JPH06205245A - Contour compensation processor by scanning line density modulation of picture - Google Patents

Contour compensation processor by scanning line density modulation of picture

Info

Publication number
JPH06205245A
JPH06205245A JP4059742A JP5974292A JPH06205245A JP H06205245 A JPH06205245 A JP H06205245A JP 4059742 A JP4059742 A JP 4059742A JP 5974292 A JP5974292 A JP 5974292A JP H06205245 A JPH06205245 A JP H06205245A
Authority
JP
Japan
Prior art keywords
signal
vertical
image
contour compensation
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4059742A
Other languages
Japanese (ja)
Inventor
Koichi Chiba
公一 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP4059742A priority Critical patent/JPH06205245A/en
Publication of JPH06205245A publication Critical patent/JPH06205245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To execute an appropriate compensation by applying density modulation to a scanning line in a CRT display device. CONSTITUTION:A Y signal (luminance signal) is processed by 1H delay lines 1a 1b for second order derivative, adder circuits 2, 3 and a coefficient device 5 and a vertical contour compensation signal f' is obtained by an LPF 6 and a gain control circuit 7. The compensation signal is fed to a coil drive circuit 10, in which a density modulation coil 11 of a CRT display device is driven. Thus, the density modulation is applied to a scanning line at a vertical contour part of a picture in the CRT display device and the contour is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCRT表示装置に係り、
特に画像輝度成分信号の垂直輪郭補償を行うための改良
された構成の垂直輪郭補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CRT display device,
In particular, the present invention relates to an improved vertical contour compensating device for performing vertical contour compensation of an image luminance component signal.

【0002】[0002]

【従来の技術】従来のCRT表示装置において、表示画
像の垂直輪郭補償装置は図7に示すように構成されてい
た。同図において、1a及び1bは2階微分回路用の1
H遅延線、2,3,4は加算器、5は1/2倍係数器、
6はローパスフィルタ(LPF)、7は利得制御回路、
8はビーム増幅器、9はCRT表示装置の電子銃であ
る。
2. Description of the Related Art In a conventional CRT display device, a vertical contour compensating device for a display image is constructed as shown in FIG. In the figure, 1a and 1b are 1 for the second-order differentiation circuit.
H delay line, 2, 3 and 4 adders, 5 1/2 coefficient unit,
6 is a low pass filter (LPF), 7 is a gain control circuit,
Reference numeral 8 is a beam amplifier, and 9 is an electron gun of a CRT display device.

【0003】図8は図7の装置の各部信号波形の一例
で、aは入力Y信号波形(例えば、周辺部分グレーに対
し白のウインド信号)、bは入力Y信号に対する1H
(1水平走査時間)の遅延信号、cは入力Y信号に対す
る2Hの遅延信号、dは入力Y信号と2H遅延信号の加
算出力信号、eは該信号dの−1/2倍信号、fは該信
号eと1H遅延信号bの加算出力信号、f’は該信号f
をLPF6及び利得制御回路7を介して取り出した垂直
輪郭補償信号、gは該信号f’に1H遅延信号bの加算
出力信号で、垂直輪郭補償信号を含む輝度信号となる。
上記輝度信号はビーム増幅器8に加えられ、電子銃9に
与えられるビーム電流の増減により垂直輪郭補償が行わ
れる。
FIG. 8 shows an example of the signal waveform of each part of the apparatus of FIG. 7, where a is an input Y signal waveform (for example, a white window signal with respect to the peripheral gray), and b is 1H with respect to the input Y signal.
(1 horizontal scanning time) delay signal, c is 2H delay signal with respect to input Y signal, d is addition output signal of input Y signal and 2H delay signal, e is -1/2 signal of the signal d, and f is An addition output signal of the signal e and the 1H delayed signal b, and f ′ is the signal f
Is a vertical contour compensation signal extracted via the LPF 6 and the gain control circuit 7, and g is an output signal obtained by adding the 1H delay signal b to the signal f ′ and becomes a luminance signal including the vertical contour compensation signal.
The brightness signal is applied to the beam amplifier 8, and vertical contour compensation is performed by increasing or decreasing the beam current applied to the electron gun 9.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の輪郭補
償方法では垂直輪郭部の補償のため、輪郭補償信号Sの
大きさに応じてビーム電流のレベルを増減させている。
従って、例えば輪郭の白部分での補償は、白レベルより
もビーム電流を増大させなければならないことになり、
高輝度部でビームスポット径が広がってしまう。ビーム
スポット径は解像度に影響を及ぼすので、ビームスポッ
ト径が広がると、解像度が低下するばかりでなく、輪郭
部分での適切な輪郭補償が行われなくなる。しかしビー
ムスポット径は、電子銃により決まってしまうため、従
来の方法で適切な輪郭補償を行うためには特別な電子銃
が必要となり実用的ではない。また、輝度変化が緩やか
な映像信号を補償する場合は、補償量が少なく、充分な
効果は得られない。
In the above-described conventional contour compensation method, the level of the beam current is increased or decreased according to the magnitude of the contour compensation signal S in order to compensate the vertical contour portion.
So, for example, compensation in the white part of the contour would have to increase the beam current above the white level,
The beam spot diameter spreads in the high brightness area. Since the beam spot diameter affects the resolution, widening the beam spot diameter not only lowers the resolution but also prevents proper contour compensation at the contour portion. However, since the beam spot diameter is determined by the electron gun, a special electron gun is required to perform appropriate contour compensation by the conventional method, which is not practical. Further, when compensating a video signal with a gradual change in luminance, the amount of compensation is small and a sufficient effect cannot be obtained.

【0005】本発明の目的はビーム電流を増加させるこ
となく、走査線の密度を変化させることにより適切な輪
郭補償を可能とする装置を提案することにある。
It is an object of the present invention to propose a device which enables appropriate contour compensation by changing the density of scanning lines without increasing the beam current.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本願の第1の発明は、画像輝度成分信号を水平走査
時間に基づいた所定時間遅延し遅延信号を出力する遅延
手段と、上記画像輝度成分信号と上記遅延信号とを合成
し位相反転して所定倍した合成処理信号を出力する合成
処理手段と、前記遅延信号と上記合成処理信号との加算
演算による輪郭補償処理を行って垂直輪郭補償成分信号
を得る垂直輪郭補償処理手段と、前記画像輝度成分信号
から生成された水平及び垂直偏向成分信号に基づいて水
平及び垂直偏向磁界を発生させてビームの水平及び垂直
走査を行い画像表示するCRT表示手段と、上記CRT
表示手段のビームの垂直方向変位のみを与える位置に設
けられ、前記垂直輪郭補償成分信号に基づいて垂直補償
磁界を発生させ前記垂直偏向磁界に重畳させる垂直密度
変調手段と、を備えたことを特徴とする。
In order to achieve the above object, the first invention of the present application is to delay an image luminance component signal for a predetermined time based on a horizontal scanning time and output a delayed signal, and the above image. A synthesis processing means for synthesizing the luminance component signal and the delay signal, inverting the phase and outputting a synthesis processing signal multiplied by a predetermined number, and a contour compensation processing by an addition operation of the delay signal and the synthesis processing signal to perform a vertical contour. Vertical contour compensation processing means for obtaining a compensation component signal, and horizontal and vertical deflection magnetic fields are generated based on the horizontal and vertical deflection component signals generated from the image luminance component signal to perform horizontal and vertical scanning of the beam for image display. CRT display means and the CRT
Vertical density modulation means, which is provided at a position which gives only a vertical displacement of the beam of the display means, generates a vertical compensation magnetic field based on the vertical contour compensation component signal, and superimposes it on the vertical deflection magnetic field. And

【0007】また、本願の第2の発明は、画像輝度成分
信号を水平走査時間に基づいた所定時間遅延し遅延信号
を出力する遅延手段と、上記画像輝度成分信号と上記遅
延信号とを合成し位相反転して所定倍した合成処理信号
を出力する合成処理手段と、前記画像輝度成分信号と前
記遅延信号との差分信号及び所定の基準信号に基づい
て、前記画像輝度成分信号の立上り、立下りの輝度変化
を検出し、その検出結果に応じた検出信号を得る輝度変
化検出手段と、上記検出信号に基づいて、前記画像輝度
成分信号と前記遅延信号との合成された信号と、前記合
成処理信号と、を選択し加算して出力する信号選択出力
手段と、上記信号選択出力手段での前記合成された信号
と合成処理信号との加算出力に基づく輪郭補償処理を行
って垂直輪郭補償成分信号を得る垂直輪郭補償処理手段
と、前記画像輝度成分信号から生成された水平及び垂直
偏向成分信号に基づいて水平及び垂直偏向磁界を発生さ
せてビームの水平及び垂直走査を行い画像表示するCR
T表示手段と、上記CRT表示手段のビームの垂直方向
変位のみを与える位置に設けられ、前記垂直輪郭補償成
分信号に基づいて垂直補償磁界を発生させ前記垂直偏向
磁界に重畳する垂直密度変調手段と、を備えたことを特
徴とする。
The second invention of the present application synthesizes the image brightness component signal and the delay signal with delay means for delaying the image brightness component signal by a predetermined time based on the horizontal scanning time and outputting the delayed signal. A synthesizing processing means for inverting the phase and outputting a synthesized signal multiplied by a predetermined value, and a rising edge and a falling edge of the image luminance component signal based on a difference signal between the image luminance component signal and the delay signal and a predetermined reference signal. Luminance change detecting means for obtaining a detection signal corresponding to the detection result, a signal obtained by synthesizing the image luminance component signal and the delay signal based on the detection signal, and the synthesizing process. A signal and a signal for selecting and adding the signals, and a contour compensation process based on the added output of the synthesized signal and the synthesized signal in the signal selection and output means to perform vertical contour compensation. CR that by generating horizontal and vertical deflection magnetic field to the image display performs horizontal and vertical scanning of the beam on the basis of the vertical contour compensation processing means for obtaining a signal, the image luminance component signal horizontal and vertical deflection component signal generated from
A T display means and a vertical density modulation means which is provided at a position where only a vertical displacement of the beam of the CRT display means is provided, and which generates a vertical compensation magnetic field based on the vertical contour compensation component signal and superimposes it on the vertical deflection magnetic field. , Is provided.

【0008】[0008]

【作用】第1の発明の装置において、画像輝度成分信号
は該信号を水平走査時間に基づいて遅延した信号と合成
され、更に位相反転して所定倍するように処理されて合
成処理信号となる。この合成処理信号は前記遅延信号と
加算されて垂直輪郭補償成分信号を得、該信号に基づい
て発生される垂直補償磁界が垂直偏向磁界に重畳されて
走査線の垂直密度変調が行われる。また第2の発明の装
置においては、前記画像輝度成分信号の立上り、立下り
の輝度変化が検出され、その検出信号に基づいて画像輝
度成分信号と遅延信号との合成信号と、前記合成処理信
号と、が選択して加算される。そしてこの加算出力に基
づいて垂直輪郭補償成分信号を得る。
In the apparatus of the first aspect of the present invention, the image luminance component signal is combined with a signal obtained by delaying the signal based on the horizontal scanning time, further phase-inverted and processed so as to be multiplied by a predetermined value to form a combined processing signal. . This combined processing signal is added to the delay signal to obtain a vertical contour compensation component signal, and a vertical compensation magnetic field generated based on the signal is superimposed on the vertical deflection magnetic field to perform vertical density modulation of the scanning line. In the device of the second aspect of the present invention, rising and falling luminance changes of the image luminance component signal are detected, and a combined signal of the image luminance component signal and the delayed signal based on the detected signal and the combined processed signal. And are selected and added. Then, a vertical contour compensation component signal is obtained based on this addition output.

【0009】[0009]

【実施例】以下図面に示す本発明の実施例を説明する。
図1は本発明による垂直輪郭補償装置の一実施例で、図
7と同一符号は同一又は類似の回路を表わし、本実施例
においては、更にコイルドライブ回路10及びCRTの
垂直密度変調用コイル11が設けられている。
Embodiments of the present invention shown in the drawings will be described below.
FIG. 1 shows an embodiment of a vertical contour compensating device according to the present invention. The same reference numerals as those in FIG. 7 represent the same or similar circuits. In this embodiment, a coil drive circuit 10 and a vertical density modulation coil 11 of a CRT are further provided. Is provided.

【0010】前述のように2つの1H遅延線による2階
微分回路により生成された垂直輪郭補償信号f’がコイ
ルドライブ回路10に加えられて電流増幅され垂直密度
変調用コイル11に与えられる。これにより垂直輪郭部
に同様な波形の走査線の密度変調磁界が生成される。上
記コイルが設けられるCRT表示装置内では垂直偏向鋸
波磁界によるビームの垂直走査が行われている。従って
ビームが受ける垂直方向の磁界は上記垂直偏向鋸波磁界
と前記密度変調磁界(垂直輪郭補償磁界)であり、見か
け上垂直輪郭部に輪郭補償波形を有する垂直偏向鋸波磁
界が作用してビームの垂直方向の走査線密度変調が行わ
れる。
As described above, the vertical contour compensation signal f'generated by the second-order differential circuit using the two 1H delay lines is added to the coil drive circuit 10, current amplified, and given to the vertical density modulation coil 11. As a result, a density modulation magnetic field of the scanning line having a similar waveform is generated in the vertical contour portion. In the CRT display device provided with the above-mentioned coil, the beam is vertically scanned by the vertical deflection sawtooth magnetic field. Therefore, the vertical magnetic field received by the beam is the vertical deflection sawtooth magnetic field and the density modulation magnetic field (vertical contour compensation magnetic field), and the vertical deflection sawtooth magnetic field apparently having a contour compensation waveform acts on the beam. Vertical scanning line density modulation is performed.

【0011】この場合、コイル11の設置位置は前記補
償磁界によりビームが垂直方向にのみ変位されるCRT
の電子銃の位置に設定される。例えば、上記コイルによ
ってビームに水平方向の変位成分を与えると、CRT表
示面上で適切な補償が行われなかったり、色ずれの原因
となるので、実際のコイル設置位置としてはCRTネッ
ク部の偏向コイルのすぐ後が望ましい。本発明によるこ
の走査線密度変調について更に説明する。通常の走査で
は、垂直偏向鋸波により走査線は均一な間隔で垂直走査
されるので、例えば、グレーレベルから白レベルに変化
する場合の輝度変化は図2のようになる。
In this case, the installation position of the coil 11 is such that the beam is displaced only in the vertical direction by the compensation magnetic field.
Set to the position of the electron gun. For example, if a horizontal displacement component is applied to the beam by the coil, proper compensation may not be performed on the CRT display surface or color misregistration may occur. Therefore, the actual coil installation position may be the deflection of the CRT neck portion. Immediately after the coil is desirable. The scanning line density modulation according to the present invention will be further described. In normal scanning, since the scanning lines are vertically scanned at uniform intervals by the vertical deflection sawtooth wave, for example, the luminance change when changing from the gray level to the white level is as shown in FIG.

【0012】しかし本発明では、前述のように密度変調
を施す場合、Y信号の2階微分による前記垂直輪郭補償
信号を基にして前記垂直密度変調用コイル11により補
償磁界が発生され、この磁界と垂直偏向鋸波磁界とが重
畳されることにより垂直偏向鋸波磁界は図3のように変
えられる。これにより垂直輪郭部分で走査線の間隔(密
度)が変化する。走査線同士の密度が疎になった部分の
CRT表示面上での輝度は低下し、その密度が密になっ
た部分の輝度は向上する。また通常、走査線の密度は均
一であるので、密度が疎になる走査線の次のラインでは
密度が密になり、密度が密になる走査線の次のラインで
は密度が疎になる。従ってグレーレベルから白レベルに
変化するY信号の場合、輝度変化は図3のようになる。
この時、垂直輪郭部分ではグレーレベルと白レベルの差
が増加して輪郭補償が施される。なお、本実施例では2
階微分により垂直輪郭補償信号を得るとしたが、図9に
示すように1階微分の構成でも同様な補償信号を得るこ
とができる。
However, in the present invention, when the density modulation is performed as described above, a compensation magnetic field is generated by the vertical density modulation coil 11 on the basis of the vertical contour compensation signal obtained by the second derivative of the Y signal, and this magnetic field is generated. The vertical deflection sawtooth magnetic field can be changed as shown in FIG. As a result, the spacing (density) of the scanning lines changes in the vertical contour portion. The luminance on the CRT display surface in the portion where the density of the scanning lines is sparse is reduced, and the luminance in the portion where the density is dense is improved. Also, since the density of the scanning lines is usually uniform, the density becomes dense on the line next to the scanning line where the density becomes sparse, and becomes sparse at the line next to the scanning line where the density becomes dense. Therefore, in the case of the Y signal changing from the gray level to the white level, the brightness change is as shown in FIG.
At this time, in the vertical contour portion, the difference between the gray level and the white level is increased and contour compensation is performed. In this embodiment, 2
Although the vertical contour compensation signal is obtained by the first derivative, the same compensation signal can be obtained by the first derivative configuration as shown in FIG.

【0013】図10は本発明方式と従来方式についての
輝度変化の違いを示す。同図から明らかな如く、1階微
分による輪郭補償を施した場合、従来方式では白レベル
の輝度だけが増加する。しかし本発明方式ではグレーレ
ベルの輝度は低下して白レベルの輝度は増加する。従っ
て輪郭部の輝度のレベル差は従来方式に比べ本発明方式
の方が大きくなる。
FIG. 10 shows the difference in luminance change between the method of the present invention and the conventional method. As is clear from the figure, when the contour compensation is performed by the first-order differential, only the white level luminance increases in the conventional method. However, in the method of the present invention, the gray level luminance decreases and the white level luminance increases. Therefore, the brightness level difference of the contour portion is larger in the method of the present invention than in the conventional method.

【0014】図11(a)及び(b)は夫々通常走査及
び本発明の密度変調走査による画像の輪郭部分30を拡
大して示す。これは一例として周辺部分がグレーレベル
で、その内側に白レベルのウインドパターンが表示され
ている場合で、輪郭部分30の斜線部が白レベルとす
る。通常走査との比較で、密度変調走査の場合の輪郭部
を考えると、走査線l2とl3の白レベルの存在する部分
(前走査線に対して輝度変化の生じている部分、即ち、
垂直輪郭部)の走査線の位置P1,P2が前記輪郭補償に
よる補償磁界のため図11(b)のように変位し、水平
走査線の密度分布に不均一性(疎密)が生じる。これに
より前述した輪郭強調が行われる。同様に輪郭部の立下
り部分でも走査線の密度変調が行われ輪郭強調されるこ
とになる。
11 (a) and 11 (b) are enlarged views of the contour portion 30 of the image by the normal scanning and the density modulation scanning of the present invention, respectively. As an example, this is a case where the peripheral portion is a gray level and a white level window pattern is displayed inside thereof, and the shaded portion of the contour portion 30 is a white level. Considering the contour part in the case of the density modulation scanning in comparison with the normal scanning, the part where the white level of the scanning lines l 2 and l 3 exists (the part where the luminance change occurs with respect to the previous scanning line, that is,
Positions P 1 and P 2 of the scanning lines in the vertical contour portion are displaced as shown in FIG. 11B due to the compensating magnetic field due to the contour compensation, resulting in non-uniformity (density) in the density distribution of the horizontal scanning lines. As a result, the contour enhancement described above is performed. Similarly, the density of the scanning line is also modulated at the trailing edge of the contour portion to enhance the contour.

【0015】また、前述した密度変調により、垂直輪郭
補償を行う際に、垂直輪郭の2階微分波形信号を用いる
と、垂直走査の一方向性により輪郭の立上り、立下りの
部分で図4に示すように補償の非対称性が生じることが
ある。即ち、図4(a),(b)において、2階微分に
よる輪郭補償では、輪郭を含む2ラインで1つの輪郭補
償を行っている。ここで、例えば、立上りエッジを考え
ると、矢印に示すように走査線が上へ動き、次のライン
で下へ動く。そして立下りエッジでは、矢印で示すよう
に走査線は下へ動き、次のラインで上へ動く。従って、
図4(a)に示すように、前記した方法の輪郭補償では
立上り、立下りで非対称なものとなって不自然な画像が
再生される場合がある。
Further, when the second-order differential waveform signal of the vertical contour is used when performing the vertical contour compensation by the above-mentioned density modulation, the contour rising and falling portions are shown in FIG. As shown, compensation asymmetry may occur. That is, in FIGS. 4A and 4B, in the contour compensation by the second derivative, one contour compensation is performed by two lines including the contour. Here, for example, considering the rising edge, the scanning line moves upward as shown by the arrow and moves downward in the next line. Then, on the falling edge, the scan line moves down as indicated by the arrow and moves up on the next line. Therefore,
As shown in FIG. 4 (a), the contour compensation of the above-described method may cause an asymmetric image at the rising edge and the falling edge to reproduce an unnatural image.

【0016】図5(a)は図1の実施例では上述した輪
郭の立上り、立下りの非対称性を生ずる場合がある点を
更に改善して、垂直輪郭補償時の画像の輪郭に不自然さ
を生じないようにして効果的に垂直輪郭補償を行う本発
明の他の実施例で、図1と同一符号は同一又は類似の回
路をあらわし、更に、20は比較器、21は1H遅延
線、22はTTL回路、23はアンドゲート、24はア
ナログスイッチ、25は係数器、26,27,28は夫
々減算器である。図5(b)は各部の信号波形を示す。
FIG. 5 (a) is further improved in that in the embodiment of FIG. 1 the asymmetry of the rising edge and the falling edge of the contour described above is further improved, and the contour of the image at the time of vertical contour compensation is unnatural. In another embodiment of the present invention for effectively performing vertical contour compensation without causing the above, the same reference numerals as those in FIG. 1 represent the same or similar circuits, 20 is a comparator, 21 is a 1H delay line, Reference numeral 22 is a TTL circuit, 23 is an AND gate, 24 is an analog switch, 25 is a coefficient multiplier, and 26, 27 and 28 are subtractors. FIG. 5B shows the signal waveform of each part.

【0017】図5(a)において、a点では2階微分波
形信号aを得る。また、輪郭極性検出のために、1階微
分波形信号bをb点で得て、比較器20に加え、所定の
基準信号Erと比較して輪郭の立上り(又は立下り)の
検出を行い、レベルの変換された検出信号b1を得る。
この信号b1と、該信号b1を1H遅延線21により1H
(1水平走査時間)遅延させてTTL回路22を通した
信号b2と、をアンドゲート23に加えて、極性選択用
アナログスイッチ24を駆動するためのゲートパルスe
を得る。該パルスeによりスイッチ24が駆動される
と、前記信号aと、該信号aを係数器25で処理した信
号と、を選択し加算出力する。この加算出力信号fから
は、図6(a),(b)に示すように輪郭の立上り、立
下りを区別し、その輪郭にあった極性の補償信号を得る
ことができる。これにより図6(a)に示すように輝度
分布の立上り、立下り部分が対称となる。
In FIG. 5A, a second-order differential waveform signal a is obtained at point a. Further, in order to detect the edge polarity, the first-order differential waveform signal b is obtained at the point b, added to the comparator 20, and compared with a predetermined reference signal Er to detect the edge rise (or edge fall) of the edge, The level-converted detection signal b 1 is obtained.
This signal b 1 and the signal b 1 are 1H by the 1H delay line 21.
(1 horizontal scanning time) The signal b 2 which has been delayed and passed through the TTL circuit 22 and the gate pulse e for driving the polarity selecting analog switch 24 are applied to the AND gate 23.
To get When the switch 24 is driven by the pulse e, the signal a and the signal obtained by processing the signal a by the coefficient unit 25 are selected and added and output. From the added output signal f, it is possible to distinguish the rising edge and the falling edge of the contour as shown in FIGS. 6A and 6B, and obtain a compensation signal having a polarity suitable for the contour. As a result, as shown in FIG. 6A, the rising and falling portions of the luminance distribution are symmetrical.

【0018】なお、図12及び図13は夫々従来及び本
発明方式による信号波形とCRT管面の輝度分布を示す
オシロ波形の写真で、同一カメラ及び同一撮影条件で撮
影したものである。これらから明らかなように本発明に
よると輪郭部分の非対称性がなくなっていることがわか
る。
12 and 13 are photographs of the signal waveform and the oscilloscope waveform showing the luminance distribution on the CRT screen, respectively, taken by the same camera and under the same photographing conditions, respectively, as shown in FIGS. As is apparent from these, according to the present invention, the asymmetry of the contour portion is eliminated.

【0019】[0019]

【発明の効果】以上説明したように本発明の垂直輪郭補
償装置によれば、ビーム電流の増加及びビームスポット
径の広がりをもたらすことなく垂直輪郭補償を行うこと
ができる。また、本発明によると、輪郭部のレベル差を
従来方式よりも大きくすることができる。更に、特に、
第2の発明の装置を用いると、輪郭部の立上り、立下り
の非対称性をもたらすこともなくなり、垂直輪郭補償時
の画像の輪郭が自然なものとなる。
As described above, according to the vertical contour compensation device of the present invention, vertical contour compensation can be performed without increasing the beam current and expanding the beam spot diameter. Further, according to the present invention, the level difference of the contour portion can be made larger than that of the conventional method. Furthermore, in particular,
When the apparatus of the second invention is used, the asymmetry of the rising edge and the falling edge of the contour portion is not brought about, and the contour of the image at the time of vertical contour compensation becomes natural.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】CRTにおける通常走査時の輝度変化の説明図
である。
FIG. 2 is an explanatory diagram of a luminance change during normal scanning on a CRT.

【図3】本発明の装置における密度変調走査時の輝度変
化の説明図である。
FIG. 3 is an explanatory diagram of a luminance change at the time of density modulation scanning in the device of the present invention.

【図4】補償磁界の非対称性が生ずる場合の説明図であ
る。
FIG. 4 is an explanatory diagram when asymmetry of a compensation magnetic field occurs.

【図5】(a)本発明の他の実施例を示すブロック図で
ある。 (b)上記実施例の動作説明用波形図である。
FIG. 5 (a) is a block diagram showing another embodiment of the present invention. (B) It is a waveform diagram for explaining the operation of the above embodiment.

【図6】図5の実施例による走査線構造の説明図であ
る。
6 is an explanatory diagram of a scanning line structure according to the embodiment of FIG.

【図7】従来の垂直輪郭補償装置を示すブロック図であ
る。
FIG. 7 is a block diagram showing a conventional vertical contour compensation device.

【図8】図7の装置の各部信号波形図である。8 is a signal waveform diagram of each part of the apparatus of FIG.

【図9】図1の実施例の変形例を示すブロック図であ
る。
9 is a block diagram showing a modification of the embodiment of FIG.

【図10】本発明方式と従来方式についての輝度変化の
違いを示す説明図である。
FIG. 10 is an explanatory diagram showing a difference in luminance change between the method of the present invention and the conventional method.

【図11】通常走査及び本発明の走査による画像の輪郭
部分の拡大図である。
FIG. 11 is an enlarged view of a contour portion of an image by normal scanning and scanning of the present invention.

【図12】従来方式の信号波形とCRT管面の輝度分布
を示すオシロ波形の写真である。
FIG. 12 is a photograph of an oscilloscope waveform showing a conventional signal waveform and a luminance distribution on a CRT screen.

【図13】本発明方式の信号波形とCRT管面の輝度分
布を示すオシロ波形の写真である。
FIG. 13 is a photograph of an oscilloscope waveform showing the signal waveform of the method of the present invention and the luminance distribution on the CRT screen.

【符号の説明】[Explanation of symbols]

1a,1b 1H遅延線 2,3,4 加算器 5 係数器 6 LPF 7 利得制御回路 9 CRT表示装置 10 コイルドライブ回路 11 密度変調用コイル 1a, 1b 1H delay line 2, 3, 4 adder 5 coefficient unit 6 LPF 7 gain control circuit 9 CRT display device 10 coil drive circuit 11 density modulation coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 画像輝度成分信号を水平走査時間に基づ
いた所定時間遅延し遅延信号を出力する遅延手段と、 上記画像輝度成分信号と上記遅延信号とを合成し位相反
転して所定倍した合成処理信号を出力する合成処理手段
と、 前記遅延信号と上記合成処理信号との加算演算による輪
郭補償処理を行って垂直輪郭補償成分信号を得る垂直輪
郭補償処理手段と、 前記画像輝度成分信号から生成された水平及び垂直偏向
成分信号に基づいて水平及び垂直偏向磁界を発生させて
ビームの水平及び垂直走査を行い画像表示するCRT表
示手段と、 上記CRT表示手段のビームの垂直方向変位のみを与え
る位置に設けられ、前記垂直輪郭補償成分信号に基づい
て垂直補償磁界を発生させ前記垂直偏向磁界に重畳させ
る垂直密度変調手段と、 を備えたことを特徴とする画像の走査線密度変調による
輪郭補償処理装置。
1. A delay means for delaying an image luminance component signal for a predetermined time based on a horizontal scanning time and outputting a delay signal, and a synthesis for synthesizing the image luminance component signal and the delay signal, inverting the phase and multiplying by a predetermined number. Synthesis processing means for outputting a processed signal; vertical contour compensation processing means for obtaining a vertical contour compensation component signal by performing contour compensation processing by addition operation of the delayed signal and the synthesized processing signal; and generating from the image luminance component signal CRT display means for generating horizontal and vertical deflection magnetic fields based on the generated horizontal and vertical deflection component signals to perform horizontal and vertical scanning of the beam to display an image, and a position for providing only vertical displacement of the beam of the CRT display means. And a vertical density modulating means for generating a vertical compensation magnetic field based on the vertical contour compensation component signal and superimposing it on the vertical deflection magnetic field. Contour compensation processing apparatus according to the scanning line density modulation of the image, characterized.
【請求項2】 画像輝度成分信号を水平走査時間に基づ
いた所定時間遅延し遅延信号を出力する遅延手段と、 上記画像輝度成分信号と上記遅延信号とを合成し位相反
転して所定倍した合成処理信号を出力する合成処理手段
と、 前記画像輝度成分信号と前記遅延信号との差分信号及び
所定の基準信号に基づいて、前記画像輝度成分信号の立
上り、立下りの輝度変化を検出し、その検出結果に応じ
た検出信号を得る輝度変化検出手段と、 上記検出信号に基づいて、前記画像輝度成分信号と前記
遅延信号との合成された信号と、前記合成処理信号と、
を選択し加算して出力する信号選択出力手段と、 上記信号選択出力手段での前記合成された信号と合成処
理信号との加算出力に基づく輪郭補償処理を行って垂直
輪郭補償成分信号を得る垂直輪郭補償処理手段と、 前記画像輝度成分信号から生成された水平及び垂直偏向
成分信号に基づいて水平及び垂直偏向磁界を発生させて
ビームの水平及び垂直走査を行い画像表示するCRT表
示手段と、 上記CRT表示手段のビームの垂直方向変位のみを与え
る位置に設けられ、前記垂直輪郭補償成分信号に基づい
て垂直補償磁界を発生させ前記垂直偏向磁界に重畳する
垂直密度変調手段と、 を備えたことを特徴とする画像の走査線密度変調による
輪郭補償処理装置。
2. A delay means for delaying an image luminance component signal for a predetermined time based on a horizontal scanning time and outputting a delay signal, and a synthesis for synthesizing the image luminance component signal and the delay signal, inverting the phase, and multiplying by a predetermined number. Based on a difference signal between the image brightness component signal and the delay signal and a predetermined reference signal, a combination processing unit that outputs a processed signal, and detects the rising and falling brightness changes of the image brightness component signal, Luminance change detection means for obtaining a detection signal according to the detection result, based on the detection signal, a signal obtained by combining the image brightness component signal and the delay signal, the combination processing signal,
A vertical selection unit for selecting and adding and outputting a vertical contour compensation component signal by performing contour compensation processing based on the added output of the synthesized signal and the synthesis processed signal in the signal selection and output means. Contour compensation processing means, CRT display means for generating horizontal and vertical deflection magnetic fields based on the horizontal and vertical deflection component signals generated from the image luminance component signal, and performing horizontal and vertical scanning of the beam to display an image, Vertical density modulation means provided at a position which only gives a vertical displacement of the beam of the CRT display means, and which generates a vertical compensation magnetic field based on the vertical contour compensation component signal and superimposes it on the vertical deflection magnetic field. A contour compensation processing device by scanning line density modulation of a characteristic image.
JP4059742A 1992-02-14 1992-02-14 Contour compensation processor by scanning line density modulation of picture Pending JPH06205245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059742A JPH06205245A (en) 1992-02-14 1992-02-14 Contour compensation processor by scanning line density modulation of picture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059742A JPH06205245A (en) 1992-02-14 1992-02-14 Contour compensation processor by scanning line density modulation of picture

Publications (1)

Publication Number Publication Date
JPH06205245A true JPH06205245A (en) 1994-07-22

Family

ID=13121989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059742A Pending JPH06205245A (en) 1992-02-14 1992-02-14 Contour compensation processor by scanning line density modulation of picture

Country Status (1)

Country Link
JP (1) JPH06205245A (en)

Similar Documents

Publication Publication Date Title
US7006704B2 (en) Method of and apparatus for improving picture quality
KR100886054B1 (en) Apparatus and method for displaying image
TWI387318B (en) Image correction circuit, image correction method and image display
US20080043145A1 (en) Image Processing Apparatus, Image Processing Method, and Image Display Apparatus
JPH06217236A (en) Display device
JP2524985B2 (en) Vertical detail enhancement device
US6912015B1 (en) Video display apparatus with vertical scan velocity modulation and video display method thereof
JPH06205245A (en) Contour compensation processor by scanning line density modulation of picture
US6034742A (en) Adaptive sharpness enhancement for a multi-frequency scanning monitor
JPH07118780B2 (en) Image quality compensation device
JP2008017321A (en) Image processing apparatus and image processing method
JP2830587B2 (en) Video signal processing device
JP3203946B2 (en) Video signal correction circuit controller
JP2940229B2 (en) Contour correction device
JP3292233B2 (en) Interpolation processing circuit
JP3407677B2 (en) Speed modulation circuit
JPH08275185A (en) Contour correction circuit
KR100227113B1 (en) Vertical edge reinforcing apparatus of video signal
JP3363624B2 (en) Black extension circuit
JPS6248178A (en) Vertical outline compensating circuit of television receiver
JPH06326885A (en) Scanning speed modulation circuit for television receiver
JPH04280579A (en) Smear correction circuit in image pickup signal processor
JPH0349378A (en) Television signal processing circuit
JPH05252413A (en) Scanning speed modulating circuit
JPH0522634A (en) Contour correction circuit