る鋳型の冷却装置の一実施例
を第3図に示すフロー図兼測定制御回路図に従って説明
する。第3図に示す実施例が前記第1図に示す実施例と
異なる点は、ボイラードラム6から鋳型2への熱水供給
配管12cの途中に流量検知手段(図ではオリフィス式差
圧検知発信器29a)を設け、その出力信号から熱水流量
を演算手段29bにより求める。また前記熱水流量測定値
は、鋳型二次側の圧力の変化や冷却水流量調節弁14の開
度に応じて流量検知手段の一次側の圧力が変化するの
で、その圧力に応じて補正した方が望ましい。それ故流
量検知手段の一次側圧力計29cによって圧力を求めその
出力値を前記流量演算手段29bに入力することが望まし
い。かくして得られた流量値を適正圧力演算設定手段16
に入力する。一方上記のような流量測定手段を具える代
わりに流量調節弁14に開度検知手段30aを付設し、また
流量調節弁14の一次側に圧力計30cを設け、さらに予め
測定入力された流量調節弁14の開度,一次側圧力と流量
との特性曲線に基づき、前記弁開度信号一次側圧力値か
ら間接的に冷却水流量を求める流量演算手段30bを設
け、その出力値を前記適正圧力演算設定手段16に入力す
る。このようにして冷却水流量から経験的に求められた
関係式または表に基づき適正目標制御圧力を演算設定手
段16によって求め、その圧力値を圧力調整装置11に入力
してやり、以後は前記の第1及び第2の実施例の場合と
同様ボイラードラム内圧力つまり鋳型二次側圧力を目標
値に制御する。
Next, an embodiment of the mold cooling apparatus according to claim 3 of the present invention will be described with reference to the flow chart and measurement control circuit diagram shown in FIG. The embodiment shown in FIG. 3 is different from the embodiment shown in FIG. 1 in that a flow rate detecting means (an orifice type differential pressure detecting transmitter in the figure) is provided in the hot water supply pipe 12c from the boiler drum 6 to the mold 2. 29a) is provided, and the hot water flow rate is calculated from the output signal by the calculating means 29b. Further, the hot water flow rate measured value, since the pressure on the primary side of the flow rate detecting means changes according to the change of the pressure on the secondary side of the mold and the opening degree of the cooling water flow rate control valve 14, it was corrected according to the pressure. Is preferable. Therefore, it is desirable to obtain the pressure by the primary pressure gauge 29c of the flow rate detecting means and input the output value to the flow rate calculating means 29b. The flow rate value thus obtained is set to the appropriate pressure calculation setting means 16
To enter. On the other hand, instead of having the above-mentioned flow rate measuring means, the flow rate control valve 14 is provided with an opening degree detection means 30a, and the pressure gauge 30c is provided on the primary side of the flow rate control valve 14, and the flow rate control that has been previously measured and input is adjusted. A flow rate calculating means 30b for indirectly obtaining the cooling water flow rate from the valve opening signal primary side pressure value based on the characteristic curve of the opening degree of the valve 14, the primary side pressure and the flow rate is provided, and its output value is set to the proper pressure. Input to the calculation setting means 16. In this way, the proper target control pressure is obtained by the calculation setting means 16 based on the relational expression or table empirically obtained from the cooling water flow rate, and the pressure value is input to the pressure adjusting device 11, and thereafter, the above-mentioned first Also, as in the case of the second embodiment, the pressure in the boiler drum, that is, the mold secondary side pressure is controlled to a target value.

上記実施例では、流量演算手段29b又は、30bを介して
冷却水流量を求め、冷却水流量値を適正圧力演算設定手
段16に入力したが、流量演算手段29b又は30bを介さず
に、第3図の一点鎖線で示すように前記流量検知手段29
bの出力信号と流量検知手段の一次側圧力計29cの出力
値とを直接適正圧力演算設定手段16に入力するか、或い
は前記流量調節弁14の開度検知手段30aの出力信号と流
量調節弁の一次側の圧力計30cの出力値とを直接適正圧
力演算設定手段16に入力してやり、これ等入力値から経
験的に求めた関係式、又は表に基づき適正目標制御圧力
を演算設定手段16によって求めてもよい。
In the above embodiment, the cooling water flow rate is obtained through the flow rate calculation means 29b or 30b and the cooling water flow rate value is input to the proper pressure calculation setting means 16. However, the flow rate calculation means 29b or 30b is not used and the third As shown by the one-dot chain line in the figure, the flow rate detecting means 29
The output signal of b and the output value of the primary pressure gauge 29c of the flow rate detecting means are directly input to the proper pressure calculation setting means 16, or the output signal of the opening degree detecting means 30a of the flow rate adjusting valve 14 and the flow rate adjusting valve. The output value of the pressure gauge 30c on the primary side is directly input to the proper pressure calculation setting means 16, and the proper target control pressure is calculated by the calculation setting means 16 based on a relational expression or a table empirically obtained from these input values. You may ask.

本発明の請求項4に係る一実施例をフロー図兼測定制御
回路図を第4図に示した。第4図に示す実施例の前記第
1の実施例と異なる点は、第1の実施例に加えて鋳型2
のプレート31の冷却熱水と接触面に熱伝対等の温度測定
センサー32a又は熱流束測定センサー33aを1個もしく
は複数個設けると共にその出力信号を温度演算手段32b
もしくは熱流束演算手段33bを介して温度値又は熱流束
値を適正圧力演算設定手段16に入力するようになってい
る点である。この適正圧力演算設定手段16は、過去の経
験より求められた関係式あるいは表に基づいて前記温度
値又は熱流束値に応じて適正目標圧力を求め、以後は前
記第1〜第3の実施例と同様にしてボイラードラム6内
の圧力つまり鋳型二次圧力を目標値になるように制御す
る。なお、複数個の温度センサー又は熱流束センサーを
セットした場合は、前記適正目標圧力を求める際には複
数の測定値の平均値,中央値,最大値等から適宜選べば
よい。
An embodiment of claim 4 of the present invention is shown in FIG. 4 which is a flow chart and measurement control circuit diagram. The difference between the embodiment shown in FIG. 4 and the first embodiment is that the mold 2 is used in addition to the first embodiment.
One or a plurality of temperature measuring sensors 32a such as thermocouples or heat flux measuring sensors 33a are provided on the surface of the plate 31 contacting with the hot water for cooling, and the output signal thereof is temperature calculating means 32b.
Alternatively, the temperature value or the heat flux value is input to the appropriate pressure calculation setting means 16 via the heat flux calculating means 33b. The appropriate pressure calculation setting means 16 obtains an appropriate target pressure according to the temperature value or the heat flux value based on a relational expression or a table obtained from past experience, and thereafter, the first to third embodiments. Similarly, the pressure in the boiler drum 6, that is, the secondary pressure of the mold is controlled to be a target value. When a plurality of temperature sensors or heat flux sensors are set, the appropriate target pressure may be appropriately selected from the average value, median value, maximum value, etc. of the measured values.

なお、前記第1〜第4の実施例ではいずれも熱水循環ポ
ンプ7により熱缶水の強制循環を行うものとしたが、ボ
イラードラム6の設定位置によっては重力による自然循
環とすることも可能である。
In each of the first to fourth embodiments, the hot water circulation pump 7 is used to forcibly circulate the hot water, but depending on the setting position of the boiler drum 6, natural circulation by gravity may be used. Is.

次に本発明の具体的実施例を以下に説明する。Next, specific examples of the present invention will be described below.

第4図に示す装置構成の冷却装置を用い、缶水として脱
気した100℃の純水を用い、循環水量200t/hで、厚
さ:260mm,幅:1000mmの低炭素鋼鋳片を鋳造速度:1.0
m/分〜1.8m/分で鋳造しつつ鋳型の冷却を行った。鋳
型のプレートには厚さ:40mmの銅板を用いた。
Casting low carbon steel slab with thickness: 260mm, width: 1000mm with circulating water volume of 200t / h, using degassed pure water of 100 ℃ as can water, using the cooling device with the equipment configuration shown in Fig. 4. Speed: 1.0
The mold was cooled while casting at m / min to 1.8 m / min. A copper plate having a thickness of 40 mm was used as the template plate.

1.0m/分の鋳造速度では、鋳型の二次側圧力を1.2kg/c
m2−Gにセットして鋳造したところ、鋳型銅板温度は冷
却面近傍で122℃±1℃にコントロールされ蒸気発生量
は5.8t/hであった。次に鋳造速度を1.2m/分に上昇さ
せたところ、蒸気発生量が6t/hと増量し、鋳型銅板
温度に±5℃の変動を生じたので3kg/cm2−Gまで圧
力を上昇した。その結果銅板の温度変動が±1℃におさ
まり、プレート温度は144℃となり安定した。1.8m/分
の鋳造速度ではモールド二次側圧力設定値7kg/cm2
Gにて7t/hの蒸気が発生した。又1.8m/分より
1.2m/分まで鋳造速度を減じる際、銅板温度の下降
に従い銅板温度より2℃低い温度が沸点となるようボイ
ラードラム内圧力を調整してゆくと、プレート温度はほ
とんど変動がなく(±1℃以下)低下していった。
At a casting speed of 1.0 m / min, the secondary pressure of the mold is 1.2 kg / c.
When set to m 2 -G and cast, the mold copper plate temperature was controlled to 122 ° C. ± 1 ° C. in the vicinity of the cooling surface, and the steam generation amount was 5.8 t / h. Next, when the casting speed was increased to 1.2 m / min, the amount of steam generated increased to 6 t / h, and the temperature of the mold copper plate fluctuated ± 5 ° C, so the pressure was increased to 3 kg / cm 2 -G. . As a result, the temperature fluctuation of the copper plate was suppressed to ± 1 ° C, and the plate temperature became stable at 144 ° C. At the casting speed of 1.8 m / min, the mold secondary side pressure set value is 7 kg / cm 2
Steam of 7 t / h was generated at G. When the casting speed is reduced from 1.8 m / min to 1.2 m / min, the plate temperature is almost adjusted by adjusting the pressure inside the boiler drum so that the boiling point is 2 ° C lower than the copper plate temperature as the copper plate temperature decreases. There was no fluctuation (less than ± 1 ° C) and it decreased.

又、本発明装置を用いて1200チャージの鋳造を行ったの
ちも銅板の水冷面側への付着物は皆無であった。
Further, after the 1200-charge casting was performed using the apparatus of the present invention, there was no deposit on the water-cooled surface side of the copper plate.

比較例として第5図に示すように冷却等を用いた冷却装
置の場合のデータを示すと以下の通りである。1.0m/
分の速度での鋳造次、鋼板温度は122℃±10℃であっ
た。1.8m/分ではプレート温度は165±15℃と大きく変
動した。又、鋳込チャージの増加に従い銅板温度は0.13
℃/チャージずつ上昇していき、650チャージ後1.8m/
分鋳造を行った際250℃の温度を示した。この時点での
鋼板の歪は、最大で0.5mmとなり、650チャージで使用不
可となった。この次銅板の断面を顕微鏡で観察した結
果、不純物が冷却面側に厚さ500μm程度付着してい
た。
The data in the case of a cooling device using cooling or the like as shown in FIG. 5 as a comparative example is as follows. 1.0m /
Following casting at a rate of minutes, the steel plate temperature was 122 ° C ± 10 ° C. At 1.8 m / min, the plate temperature fluctuated greatly at 165 ± 15 ° C. The copper plate temperature is 0.13 as the casting charge increases.
℃ / charge will continue to rise, 1.8m after 650 charge /
It showed a temperature of 250 ° C. when minute casting was performed. The maximum distortion of the steel sheet at this point was 0.5 mm, and it became unusable after 650 charges. As a result of observing the cross section of the next copper plate with a microscope, impurities were attached to the cooling surface side in a thickness of about 500 μm.

以上から明らかなように、本発明によると、簡単な設備
改造で溶融金属の顕熱、潜熱を蒸気として回収でき、ま
た鋳型プレートの温度変動を小さくでき、鋳型プレート
の熱変形が小さく使用寿命を長くすることができた。
As is clear from the above, according to the present invention, the sensible heat of the molten metal and the latent heat can be recovered as steam by simple equipment modification, the temperature fluctuation of the mold plate can be reduced, and the thermal deformation of the mold plate is small and the service life is reduced. I could make it longer.

<発明の効果> 本発明の連続鋳造機の鋳型の冷却装置を使用すると以下
のような優れた効果が得られる。
<Effects of the Invention> The following excellent effects are obtained by using the mold cooling device of the continuous casting machine of the present invention.

従来、冷却塔を介して大気に放散されていた鋳型内
溶融金属の顕熱,潜熱の一部を蒸気として有効に回収で
きる。
Conventionally, a part of the sensible heat and latent heat of the molten metal in the mold, which has been diffused into the atmosphere through the cooling tower, can be effectively recovered as vapor.

冷却熱媒体に溶融塩や液体アルカリ金属を用いる場
合と比較し、既設の連鋳機の適用する場合設備改造が少
なくコストが安く、また既設設備への適用が容易であ
る。
Compared to the case of using molten salt or liquid alkali metal as the cooling heat medium, the cost of the existing continuous casting machine is small and the cost is low, and the application to the existing equipment is easy.

熱媒体に溶融塩や液体アルカリ金属を用いる場合よ
り、設備メンテナンス及び熱媒体性状の維持が容易であ
り、補助熱源を必要とすることもない。
Facility maintenance and maintenance of heat medium properties are easier than when a molten salt or liquid alkali metal is used as the heat medium, and no auxiliary heat source is required.

冷却塔を用いる循環水冷却に比べ、循環水量が少な
くてすみ、設備がコンパクトになる。
Compared with circulating water cooling using a cooling tower, the amount of circulating water is small and the equipment becomes compact.

沸騰冷却であるため、鋳型のプレート温度変動がほ
とんどなく、モールドへの熱負荷の瞬間的な変動が少な
い。
Since it is cooled by boiling, there is almost no fluctuation in the plate temperature of the mold, and there is little instantaneous fluctuation in the heat load on the mold.

循環水が大気と接触しないため、また純水や軟水を
使用するため、循環水中に不純物が少ない。このため鋳
型の冷却面への不純物付着がなく、伝熱阻害によるプレ
ートの温度上昇と熱変形が少ない。その結果鋳型のプレ
ートの寿命が大幅に伸びる。
Since circulating water does not come into contact with the atmosphere and pure water or soft water is used, the circulating water contains few impurities. Therefore, impurities do not adhere to the cooling surface of the mold, and the temperature rise and thermal deformation of the plate due to heat transfer inhibition are small. As a result, the life of the mold plate is greatly extended.

【図面の簡単な説明】[Brief description of drawings]

第1〜第4図は、それぞれ本発明の第1〜第4の実施例
を示すフロー図兼測定制御回路図、第5図は、従来の連
続鋳造用鋳型の一般的な冷却装置(例)を示すフロー図
である。 1……タンディッシュ、2……鋳型、 3a……溶融金属、3b……凝固シェル、 3c……鋳片、4……冷却水循環ポンプ、 5……冷却塔、6……ボイラードラム、 7……熱水循環ポンプ、8……缶水貯蔵タンク、 9……缶水補給ポンプ、10……発生蒸気送給配管、 11……圧力調整装置、12a……冷却水送給配管、 12b……冷却水戻り配管、12c……熱水送給配管、 12d……含蒸気熱排水戻り配管、 12e……缶水補給配管、13……蒸気放散弁、 14……冷却水流量調節弁、15……蒸気圧力測定手段、 16……適正圧力演算設定手段、 17……鋳型断面寸法及び有効鋳型高さの設定手段、 18……ピンチロール、19a……セルシン、 19b……鋳造速度演算手段、 20……モールドパウダー貯蔵ホッパー、 21……支持ブラケット、22a……ロードセル、 22b……加算器、 22c……ホッパー内モールドパウダー重量及び供給速度
演算手段、 23……ホッパー架台、24……フレキシブルチューブ、 25……スクリューフィーダー、 26……スクリューフィーダー駆動用可変速ギヤードモー
ター、 27a……セルシン、 27b……モールドパウダー供給速度演算手段、 28a……モールドパウダー、 28b……鋳型内モールドパウダー、 29a……冷却水流量検知手段、 29b……冷却水流量演算手段(B)、 29c……冷却水圧力検知手段、 30a……冷却水流量調整弁開度検知手段、 30b……冷却水流量演算手段(A)、 30c……冷却水圧力検知手段、 31……受熱金属プレート、 32a……温度測定センサー、 32b……温度演算手段、 33a……熱流束測定センサー、 33b……熱流束演算手段、 34……缶水補給流量調節弁。
1 to 4 are flow charts and measurement control circuit diagrams respectively showing the first to fourth embodiments of the present invention, and FIG. 5 is a general cooling device for a conventional continuous casting mold (example). FIG. 1 ... Tundish, 2 ... Mold, 3a ... Molten metal, 3b ... Solidified shell, 3c ... Cast piece, 4 ... Cooling water circulation pump, 5 ... Cooling tower, 6 ... Boiler drum, 7 ... … Hot water circulation pump, 8 …… Can water storage tank, 9 …… Can water supply pump, 10 …… Generated steam feed pipe, 11 …… Pressure adjusting device, 12a …… Cooling water feed pipe, 12b …… Cooling water return pipe, 12c …… Hot water supply pipe, 12d …… Steam-containing heat drainage return pipe, 12e …… Can water supply pipe, 13 …… Steam diffusion valve, 14 …… Cooling water flow control valve, 15… ... Steam pressure measuring means, 16 ... Proper pressure calculation setting means, 17 ... Mold cross-sectional dimension and effective mold height setting means, 18 ... Pinch roll, 19a ... Celsin, 19b ... Casting speed calculation means, 20 ...... Mold powder storage hopper, 21 …… Support bracket, 22a …… Load cell, 22b …… Adder, 22c …… Mold powder weight in hopper and supply speed calculation means, 23 …… Hopper stand, 24 …… Flexible tube, 25 …… Screw feeder, 26 …… Variable speed geared motor for driving screw feeder, 27a …… Celsin, 27b …… Mold powder supply speed calculation means, 28a …… Mold powder, 28b …… Mold powder in mold, 29a …… Cooling water flow rate detection means, 29b …… Cooling water flow rate calculation means (B), 29c …… Cooling water pressure detecting means, 30a ... Cooling water flow rate adjusting valve opening detecting means, 30b ... Cooling water flow rate calculating means (A), 30c ... Cooling water pressure detecting means, 31 ... Heat receiving metal plate, 32a ... Temperature measuring sensor, 32b ... Temperature calculating means, 33a ... Heat flux measuring sensor, 33b ... Heat flux calculating means, 34 ... Can water replenishment flow rate control valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】循環熱水を鋳型に供給し鋳型内で蒸発させ
沸騰冷却する連続鋳造機鋳型の冷却装置であって、 鋳型とボイラードラムとの間に配設された含蒸気排水戻
り配管、該配管もしくはボイラードラム頂部に配設され
蒸気圧力を測定し圧力信号を圧力調整装置に出力する蒸
気圧力測定手段、鋳型の二次側圧力の目標制御圧力値を
圧力調整装置に出力する適正圧力演算設定手段、前記測
定圧力信号と目標制御圧力値とが入力され圧力調整信号
を出力する圧力調整装置、該圧力調整信号によってボイ
ラードラム内の蒸気圧力を調整する蒸気放散弁、鋳型と
ボイラードラムとの間に配設された送給配管及びボイラ
ードラムとからなる連続鋳造機鋳型の冷却装置。
1. A continuous casting machine mold cooling device for supplying circulating hot water to a mold to evaporate and boil in the mold, comprising a steam-containing drainage return pipe arranged between the mold and a boiler drum. Steam pressure measuring means disposed on the pipe or on the top of the boiler drum to measure the steam pressure and output a pressure signal to the pressure adjusting device, and a proper pressure calculation to output the target control pressure value of the secondary side pressure of the mold to the pressure adjusting device. Setting means, a pressure adjusting device for inputting the measured pressure signal and the target control pressure value and outputting a pressure adjusting signal, a steam diffusion valve for adjusting the steam pressure in the boiler drum by the pressure adjusting signal, a mold and a boiler drum A continuous casting machine mold cooling device comprising a feed pipe and a boiler drum arranged between the two.
【請求項2】鋳型断面寸法、有効鋳型高さの設定手段、
鋳造速度測定手段、および/もしくは鋳型・鋳片間潤滑
剤消費速度測定手段を備え、それぞれの設定値、測定値
を適正圧力演算設定手段に入力する請求項1記載の連続
鋳造機鋳型の冷却装置。
2. A means for setting a mold cross-sectional dimension and an effective mold height,
2. A cooling device for a continuous casting machine mold according to claim 1, further comprising casting speed measuring means and / or means for measuring the lubricant consumption rate between the mold and the slab, and inputting respective set values and measured values to the proper pressure calculation setting means. .
【請求項3】鋳型とボイラードラム間の冷却水送給管に
設けられた冷却水流量調節弁、この冷却水流量調節弁の
一次側の冷却水圧力検知手段と冷却水流量調節弁の開度
検知手段、および/もしくはこれ等検知手段からの入力
信号に基づき冷却水流量を演算する演算手段(A)は前記
冷却水送給管路に設けられた冷却水流量検知手段とこの
冷却水流量検知手段一次側の冷却水圧力検知手段、これ
ら検知手段からの入力信号に基づき冷却水流量を演算す
る演算手段(B)を備え、冷却水流量、演算値を適正圧力
演算設定手段に入力する請求項1記載の連続鋳造機鋳型
の冷却装置。
3. A cooling water flow control valve provided in a cooling water supply pipe between a mold and a boiler drum, a cooling water pressure detecting means on the primary side of the cooling water flow control valve, and an opening degree of the cooling water flow control valve. The detecting means and / or the calculating means (A) for calculating the cooling water flow rate based on the input signals from these detecting means are the cooling water flow rate detecting means provided in the cooling water supply pipe and the cooling water flow rate detecting means. A means for detecting the cooling water pressure on the primary side of the means, a calculating means (B) for calculating the cooling water flow rate based on the input signals from these detecting means, and inputting the cooling water flow rate and the calculated value to the appropriate pressure calculation setting means. The continuous casting machine mold cooling device according to 1.
【請求項4】鋳型の受熱金属プレートに1個もしくは複
数個の温度測定センサ又は熱流束測定センサを設け、そ
の測定信号から温度又は熱流束を演算する温度演算手段
又は熱流束演算手段を備え、その演算値を適正圧力演算
設定手段に入力する請求項1記載の連続鋳造機鋳型の冷
却装置。
4. A heat receiving metal plate of a mold is provided with one or more temperature measuring sensors or heat flux measuring sensors, and temperature calculating means or heat flux calculating means for calculating temperature or heat flux from the measurement signal is provided. The cooling device for a continuous casting machine mold according to claim 1, wherein the calculated value is input to an appropriate pressure calculation setting means.
JP25585888A 1988-10-13 1988-10-13 Continuous casting machine Mold cooling device Expired - Lifetime JPH0620632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25585888A JPH0620632B2 (en) 1988-10-13 1988-10-13 Continuous casting machine Mold cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25585888A JPH0620632B2 (en) 1988-10-13 1988-10-13 Continuous casting machine Mold cooling device

Publications (2)

Publication Number Publication Date
JPH02104458A JPH02104458A (en) 1990-04-17
JPH0620632B2 true JPH0620632B2 (en) 1994-03-23

Family

ID=17284563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25585888A Expired - Lifetime JPH0620632B2 (en) 1988-10-13 1988-10-13 Continuous casting machine Mold cooling device

Country Status (1)

Country Link
JP (1) JPH0620632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148600A (en) * 2014-08-12 2014-11-19 北京首钢股份有限公司 Slab solidifying system and method
WO2017105060A1 (en) * 2015-12-14 2017-06-22 주식회사 포스코 Cooling system and method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106238696A (en) * 2016-08-26 2016-12-21 山东祥瑞铜材有限公司 A kind of Protection control system
CN109093084B (en) * 2018-09-29 2020-03-31 东北大学 Method for producing continuous casting sheet billet
DE102020205252A1 (en) * 2020-04-24 2021-10-28 Kocks Technik Gmbh & Co Kg Long product cooling device and method for long product cooling using the same
CN116571697B (en) * 2023-05-09 2023-11-14 肇庆市大正铝业有限公司 High-efficient cooling device is used in casting of recycled aluminum alloy ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148600A (en) * 2014-08-12 2014-11-19 北京首钢股份有限公司 Slab solidifying system and method
WO2017105060A1 (en) * 2015-12-14 2017-06-22 주식회사 포스코 Cooling system and method therefor

Also Published As

Publication number Publication date
JPH02104458A (en) 1990-04-17

Similar Documents

Publication Publication Date Title
CN104162638B (en) A kind of crystallizer cooling water control device and method
CN108897972A (en) A kind of prediction technique of electroslag remelting ingot solidification microstructure
JPH0620632B2 (en) Continuous casting machine Mold cooling device
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
CN204122708U (en) A kind of crystallizer cooling water control device
CN110315049B (en) Continuous casting secondary cooling water control device and method
JPS6353903B2 (en)
JPH11500361A (en) Plate mold for producing continuous cast material from steel
CN211101488U (en) System for stabilizing convection heat exchange coefficient of crystallizer copper plate cooling water
JP2001038456A (en) Method and device for guiding molten metal in continuous casting machine
JP2001314943A (en) Method and apparatus for thermal control of continuous casting mold
CN116079026A (en) Method and device for adjusting solidifying point position of liquid cavity of large-diameter pipe
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JP6435988B2 (en) Breakout prediction method, breakout prevention method, solidified shell thickness measurement method, breakout prediction device and breakout prevention device in continuous casting
CN108746526B (en) Continuous casting method for controlling quality of large square billet heavy rail steel corner
JPH06320245A (en) Heat extraction control device in mold
JPS61279351A (en) Method and mold for continuous casting
JP3188148B2 (en) Continuous casting machine
JP3549318B2 (en) Unsteady bulging detection method in continuous casting
JPH07132349A (en) Twin roll type continuous casting method
JP2971252B2 (en) Continuous casting equipment
Soda et al. The horizontal Ohno continuous casting process: Process variables and their effects on casting stability
JPS6254507A (en) Cooling method for hot steel sheet
CN114905020B (en) Method for correcting solidification heat transfer model in continuous casting process
US5482106A (en) Process for the casting of metals in a continuous casting installation with continuous strand withdrawal