JPH06204250A - Manufacture of mis transistor - Google Patents

Manufacture of mis transistor

Info

Publication number
JPH06204250A
JPH06204250A JP35915892A JP35915892A JPH06204250A JP H06204250 A JPH06204250 A JP H06204250A JP 35915892 A JP35915892 A JP 35915892A JP 35915892 A JP35915892 A JP 35915892A JP H06204250 A JPH06204250 A JP H06204250A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
semiconductor region
gate insulating
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35915892A
Other languages
Japanese (ja)
Other versions
JP3567937B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP35915892A priority Critical patent/JP3567937B2/en
Publication of JPH06204250A publication Critical patent/JPH06204250A/en
Priority to US08/665,840 priority patent/US6544825B1/en
Priority to US09/409,662 priority patent/US6410374B1/en
Priority to US10/406,319 priority patent/US7351615B2/en
Application granted granted Critical
Publication of JP3567937B2 publication Critical patent/JP3567937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To efficiently perform doping and laser activation by a method wherein an insulating film, which is used as a gate insulating film, is etched using a gate electrode part as a mask to make thin to a degree that a proper energy is transmitted and after impurities are introduced in a semiconductor region by a high-speed ion beam irradiation through the insulating film, a laser beam is applied. CONSTITUTION:A gate electrode is anodized and after an anodized material film 106 is formed on the gate electrode and the upper surface and side surfaces of a wiring, a gate insulating film is subjected to dry etching. The gate insulating film other than the gate insulating film existing under the lower part of the gate electrode part as a result is etched. At a point of time when the gate insulating film 104 is formed in a thickness of 500Angstrom , the etching is interrupted and a thin-insulating film 107 is formed. A phosphorus/hydrogen plasma flow is applied to implant phosphorus in an insular semiconductor region 103 in a self alignment manner and impurity regions 108 are formed. A KrF excimer laser beam is applied to make the crystallinity, which is deteriorated by the previous impurity implantation process, of the semiconductor regions 108 recover. Accordingly, a reduction in the efficiency of doping is not generated and &f} activation of that follows can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MISトランジスタの
作製方法に関する。特に本発明は、高速イオンを照射す
ることによって、半導体領域中に不純物を導入した後、
レーザーアニールもしくはランプアニールのごとき、レ
ーザーあるいはそれと同等な強光を半導体に照射するこ
とによって結晶性を向上せしめる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MIS transistor. In particular, the present invention, after introducing impurities into the semiconductor region by irradiating with fast ions,
The present invention relates to a method of improving crystallinity by irradiating a semiconductor with a laser or strong light equivalent thereto, such as laser annealing or lamp annealing.

【0002】[0002]

【従来の技術】半導体(S)上に薄い絶縁被膜(I)と
制御用の(金属)電極(M)を設けた構造をMIS構造
といい、このような構造によって半導体を流れる電流を
制御するトランジスタをMISトランジスタという。絶
縁被膜として、酸化珪素膜が用いられる場合にはMOS
トランジスタと称される。
2. Description of the Related Art A structure in which a thin insulating film (I) and a control (metal) electrode (M) are provided on a semiconductor (S) is called a MIS structure, and such structure controls a current flowing through the semiconductor. The transistor is called a MIS transistor. When a silicon oxide film is used as the insulating film, a MOS
It is called a transistor.

【0003】このようなMISトランジスタは従来は、
不純物導入後の活性化工程(すなわち、不純物導入の際
に生じた結晶欠陥を回復させる工程)を熱アニールによ
っておこなっていたが、そのためには1000℃以上も
の高温を必要とした。近年、プロセスの低温化の要請に
よって、このような高温での熱アニールに代わる方法が
検討されている。その中で有力な方法はレーザー等の強
光を照射することによって活性化をおこなう方法で、使
用する光源によってレーザーアニール、あるいはランプ
アニールと称される。
Conventionally, such a MIS transistor has been
The activation step after the introduction of impurities (that is, the step of recovering the crystal defects generated during the introduction of impurities) was performed by thermal annealing, but for this purpose, a high temperature of 1000 ° C. or higher was required. In recent years, due to the demand for lowering the temperature of the process, alternatives to such thermal annealing at high temperatures have been investigated. Among them, a predominant method is a method of activating by irradiating strong light such as laser, and is called laser annealing or lamp annealing depending on the light source used.

【0004】従来のレーザーアニールを用いたMISト
ランジスタの作製例を図3を用いて説明する。基板30
1上に下地絶縁膜302を堆積し、さらに実質的に真性
の結晶性の半導体被膜を堆積し、これをパターニングし
て島状半導体領域303を形成する。そして、ゲイト絶
縁膜として機能する絶縁被膜304を堆積し、さらに、
ゲイト電極305を形成する。(図3(A))
An example of manufacturing a conventional MIS transistor using laser annealing will be described with reference to FIGS. Board 30
A base insulating film 302 is deposited on the first substrate 1, a substantially intrinsic crystalline semiconductor film is further deposited thereon, and this is patterned to form an island-shaped semiconductor region 303. Then, an insulating film 304 functioning as a gate insulating film is deposited, and further,
The gate electrode 305 is formed. (Fig. 3 (A))

【0005】必要ならば、ゲイト電極を陽極酸化して、
ゲイト電極・配線の上面および側面に陽極酸化物306
を形成する。このような陽極酸化物を形成する方法およ
びそのメリットについては、特願平4−30220、同
4−34194、同4−38637等に詳述されてい
る。もちろん、必要がなければ、このような陽極酸化工
程を用いなくとも構わないことは言うまでもない。(図
3(B)) その後、イオン注入法、もしくはイオン(プラズマ)ド
ーピング法によって不純物のドーピングがおこなわれ
る。すなわち、高速イオン流に基板を置き、このゲイト
電極部、すなわちゲイト電極とその周囲の陽極酸化物を
マスクとして、島状半導体領域303に自己整合的に不
純物を注入し、不純物領域(ソース、ドレインとなる)
307を形成する。(図3(C))
If necessary, the gate electrode is anodized,
Anodic oxide 306 on top and side of gate electrode / wiring
To form. The method of forming such an anodic oxide and its merits are described in detail in Japanese Patent Application Nos. 4-30220, 4-34194, 4-38637 and the like. Needless to say, it is not necessary to use such an anodic oxidation process if there is no need. (FIG. 3B) After that, impurity doping is performed by an ion implantation method or an ion (plasma) doping method. That is, the substrate is placed in a high-speed ion current, and the gate electrode portion, that is, the gate electrode and the anodic oxide around the gate electrode portion is used as a mask to inject impurities into the island-shaped semiconductor region 303 in a self-aligned manner, and the impurity regions (source, drain) Becomes)
307 is formed. (Fig. 3 (C))

【0006】さらに、レーザー光等の強光を照射して、
先の不純物注入工程によって結晶性が劣化した半導体領
域の結晶性を回復させる。(図3(D)) その後、層間絶縁物308を堆積し、これにコンタクト
ホールを設けて、ソースおよびドレイン電極309を形
成して、完成させる。(図3(E))
Further, by irradiating strong light such as laser light,
The crystallinity of the semiconductor region whose crystallinity is deteriorated by the above impurity implantation step is recovered. (FIG. 3D) After that, an interlayer insulator 308 is deposited, a contact hole is provided in this, and a source and drain electrode 309 is formed and completed. (Fig. 3 (E))

【0007】[0007]

【発明が解決しようする課題】上記の方法では、トラン
ジスタのゲイト絶縁膜の耐圧を向上せしめんとすれば、
ゲイト絶縁膜の厚さは厚いほうが好ましかった。しかし
ながら、そのことは、同時に不純物イオンの加速電圧を
高くし、ドーピング処理時間を長くすることを要求する
ものであった。特に浅い不純物領域を形成する場合に
は、極めてエネルギーのそろった単色性のイオンビーム
が必要とされたが、そのために単位時間当たりのドーズ
量は著しく低下した。
According to the above method, if the withstand voltage of the gate insulating film of the transistor is improved,
It was preferable that the gate insulating film had a large thickness. However, this requires that the acceleration voltage of the impurity ions be increased at the same time and the doping processing time be lengthened. Particularly in the case of forming a shallow impurity region, a monochromatic ion beam with extremely uniform energy was required, but the dose amount per unit time was remarkably reduced.

【0008】一方、ドーピングを効率的におこなうため
にゲイト絶縁膜を除去して、半導体表面を露出せしめる
と、レーザー光等の強光を照射して活性化するに表面が
粗くなり、コンタクト不良等の原因になった。本発明は
このような問題に鑑みてなされたものであって、ドーピ
ングおよびレーザー活性化を効率よくおこなうための方
法を提供する。
On the other hand, when the gate insulating film is removed to expose the semiconductor surface in order to efficiently perform doping, the surface becomes rough when activated by irradiation with strong light such as laser light, and contact failure occurs. Was the cause of The present invention has been made in view of such problems, and provides a method for efficiently performing doping and laser activation.

【0009】[0009]

【発明を解決するための手段】本発明では、ゲイト絶縁
膜として形成された絶縁被膜をゲイト電極部をマスクと
して自己整合的にエッチングして適切なエネルギーのイ
オンが透過する程度にまで薄くし、これを通して不純物
を高速イオン照射によって半導体領域に導入する。しか
る後、レーザー照射、もしくはそれと同等な強光を照射
することによって、アニールを達成するものである。レ
ーザー照射に先立って、透明な絶縁被膜を半導体表面に
形成しておいてもよい。このような方法を採用するため
に、先に指摘したようなドーピングの効率の低下は生じ
ず、きわめて効率よくドーピングとそれに続く活性化が
達成できる。
According to the present invention, an insulating film formed as a gate insulating film is etched in a self-aligned manner by using a gate electrode portion as a mask to make it thin enough to allow ions of appropriate energy to pass therethrough. Through this, impurities are introduced into the semiconductor region by fast ion irradiation. After that, annealing is achieved by laser irradiation or strong light equivalent thereto. Prior to laser irradiation, a transparent insulating film may be formed on the semiconductor surface. By adopting such a method, the reduction of the doping efficiency as described above does not occur, and the doping and the subsequent activation can be achieved extremely efficiently.

【0010】[0010]

【実施例】〔実施例1〕 図1には本実施例を示す。コ
ーニング7059等の無アルカリガラス基板101上に
下地絶縁膜102として、厚さ1000Åの酸化珪素膜
を堆積し、さらに実質的に真性のアモルファスのシリコ
ン半導体被膜(厚さ1500Å)堆積し、600℃で1
2時間アニールすることによってこれを結晶化させた。
これをパターニングして島状半導体領域103を形成し
た。そして、ゲイト絶縁膜として厚さ1200Åの酸化
珪素被膜104を堆積し、さらに、厚さ6000Åのア
ルミニウムを用いてゲイト電極105を形成した。(図
1(A))
EXAMPLE 1 Example 1 is shown in FIG. A 1000 Å thick silicon oxide film is deposited as a base insulating film 102 on a non-alkali glass substrate 101 such as Corning 7059, and a substantially intrinsic amorphous silicon semiconductor film (thickness 1500 Å) is deposited at 600 ° C. 1
It was crystallized by annealing for 2 hours.
This was patterned to form the island-shaped semiconductor region 103. Then, a silicon oxide film 104 having a thickness of 1200 Å was deposited as a gate insulating film, and further, a gate electrode 105 was formed using aluminum having a thickness of 6000 Å. (Fig. 1 (A))

【0011】その後、ゲイト電極を陽極酸化して、ゲイ
ト電極・配線の上面および側面に陽極酸化物106を形
成した。このような陽極酸化物を形成する方法およびそ
のメリットについては、特開平4−30220、同4−
34194、同4−38637等に詳述されている。も
ちろん、必要がなければ、このような陽極酸化工程を用
いなくとも構わないことは言うまでもない。(図1
(B))
After that, the gate electrode was anodized to form anodic oxide 106 on the upper and side surfaces of the gate electrode / wiring. For the method of forming such an anodic oxide and its merits, see JP-A-4-30220 and JP-A-4-30220.
34194, 4-38637 and the like. Needless to say, it is not necessary to use such an anodic oxidation process if there is no need. (Fig. 1
(B))

【0012】その後、ドライエッチング法によって、ゲ
イト絶縁膜をエッチングした。エッチングガスとしては
四フッ化炭素等を用いた。このときには、陽極酸化物
(アルミナ)はエッチングされず、結果的にゲイト絶縁
膜のうち、ゲイト電極部(ゲイト電極105と陽極酸化
物106)の下部に存在するもの以外がエッチングされ
た。ゲイト絶縁膜104が500Åになった時点でエッ
チングを中断し、薄い絶縁膜107を形成した。そし
て、15〜50keV、例えば30keVに加速したリ
ン/水素プラズマ流を照射することによって、島状半導
体領域103に自己整合的にリンを注入し、不純物領域
(ソース、ドレインとなる)108を形成した。(図1
(C))
After that, the gate insulating film was etched by the dry etching method. Carbon tetrafluoride or the like was used as the etching gas. At this time, the anodic oxide (alumina) was not etched, and as a result, the gate insulating film was etched except for those existing under the gate electrode portion (gate electrode 105 and anodic oxide 106). When the gate insulating film 104 reached 500 Å, the etching was stopped to form a thin insulating film 107. Then, by irradiating a phosphorus / hydrogen plasma flow accelerated to 15 to 50 keV, for example, 30 keV, phosphorus is implanted in the island-shaped semiconductor region 103 in a self-aligned manner to form an impurity region (which becomes a source and a drain) 108. . (Fig. 1
(C))

【0013】そして、KrFエキシマーレーザー光(波
長248nm)を照射して、先の不純物注入工程によっ
て結晶性が劣化した半導体領域108の結晶性を回復さ
せた。このときのエネルギー密度は、150〜300m
J/cm2 、例えば、200mJ/cm2 とした。(図
1(D)) その後、層間絶縁物109を堆積し、これにコンタクト
ホールを設けて、ソースおよびドレイン電極110を形
成して完成させた。以上の工程によってNチャネル型ト
ランジスタが形成された(図1(E))
Then, KrF excimer laser light (wavelength 248 nm) was irradiated to restore the crystallinity of the semiconductor region 108 whose crystallinity was deteriorated by the above-mentioned impurity implantation step. The energy density at this time is 150 to 300 m.
J / cm 2 , for example, 200 mJ / cm 2 . (FIG. 1D) After that, an interlayer insulator 109 was deposited, a contact hole was provided in this, and a source and drain electrode 110 was formed and completed. Through the above steps, an N-channel transistor was formed (FIG. 1E).

【0014】同様にしてPチャネル型トランジスタも形
成でき、また、公知のCMOS技術を使用すれば、同一
基板上にNチャネル型トランジスタとPチャネル型トラ
ンジスタを混載することも可能である。例えば、本実施
例に示した方法によって作製したMOSトランジスタの
典型的な移動度は、Nチャネル型で120cm2 /V
s、Pチャネル型で80cm2 /Vsであった。また、
同一基板上にNチャネルトランジスタとPチャネルトラ
ンジスタを形成して作製したCMOSシフトレジスタ
(5段)では、ドレイン電圧20Vで15MHzの同期
を確認した。
Similarly, a P-channel type transistor can be formed, and if a known CMOS technique is used, it is possible to mount the N-channel type transistor and the P-channel type transistor on the same substrate. For example, the typical mobility of a MOS transistor manufactured by the method shown in this embodiment is 120 cm 2 / V for N-channel type.
s, P-channel type was 80 cm 2 / Vs. Also,
In a CMOS shift register (five stages) manufactured by forming an N-channel transistor and a P-channel transistor on the same substrate, 15 MHz synchronization was confirmed at a drain voltage of 20V.

【0015】〔実施例2〕 図2には本実施例を示す。
無アルカリガラス基板201上に下地絶縁膜202とし
て、厚さ1000Åの酸化珪素膜を堆積し、さらに実質
的に真性のアモルファスのシリコン半導体被膜(厚さ5
00Å)堆積し、公知のレーザーアニール法によってこ
れを結晶化させた。これをパターニングして島状半導体
領域203を形成した。そして、ゲイト絶縁膜として厚
さ1200Åの酸化珪素被膜204を堆積し、さらに、
厚さ6000Åのアルミニウムを用いてゲイト電極20
5を形成した。その後、ゲイト電極を陽極酸化して、ゲ
イト電極・配線の上面および側面に陽極酸化物206を
形成した。(図2(A))
Second Embodiment FIG. 2 shows this embodiment.
A 1000 Å thick silicon oxide film is deposited as a base insulating film 202 on a non-alkali glass substrate 201, and a substantially intrinsic amorphous silicon semiconductor film (thickness 5
00Å) was deposited and crystallized by a known laser annealing method. This was patterned to form an island-shaped semiconductor region 203. Then, a silicon oxide film 204 having a thickness of 1200 Å is deposited as a gate insulating film, and further,
The gate electrode 20 is made of aluminum with a thickness of 6000Å.
5 was formed. After that, the gate electrode was anodized to form anodic oxide 206 on the upper and side surfaces of the gate electrode / wiring. (Fig. 2 (A))

【0016】その後、ドライエッチング法によって、ゲ
イト絶縁膜をエッチングした。エッチングガスとしては
四フッ化炭素等を用いた。このときには、陽極酸化物
(アルミナ)はエッチングされず、結果的にゲイト絶縁
膜のうち、ゲイト電極部(ゲイト電極205と陽極酸化
物206)の下部に存在するもの以外がエッチングされ
た。ゲイト絶縁膜204が500Åになった時点でエッ
チングを中断した。この結果、薄い絶縁膜207が形成
された。そして、15〜50keV、例えば30keV
に加速したリン/水素プラズマ流を照射することによっ
て、島状半導体領域203に自己整合的にリンを注入
し、不純物領域(ソース、ドレインとなる)208を形
成した。(図2(B))
After that, the gate insulating film was etched by the dry etching method. Carbon tetrafluoride or the like was used as the etching gas. At this time, the anodic oxide (alumina) was not etched, and as a result, the gate insulating film was etched except for those existing under the gate electrode portion (gate electrode 205 and anodic oxide 206). The etching was stopped when the gate insulating film 204 reached 500 Å. As a result, a thin insulating film 207 was formed. And 15 to 50 keV, for example, 30 keV
By irradiating an accelerated phosphorus / hydrogen plasma flow on the substrate, phosphorus is implanted into the island-shaped semiconductor region 203 in a self-aligned manner to form an impurity region (which becomes a source and a drain) 208. (Fig. 2 (B))

【0017】そして、層間絶縁物209として、厚さ5
000Åの酸化珪素膜を堆積し、KrFエキシマーレー
ザー光(波長248nm)を照射して、先の不純物注入
工程によって結晶性が劣化した半導体領域107の結晶
性を回復させた。このときのエネルギー密度は、150
〜300mJ/cm2 、例えば、200mJ/cm2
した。実施例1のように、レーザー照射時に薄い絶縁膜
のみが半導体表面を覆っている状態では、半導体の結晶
化の際の衝撃によって表面が荒れ、コンタクト形成時に
問題となるが、本実施例のように厚い絶縁被膜が形成さ
れている状態ではそのようなことがなかった。(図2C
D))
The thickness of the interlayer insulator 209 is 5
A 000 Å silicon oxide film was deposited and irradiated with KrF excimer laser light (wavelength: 248 nm) to recover the crystallinity of the semiconductor region 107 whose crystallinity was deteriorated by the previous impurity implantation step. The energy density at this time is 150
˜300 mJ / cm 2 , for example, 200 mJ / cm 2 . In the state where only the thin insulating film covers the semiconductor surface at the time of laser irradiation as in Example 1, the surface is roughened due to the impact during crystallization of the semiconductor, which causes a problem during contact formation. This was not the case when a thick insulating film was formed on the surface. (Fig. 2C
D))

【0018】その後、層間絶縁物209にコンタクトホ
ールを設けて、ソースおよびドレイン電極210を形成
して完成させた。以上の工程によってNチャネル型トラ
ンジスタが形成された(図2(D))
After that, contact holes were formed in the interlayer insulator 209 to form the source and drain electrodes 210, which was completed. Through the above steps, an N-channel transistor was formed (FIG. 2D)

【0019】なお、本実施例では薄い絶縁膜207の上
に重ねて層間絶縁膜としても機能する厚い絶縁膜を堆積
しているが、薄い絶縁膜を完全に除去して後に、厚い絶
縁膜を堆積してもよい。不純物イオンが照射された際に
は、絶縁膜中にも多くの不純物が取り込まれ、レーザー
光を吸収する原因となる。そこで、このような不純物を
含有する絶縁膜を完全に除去することによって、後のレ
ーザーアニールの効率を向上させることができる。
In this embodiment, a thick insulating film which also functions as an interlayer insulating film is deposited on the thin insulating film 207, but the thin insulating film is completely removed before the thick insulating film is removed. It may be deposited. When the impurity ions are irradiated, many impurities are also taken into the insulating film, which causes the laser light to be absorbed. Therefore, the efficiency of the subsequent laser annealing can be improved by completely removing the insulating film containing such impurities.

【0020】[0020]

【発明の効果】本発明によってイオン注入もしくはイオ
ンドーピングおよびレーザーアニールもしくはランプア
ニールを効率的におこなう方法が提供された。本発明
が、プロセスの低温化に寄与すること、およびそのこと
による工業的利益が大であることは明らかであろう。実
施例では、本発明を薄膜状の活性層を有するMISトラ
ンジスタ、いわゆる薄膜トランジスタに関して説明し
た。これは、特に基板の制約を受けやすい薄膜トランジ
スタにおいては、低温プロセスが必須とされているから
である。しかしながら、単結晶半導体基板上に形成され
たMISトランジスタに本発明を適用しても同様な効果
が得られることは明白であろう。
According to the present invention, a method for efficiently performing ion implantation or ion doping and laser annealing or lamp annealing is provided. It will be apparent that the present invention contributes to the lowering of the process temperature, and that the industrial benefit thereof is great. In the embodiments, the present invention has been described with respect to a MIS transistor having a thin film active layer, that is, a so-called thin film transistor. This is because a low temperature process is indispensable especially in a thin film transistor that is easily subject to substrate restrictions. However, it will be apparent that the same effect can be obtained by applying the present invention to a MIS transistor formed on a single crystal semiconductor substrate.

【0021】本発明においては、半導体領域を構成する
半導体の種類はシリコン、ゲルマニウム、炭化珪素、シ
リコン−ゲルマニウム合金、砒化ガリウム等が使用でき
る。さらに、ゲイト電極を構成する材料としても、ドー
プドシリコン、モリブテン、タングステン、チタン、ア
ルミニウム、およびそれらの合金や珪化物、窒化物等が
使用される。本発明において、レーザーを用いる場合に
は、ArFレーザー(波長193nm)、KrFレーザ
ー(248nm)、XeClレーザー(308nm)、
XeFレーザー(350nm)等のエキシマーレーザ
ー、Nd:YAGレーザー(波長1064nm)、その
第2高調波(532nm)、第3高調波(354n
m)、第4高調波(266nm)等が適しているが、そ
の他のレーザー、光源を使用することも本発明の範疇に
含まれることは言うまでもない。
In the present invention, the type of semiconductor forming the semiconductor region may be silicon, germanium, silicon carbide, silicon-germanium alloy, gallium arsenide, or the like. Further, as a material forming the gate electrode, doped silicon, molybdenum, tungsten, titanium, aluminum, and alloys, silicides, nitrides thereof, or the like are used. In the present invention, when a laser is used, ArF laser (wavelength 193 nm), KrF laser (248 nm), XeCl laser (308 nm),
Excimer laser such as XeF laser (350 nm), Nd: YAG laser (wavelength 1064 nm), its second harmonic (532 nm), third harmonic (354n)
m), the fourth harmonic (266 nm), etc. are suitable, but it goes without saying that the use of other lasers and light sources is also included in the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の作製プロセスを示す。FIG. 1 shows a manufacturing process of an example.

【図2】 実施例の作製プロセスを示す。FIG. 2 shows a manufacturing process of an example.

【図3】 従来の作製プロセスを示す。FIG. 3 shows a conventional manufacturing process.

【符号の説明】[Explanation of symbols]

101、201、301・・・基板 102、202、302・・・下地絶縁膜 103、203、303・・・島状半導体領域 104、204、304・・・ゲイト絶縁膜 105、205、305・・・ゲイト電極 106、206、306・・・陽極酸化物 107、207 ・・・薄い絶縁膜 108、208、307・・・不純物領域 109、209、308・・・層間絶縁物 110、210、309・・・ソース、ドレイン電極 101, 201, 301 ... Substrate 102, 202, 302 ... Base insulating film 103, 203, 303 ... Island semiconductor region 104, 204, 304 ... Gate insulating film 105, 205, 305 ... Gate electrodes 106, 206, 306 ... Anodic oxides 107, 207 ... Thin insulating films 108, 208, 307 ... Impurity regions 109, 209, 308 ... Interlayer insulators 110, 210, 309. ..Source and drain electrodes

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 9056−4M H01L 29/78 311 Y ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication H01L 21/265 9056-4M H01L 29/78 311 Y

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体領域上にゲイト絶縁膜となる絶縁
被膜を形成する工程と、前記絶縁被膜上にゲイト電極部
を形成する工程と、前記ゲイト電極部をマスクとして、
前記絶縁被膜をエッチングして、前記絶縁被膜を薄くす
る工程と、前記半導体領域中にゲイト電極をマスクとし
て自己整合的に不純物元素を導入する工程と、前記絶縁
被膜を通して、前記半導体領域にレーザーもしくはそれ
と同等な強光を照射して、前記半導体領域の結晶性を向
上せしめる工程とを有するMISトランジスタの作製方
法。
1. A step of forming an insulating film to be a gate insulating film on a semiconductor region, a step of forming a gate electrode portion on the insulating film, and a step of using the gate electrode portion as a mask.
Etching the insulating film to thin the insulating film; introducing an impurity element into the semiconductor region in a self-aligned manner using the gate electrode as a mask; And a step of irradiating the same strong light as that to improve the crystallinity of the semiconductor region.
【請求項2】 半導体領域上にゲイト絶縁膜となる第1
の絶縁被膜を形成する工程と、前記第1の絶縁被膜上に
ゲイト電極部を形成する工程と、前記ゲイト電極部をマ
スクとして、前記第1の絶縁被膜をエッチングして、前
記第1の絶縁被膜を薄くする工程と、前記半導体領域中
にゲイト電極をマスクとして自己整合的に不純物元素を
導入する工程と、透明な第2の絶縁被膜を形成する工程
と、前記第2の絶縁被膜を通して、前記半導体領域にレ
ーザーもしくはそれと同等な強光を照射して、前記半導
体領域の結晶性を向上せしめる工程とを有するMISト
ランジスタの作製方法。
2. A first gate insulating film formed on a semiconductor region.
Forming an insulating coating on the first insulating coating, forming a gate electrode portion on the first insulating coating, and etching the first insulating coating using the gate electrode portion as a mask to remove the first insulating coating. A step of thinning the film, a step of introducing an impurity element into the semiconductor region in a self-aligned manner using the gate electrode as a mask, a step of forming a transparent second insulating film, and a step of passing through the second insulating film. A step of irradiating the semiconductor region with a laser or strong light equivalent thereto to improve the crystallinity of the semiconductor region.
JP35915892A 1992-12-26 1992-12-26 Method for manufacturing thin film transistor Expired - Fee Related JP3567937B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP35915892A JP3567937B2 (en) 1992-12-26 1992-12-26 Method for manufacturing thin film transistor
US08/665,840 US6544825B1 (en) 1992-12-26 1996-06-17 Method of fabricating a MIS transistor
US09/409,662 US6410374B1 (en) 1992-12-26 1999-09-20 Method of crystallizing a semiconductor layer in a MIS transistor
US10/406,319 US7351615B2 (en) 1992-12-26 2003-04-04 Method of fabricating a MIS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35915892A JP3567937B2 (en) 1992-12-26 1992-12-26 Method for manufacturing thin film transistor

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP37179299A Division JP2000150910A (en) 1999-01-01 1999-12-27 Manufacture of semiconductor device
JP2001083241A Division JP3602463B2 (en) 2001-03-22 2001-03-22 Method for manufacturing transistor
JP2001083222A Division JP2001308343A (en) 2001-03-22 2001-03-22 Method of preparing transistor

Publications (2)

Publication Number Publication Date
JPH06204250A true JPH06204250A (en) 1994-07-22
JP3567937B2 JP3567937B2 (en) 2004-09-22

Family

ID=18463048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35915892A Expired - Fee Related JP3567937B2 (en) 1992-12-26 1992-12-26 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3567937B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314071A (en) * 2001-04-18 2002-10-25 Denso Corp Method for manufacturing silicon carbide semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314071A (en) * 2001-04-18 2002-10-25 Denso Corp Method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP3567937B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JPH07106594A (en) Semiconductor device and its forming method
JP3325992B2 (en) Method for manufacturing semiconductor device
US6544825B1 (en) Method of fabricating a MIS transistor
JP4312741B2 (en) Thin film transistor substrate for liquid crystal display device and manufacturing method thereof
US6410374B1 (en) Method of crystallizing a semiconductor layer in a MIS transistor
JPH07169975A (en) Semiconductor device and its manufacture
US5770486A (en) Method of forming a transistor with an LDD structure
JP2010098321A (en) Semiconductor device
JP3374455B2 (en) Method for manufacturing thin film transistor
JP3031398B2 (en) Method for manufacturing MIS transistor
JP4987198B2 (en) Method for manufacturing polycrystalline silicon thin film transistor
JP3602463B2 (en) Method for manufacturing transistor
JP3567937B2 (en) Method for manufacturing thin film transistor
JP3031399B2 (en) Method for manufacturing MIS transistor
JP3493160B2 (en) Method for manufacturing semiconductor device
JPH08204208A (en) Production of crystalline silicon semiconductor device
JP3404928B2 (en) Manufacturing method of thin film integrated circuit
JP3993185B2 (en) Method for manufacturing transistor
JP3370029B2 (en) Method for manufacturing semiconductor device
JP3140304B2 (en) Semiconductor device and manufacturing method thereof
JP3387862B2 (en) Method for manufacturing semiconductor device
JPH09116156A (en) Semiconductor device and its manufacture
JP2001308343A (en) Method of preparing transistor
JP3315190B2 (en) Method for manufacturing thin film transistor
JP2000150910A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A523

A61 First payment of annual fees (during grant procedure)

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120625

LAPS Cancellation because of no payment of annual fees