CN204122708U - A kind of crystallizer cooling water control device - Google Patents

A kind of crystallizer cooling water control device Download PDF

Info

Publication number
CN204122708U
CN204122708U CN201420457681.XU CN201420457681U CN204122708U CN 204122708 U CN204122708 U CN 204122708U CN 201420457681 U CN201420457681 U CN 201420457681U CN 204122708 U CN204122708 U CN 204122708U
Authority
CN
China
Prior art keywords
branch road
backwater branch
water
backwater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420457681.XU
Other languages
Chinese (zh)
Inventor
周士凯
王西林
刘赵卫
张西峰
王蓉
王新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Heavy Machinery Research Institute Co Ltd
Original Assignee
China National Heavy Machinery Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Heavy Machinery Research Institute Co Ltd filed Critical China National Heavy Machinery Research Institute Co Ltd
Priority to CN201420457681.XU priority Critical patent/CN204122708U/en
Application granted granted Critical
Publication of CN204122708U publication Critical patent/CN204122708U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The utility model provides a kind of crystallizer cooling water control device, comprise continuous cast mold, the arrival end of this continuous cast mold is connected with into water main line, and the inner arc of continuous cast mold, outer arc, left side, right side connect inner arc backwater branch road, outer arc backwater branch road, left side backwater branch road, right side backwater branch road respectively; Water inlet main line is provided with the first temperature sensor for detecting inflow temperature; Inner arc backwater branch road, outer arc backwater branch road, left side backwater branch road, right side backwater branch road being respectively equipped with the second temperature sensor for detecting each branch road return water temperature, adding up the electromagnetic flowmeter of each branch road circling water flow rate, pneumatic diaphragm control valve; Calculate outer arc in crystallizer, left and right sides cooling water inflow according to factors such as steel grade, pulling rate, inflow temperature, water inlet and backwater temperature difference, molten steel overheat, casting blank cross-section sizes, the PID being realized the water yield by electromagnetic flowmeter and pneumatic control valve is regulated.During cast, improve the heat transfer of strand, reduce the incidence of blemish.

Description

A kind of crystallizer cooling water control device
Technical field
The utility model belongs to metallurgical technology field, particularly a kind of crystallizer cooling water control device.
Background technology
In casting process, molten steel enters crystallizer by tundish, is formed have certain thickness base shell by crystallizer wall cooling.Surface defect of bloom depends on the growth conditions of nascent solidified shell in crystallizer to a great extent, in crystallizer, the principal element of the nascent solidified shell growth of impact is the transmission of meniscus place hot-fluid, such as, if heat flow density is large, nascent solidified shell can be caused to grow uneven, easily produce the surface quality such as depression, longitudinal crack, transversal crack, star-like crack at casting billet surface; If heat flow density is too small, copper plate of crystallizer hot-face temperature can be caused too high, cause copper plate of crystallizer to reduce service life, and can cause the base shell of crystallizer end opening thin, easily cause the accidents such as bleed-out.Therefore, the heat transfer of the crystallization control device cooling water water yield and then control strand is the important measures reducing blemish.
For different steel grade, the strand of different section, in crystallizer, the size of heat flow density has an optimized scope, as long as ensure that the heat density of crystallizer is within the scope of this, the uniformity that initial solidification shell grows can be ensured, the thickness of crystallizer end opening base shell can be ensured out again.
At present, the crystallizer water yield mainly adjusts according to the difference of steel grade, do not consider the influence factors such as pulling rate, the degree of superheat, inflow temperature, cross dimensions, strand is made easily to produce blemish at crystallizer content, especially in the incipient stage of cast, blemish is particularly serious, adds the removing surface rate of strand.
Utility model content
For the problems referred to above, the utility model provides a kind of crystallizer cooling water control device, it is a kind of new crystallizer water rate control technology, this utility model is by the detection to water inlet branch road and backwater branch road water temperature, improving the heat transfer of strand in the water yield by controlling backwater branch road, reducing the incidence of blemish.
The utility model to achieve these goals, by the following technical solutions, a kind of crystallizer cooling water control device, comprise continuous cast mold, the arrival end of this continuous cast mold is connected with into water main line, and the inner arc of described continuous cast mold, outer arc, left side, right side connect inner arc backwater branch road, outer arc backwater branch road, left side backwater branch road, right side backwater branch road respectively;
Described water inlet main line is provided with the first temperature sensor for detecting inflow temperature;
Described inner arc backwater branch road, outer arc backwater branch road, left side backwater branch road, right side backwater branch road being respectively equipped with the second temperature sensor for detecting each branch road return water temperature, adding up the electromagnetic flowmeter of each branch road circling water flow rate, pneumatic diaphragm control valve.
Described water inlet main line is 4 water inlet branch roads, and respectively with the inner arc of continuous cast mold, outer arc, left side, right side connects, and each water inlet branch road is all provided with the first temperature sensor.
The utility model adopts technique scheme, has the following advantages: adopt the collection to water inlet and return water temperature, simultaneously to the control of each branch road water yield of backwater, the PID being realized the water yield by electromagnetic flowmeter and pneumatic control valve is regulated.During cast, improve the heat transfer of strand, reduce the incidence of blemish.
Below with reference to accompanying drawing, the utility model is described in further details.
Accompanying drawing explanation
Fig. 1 is the utility model system diagram.
Fig. 2 is the cc billet surface quality figure of embodiment 2.
Fig. 3 is the cc billet surface quality figure of comparative example.
In figure, 1, water inlet main line; 2, the first temperature sensor; 3, inner arc backwater branch road; 4, outer arc backwater branch road; 5, left side backwater branch road; 6, right side backwater branch road; 7, the second temperature sensor; 8, electromagnetic flowmeter; 9, pneumatic diaphragm control valve; 10, continuous cast mold.
Detailed description of the invention
Further a kind of crystallizer cooling water control device is described in detail below in conjunction with drawings and Examples.
Embodiment 1
A kind of crystallizer cooling water control device as shown in Figure 1, a kind of crystallizer cooling water control device, comprise continuous cast mold 10, the arrival end of this continuous cast mold 10 is connected with into water main line 1, and the inner arc of described continuous cast mold 10, outer arc, left side, right side connect inner arc backwater branch road 3, outer arc backwater branch road 4, left side backwater branch road 5, right side backwater branch road 6 respectively;
Described water inlet main line 1 is provided with the first temperature sensor 2 for detecting inflow temperature;
Described inner arc backwater branch road 3, outer arc backwater branch road 4, left side backwater branch road 5, right side backwater branch road 6 being provided with respectively all successively the second temperature sensor 7 for detecting each branch road return water temperature, adding up the electromagnetic flowmeter 8 of each branch road circling water flow rate,
Pneumatic diaphragm control valve 9; First temperature sensor 2 detects the temperature of water inlet, and the second temperature sensor 7 detects the return water temperature after continuous cast mold 10, and monitored temperature value is contrasted, and draws degree of superheat △ T; Control to the water yield when pneumatic diaphragm control valve 9 controls to pour into a mould, whether electromagnetic flowmeter 8 is used for observing water consumption is the water yield needed.
In order to calculate degree of superheat △ T accurately, the main line 1 that therefore intakes is 4 water inlet branch roads, and respectively with the inner arc of continuous cast mold 10, outer arc, left side, right side connects, and each water inlet branch road is all provided with the first temperature sensor 2.
A kind of crystallizer cooling water control method, carry out according to following steps:
1), 4 water inlet branch roads on water inlet main line 1, be respectively the inner arc of continuous cast mold 10, outer arc, left side, supply water in right side, and the first temperature sensor 2 on Zhi Jinshui branch road carries out record to the water temperature on each water inlet branch road;
2), the second temperature sensor 7 detects after continuous cast mold 10, the temperature of inner arc backwater branch road 3, outer arc backwater branch road 4, left side backwater branch road 5, right side backwater branch road 6 branch road backwater;
3) temperature that the temperature, to the first temperature sensor 2 detected and the second temperature sensor 7 detect contrasts, and calculates return water temperature and the inflow temperature degree of superheat △ T of backwater branch road;
4) water yield of backwater branch road needs, is calculated according to following computing formula;
Q=Q min+f*ΔQ
Q max≤Q≤Q min
Q max=10*A
Q min=6*A
ΔQ=Q max-Q min=4*A
f=f 1+f 2+f 3+f 4+f 5-f 6
In formula, Q is each backwater branch road water yield; Q maxfor each backwater branch road maximum amount of water, Q minfor each backwater branch road least quantity; A is crystallizer inner arc, outer arc, left side or right side copper coin water seam cross-sectional area; F is comprehensive correction factor; f 1for pulling rate correction factor; f 2for steel grade correction factor; f 3for strand flakiness ratio correction factor; f 4for inflow temperature correction factor; f 5for molten steel overheat correction factor; f 6for correction factor shaped by copper coin;
In formula,
0≤f≤1
For f 1, as pulling rate 0≤v≤2m/min, f 1=0.1*v;
As pulling rate v > 2m/min, f 1=0.2
Wherein v is pulling rate, and unit is m/min;
For f 2, value is 01 ~ 0.4:
Following table is the different f of different steel grade 2value
Steel grade Correction factor f 2
Ultra-low-carbon steel 0.4
Mild steel 0.3
Peritectic steel, low-alloy steel 0~0.15
Medium carbon steel 0.2~0.3
High-carbon steel, steel alloy 0.1~0.2
For f 3, work as strand when calculating inner arc and the outer arc backwater branch road water yield, f 3=0.15, when calculating left side and the right side backwater branch road water yield, f 3=0.1; Work as strand when calculating inner arc and the outer arc backwater branch road water yield, f 3=0.15, when calculating left side and the right side backwater branch road water yield, f 3=0.05;
For f 4, when inflow temperature is no more than 25 DEG C, f 4=0;
When inflow temperature is more than 25 DEG C, f 4=0.15
For f 5, when the degree of superheat 15 DEG C≤△ T≤25 DEG C, f 5=0;
When the degree of superheat 25 DEG C of < △ T≤30 DEG C, f 5=0.05;
As the degree of superheat 30 DEG C of > △ T, f 5=0.1;
For f 6, f 6 = - 1 125 * D + 8 25 ;
Wherein D is copper plate thickness, 15mm≤D≤40mm.
5), according to the water yield of the every bar backwater branch road calculated, by controlling pneumatic diaphragm control valve (9), realize the control to the water yield during cast, when controlling to water water injection rate, whether the data that the moment observes the display of electromagnetic flowmeter 8 are the data calculated, if not, adjust pneumatic diaphragm control valve 9 in time, make the water yield reach the value of calculating.
Embodiment 2
Based on said apparatus and method, concrete is described these apparatus and method:
1) cast casting blank section is selected to be 350mmX2100mm, steel grade Q460C, degree of superheat △ T is 30 DEG C, pulling rate is 0.6 ~ 0.8m/min, concrete value is 0.7m/min, is recorded that crystallizer inflow temperature is 35 DEG C, copper plate thickness is 40mm by the first temperature sensor 2.
2) during cast, according to step 4) in formulae discovery go out the water yield of each branch road, be specially:
Determine f 1, f 2, f 3, f 4, f 5, f 6value:
F 1for as pulling rate 0≤v≤2m/min, f 1=0.1*v=0.1*0.7=0.07;
Because the steel grade got is Q460C, therefore f 2=0.15
Strand when therefore calculating inner arc and the outer arc backwater branch road water yield, f 3=0.15, when calculating left side and the right side backwater branch road water yield, f 3=0.1;
Recording crystallizer inflow temperature because of the first temperature sensor 2 is 35 DEG C, therefore f 4=0.15,
Degree of superheat △ T is 30 DEG C, f 5=0.05;
f 6 = - 1 125 * D + 8 25 = 1 125 * 40 + 8 25 = 0.64 ;
Determine f according to data above and according to backwater branch road maximum amount of water, backwater branch road least quantity, crystallizer inner arc, outer arc, left side or right side copper coin water seam cross-sectional area, draw the water yield of following each backwater branch road:
Inner arc backwater branch road 3 water yield is equal with outer arc backwater branch road 4 water yield, and adjustable range is: 4200l/min ~ 4650l/mim;
Left side backwater branch road 5 water yield is equal with right side backwater branch road 6 water yield, and adjustable range is: 600l/min ~ 680l/mim.
According to the water yield calculating each backwater branch road, regulating the water yield of each backwater branch road by controlling pneumatic diaphragm control valve 9, making it reach the water yield of calculating;
The water yield maybe will calculated, passes to PLC control system in real time, realizes the PID runoff investigation between electromagnetic flowmeter 8 and pneumatic diaphragm control valve 9 by PLC.
Comparative example
The cast of embodiment 2 is not adopted the real-time dynamic adjustments crystallizer water yield, is described below:
1) select cast casting blank section to be 350mmX2100mm, steel grade Q460C, the degree of superheat is 30 DEG C, pulling rate is 0.6 ~ 0.8m/min, recorded by temperature sensor 2 that crystallizer inflow temperature is 35 DEG C, copper plate thickness is 40mm.
2), during cast, two-level computer system sets a fixing water yield, is specially:
Inner arc backwater branch road 3 water yield is equal with outer arc backwater branch road 4 water yield, is set as: 4550l/min
Left side backwater branch road 5 water yield is equal with right side backwater branch road 6 water yield, is set as: 655l/min
By the water yield of setting, pass to PLC control system, realize the PID runoff investigation between electromagnetic flowmeter 8 and pneumatic diaphragm control valve 9 by PLC.
With reference to Fig. 2, Fig. 3, as can be seen from Figure 2, after implementing crystallizer water yield dynamic adjustments, strand avoids the generation of crackle, as can be seen from Figure 3, after not implementing crystallizer water yield dynamic adjustments, strand there occurs crackle, drawn by contrast, the utility model avoids or decreases the generation of slab surface crack, improves cc billet surface quality.
More than exemplifying is only illustrate of the present utility model, does not form the restriction to protection domain of the present utility model, everyly all belongs within protection domain of the present utility model with the same or analogous design of the utility model.

Claims (2)

1. a crystallizer cooling water control device, comprise continuous cast mold (10), the arrival end of this continuous cast mold (10) is connected with into water main line (1), it is characterized in that, the inner arc of described continuous cast mold (10), outer arc, left side, right side connect inner arc backwater branch road (3), outer arc backwater branch road (4), left side backwater branch road (5), right side backwater branch road (6) respectively;
Described water inlet main line (1) is provided with the first temperature sensor (2) for detecting inflow temperature;
Described inner arc backwater branch road (3), outer arc backwater branch road (4), left side backwater branch road (5), right side backwater branch road (6) are respectively equipped with the second temperature sensor (7) for detecting each branch road return water temperature, add up the electromagnetic flowmeter (8) of each branch road circling water flow rate, pneumatic diaphragm control valve (9).
2. a kind of crystallizer cooling water control device according to claim 1, it is characterized in that, described water inlet main line (1) is 4 water inlet branch roads, respectively with the inner arc of continuous cast mold (10), outer arc, left side, right side connects, and each water inlet branch road is all provided with the first temperature sensor (2).
CN201420457681.XU 2014-08-14 2014-08-14 A kind of crystallizer cooling water control device Expired - Fee Related CN204122708U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420457681.XU CN204122708U (en) 2014-08-14 2014-08-14 A kind of crystallizer cooling water control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420457681.XU CN204122708U (en) 2014-08-14 2014-08-14 A kind of crystallizer cooling water control device

Publications (1)

Publication Number Publication Date
CN204122708U true CN204122708U (en) 2015-01-28

Family

ID=52379099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420457681.XU Expired - Fee Related CN204122708U (en) 2014-08-14 2014-08-14 A kind of crystallizer cooling water control device

Country Status (1)

Country Link
CN (1) CN204122708U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162638A (en) * 2014-08-14 2014-11-26 中国重型机械研究院股份公司 Crystallizer cooling water control device and method
CN106180603A (en) * 2016-08-30 2016-12-07 中国重型机械研究院股份公司 Magnesium alloy slab casting crystallizer
CN110315049A (en) * 2019-07-25 2019-10-11 中冶赛迪工程技术股份有限公司 A kind of continuous casting secondary cooling water control device and method
CN110369687A (en) * 2019-08-02 2019-10-25 中国重型机械研究院股份公司 A kind of intelligent apparatus and method of the online trapezoidal defect of slab section of amendment in real time
CN112108622A (en) * 2018-07-11 2020-12-22 亳州易泽信息科技有限公司 Control method of automatic control device for cold water pressure in copper processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162638A (en) * 2014-08-14 2014-11-26 中国重型机械研究院股份公司 Crystallizer cooling water control device and method
CN106180603A (en) * 2016-08-30 2016-12-07 中国重型机械研究院股份公司 Magnesium alloy slab casting crystallizer
CN112108622A (en) * 2018-07-11 2020-12-22 亳州易泽信息科技有限公司 Control method of automatic control device for cold water pressure in copper processing
CN110315049A (en) * 2019-07-25 2019-10-11 中冶赛迪工程技术股份有限公司 A kind of continuous casting secondary cooling water control device and method
CN110315049B (en) * 2019-07-25 2021-02-02 中冶赛迪工程技术股份有限公司 Continuous casting secondary cooling water control device and method
CN110369687A (en) * 2019-08-02 2019-10-25 中国重型机械研究院股份公司 A kind of intelligent apparatus and method of the online trapezoidal defect of slab section of amendment in real time

Similar Documents

Publication Publication Date Title
CN104162638B (en) A kind of crystallizer cooling water control device and method
CN204122708U (en) A kind of crystallizer cooling water control device
CN103071774B (en) Method for controlling surface temperature of casting blank at straightening point of continuous casting machine
CN103586433B (en) A kind of method improving continuous casting steel billet head and tail base flaw detection qualification rate
CN104874758B (en) Continuous casting weight pressing control method
CN106513617A (en) Device and method for improving casting blank quality of continuous casting production
CN102233415B (en) Method for setting width of ferrite stainless steel slab during continuous casting production
CN111014607B (en) Continuous casting high-quality accurate secondary cooling process
CN106825479B (en) A kind of determination method of hot delivering technology of CC billets process quenching technology for surfaces cooling water flow
CN109261922B (en) Casting blank production process of solidification tail end large-reduction continuous casting machine
CN101883649A (en) Device for controlling or regulating a temperature
CN103567409B (en) Method for on-line width adjusting of continuous casting
CN101554650B (en) Method for controlling online calibration of pulling-straightening roller gap under light pressure of bloom caster
CN101791681B (en) Water-cooling die casting production process of plate blank used for medium plate
CN201669411U (en) Cooling device of aluminum alloy metal type casting die
CN104057053B (en) A kind of continuous cast method of low-alloy steel wide and thick slab
CN108356240B (en) Corner efficient heat transfer thin slab narrow-face curved surface crystallizer and design method thereof
CN104174659B (en) A kind of big pressure rolling temperature control method of wick-containing
JP5494350B2 (en) Continuous casting method for steel slabs
CN104550808A (en) Method and device for producing steel ingots with fewer internal defects
CN102847904B (en) System and method for dynamic control of cooling of slab continuous casting crystallizer
CN102228972B (en) Calculation method for solidification heat transfer process of continuous casting crystallizer
CN102078947B (en) Method for calculating heat flow density in solidification heat transfer process of continuous casting crystallizer
CN113128030B (en) Crystallizer slag rolling fault judging method and device
CN205183722U (en) Novel conticaster

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150128

Termination date: 20170814

CF01 Termination of patent right due to non-payment of annual fee