JPH06204243A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPH06204243A
JPH06204243A JP107993A JP107993A JPH06204243A JP H06204243 A JPH06204243 A JP H06204243A JP 107993 A JP107993 A JP 107993A JP 107993 A JP107993 A JP 107993A JP H06204243 A JPH06204243 A JP H06204243A
Authority
JP
Japan
Prior art keywords
protective film
semiconductor device
manufacturing
gate electrode
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP107993A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Masaru Hirano
優 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP107993A priority Critical patent/JPH06204243A/en
Publication of JPH06204243A publication Critical patent/JPH06204243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To facilitate the formation of a MOS transistor by a method wherein a protective film on a sidewall formed during the gate electrode etching step is made a part of an ion implanting mask for the formation of a MOS transistor impurity region. CONSTITUTION:A field insulating film 13 is formed on an Si substrate 11 whereon an N, P well is formed and then a gate oxide film 14 is formed in an active region to adjust the threshold voltage by channel implantation. Later, a gate electrode pattern is formed of a photoresist 23 on a polySi doped with phosphorus to perform selective dryetching using the gate pattern as a mask. Simultaneously, a protective film 24 is formed on the sidewall of the gate electrode 15. At this time, oxygen addition, is adjusted up to 10% to enable the size of the protective film 24 to be controlled. Next, after releasing the photoresist 23, Nch and Pch of the high concentration impurity region 19 as a source and a drain are respectively ion implanted with arsenic and BF2. At this time, the protective film 24 on the sidewall can fulfill the role of a spacer to form an offset region of a MOS transistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOSトランジスタを
有する半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a MOS transistor.

【0002】[0002]

【従来の技術】MOS−LSI等は集積,高速や多機能
化を図る上で微細化が要求され、従来これら半導体装置
の製造方法は図2の様に、例えばウェル領域12が形成
されたSi基板11にフィールド絶縁膜13を選択酸化
で形成し、そのアクティブ領域にゲート酸化膜14を形
成後PolySiを気相成長させ、ホトレジストをマス
クにゲート電極15ドライエッチングする。この時は数
mtorrの圧力で塩素やSF6 ガスにHeを用いて異
方性エッチイングを行う。次にホトレジストを剥離後ソ
ース,ドレインの低濃度不純物領域(オフセット領域)
16にリンやボロン等の不純物をイオン注入してから4
〜5000Åのシリコン酸化膜17を気相成長させる
(図2(a))。次に平行平板のRIE型ドライエッチ
ング装置を用い、CHF3 やC2F6等のガスを用いて異
方性の全面エッチバックを行い、ゲート電極15の側壁
にスぺーサー18を形成した後100〜200Å程度の
シリコン酸化膜20を気相成長し、該スぺーサー18を
介しソース,ドレインの高濃度不純物領域19に砒素や
BF2等をイオン注入してLDD(lightly d
oped drain)構造とし、更にSiH4にO2や
N2O等の酸化性気体を気相反応させたシリコン酸化膜
21とリンやボロンを含むBPSG膜22等を積層後ア
ニールを行い層間絶縁膜とし(図2(b))、続けてコ
ンタクトホールを開孔後、PolySiやAl合金等を
成長させ抵抗素子や上層配線を施し、最後にパッシベー
ション膜を積層し外部電極取り出し用のボンディングパ
ッド部を開孔している。
2. Description of the Related Art MOS-LSIs and the like are required to be miniaturized in order to achieve integration, high speed, and multi-functionalization. Conventionally, the manufacturing method of these semiconductor devices is, for example, Si in which a well region 12 is formed as shown in FIG. A field insulating film 13 is formed on the substrate 11 by selective oxidation, a gate oxide film 14 is formed in the active region thereof, PolySi is vapor-deposited, and a gate electrode 15 is dry-etched using a photoresist as a mask. At this time, anisotropic etching is performed by using He for chlorine or SF6 gas at a pressure of several mtorr. Next, after removing the photoresist, low-concentration impurity regions (offset regions) of the source and drain
4 after implanting impurities such as phosphorus and boron into 16
A silicon oxide film 17 of up to 5000 Å is vapor-phase grown (FIG. 2A). Next, using a parallel plate RIE type dry etching apparatus, anisotropic full surface etch back is performed using a gas such as CHF3 or C2F6, and a spacer 18 is formed on the side wall of the gate electrode 15 and then about 100 to 200Å Of the silicon oxide film 20 is vapor-deposited, and arsenic, BF2, etc. are ion-implanted into the high-concentration impurity regions 19 of the source and drain through the spacer 18 to LDD (lightly d).
and an oxidization gas such as O2 or N2O is vapor-phase-reacted with SiH4 and a BPSG film 22 containing phosphorus or boron are laminated and annealed to form an interlayer insulating film (Fig. 2). (B)) Subsequently, after opening contact holes, PolySi, Al alloy, etc. are grown to provide resistance elements and upper layer wiring, and finally a passivation film is laminated and a bonding pad portion for extracting an external electrode is opened. There is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来技術
に於いて、側壁のスペーサー18を確実形成するにはシ
リコン酸化膜17の膜厚やエッチバックのばらつきも含
めて膜厚を厚くすることやオーバーエッチングを多くす
ることが必要である。厚くするとスペーサー18の寸法
やばらつきも増長しトランジスタ特性や信頼性の安定性
に欠ける。ちなみにスペースルールが0.5μm以下に
なると両側でのスペーサー寸法の方が大きくなり、又ゲ
ート電極15の間からの配線取り出しを行う様な場合に
は、工程や構造が複雑化してしまい微細化が困難であっ
た。更にゲート電極15も平坦化から薄膜化されると、
SiH4 を反応させた気相成長のシリコン酸化膜17は
スペースが狭くなるとカスピングを生じやすく、寸法が
0.2μm以下のスペーサーをが量産上安定的に形成す
ることが困難であった。
However, in the prior art, in order to surely form the spacer 18 on the side wall, it is necessary to increase the film thickness of the silicon oxide film 17 including the variation of the film thickness and the etch back, and to perform overetching. It is necessary to increase If the thickness is increased, the dimensions and variations of the spacer 18 are increased, and the transistor characteristics and reliability are unstable. By the way, when the space rule is 0.5 μm or less, the spacer size on both sides becomes larger, and when the wiring is taken out from between the gate electrodes 15, the process and the structure are complicated and miniaturization is not possible. It was difficult. Further, when the gate electrode 15 is also thinned from being flattened,
The vapor-phase growth silicon oxide film 17 reacted with SiH4 is likely to cause cusping when the space becomes narrow, and it is difficult to stably form a spacer having a size of 0.2 μm or less in mass production.

【0004】又、スペーサー18をエッチバックで形成
する工程自身がパーティクルの要因となり、又オーバー
エッチでもフィールドの酸化膜のエグレやソース、ドレ
インのSi面の欠陥が発生し平坦性,歩留りや電気特性
に支障をきたしていた。
Further, the process itself of forming the spacer 18 by etching back becomes a factor of particles, and even in the case of over-etching, an egre of the field oxide film and defects of the Si surface of the source and drain occur, resulting in flatness, yield and electrical characteristics. I was having trouble.

【0005】一方量産コストの点からは微細,集積化に
伴い工程増加の問題もあり、工程短縮と工程安定化が強
く要求されている。
On the other hand, from the viewpoint of mass production cost, there is a problem that the number of processes is increased due to the miniaturization and integration, and therefore there is a strong demand for process shortening and process stabilization.

【0006】しかるに本発明はかかる問題点を解決する
もので、特にMOSトランジスタの形成を容易にし、微
細半導体装置の電気特性の安定や信頼性に伴う品質の向
上と製造工程の短縮を図ることを目的としたものであ
る。
However, the present invention solves such a problem, and particularly facilitates formation of a MOS transistor, and aims to improve the quality of the fine semiconductor device due to its stable electrical characteristics and reliability, and shorten the manufacturing process. It is intended.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、ゲート電極の選択エッチング時に形成させた
側壁保護膜を、MOSトランジスタ不純物領域形成の為
のイオン注入マスクの一部としたことを特徴とする。
According to the method of manufacturing a semiconductor device of the present invention, the sidewall protection film formed at the time of selective etching of the gate electrode is used as a part of the ion implantation mask for forming the MOS transistor impurity region. Is characterized by.

【0008】又本発明の半導体装置の製造方法は、MO
Sトランジスタの形成に際し、少なくとも主エッチング
ガスに側壁保護膜の成長を促進させる反応ガスを添加さ
せながらゲート電極を選択エッチングする工程、ソー
ス,ドレイン等の高濃度不純物領域にイオン注入する工
程、前記側壁保護膜を除去する工程、ソース,ドレイン
等の低濃度不純物領域にイオン注入する工程、層間絶縁
膜を形成し素子からのコンタクトホールを開孔し配線を
施す工程を具備したことを特徴とする。
The method of manufacturing a semiconductor device according to the present invention is an MO method.
In forming the S-transistor, at least a step of selectively etching the gate electrode while adding a reaction gas that promotes the growth of the sidewall protective film to the main etching gas, an step of ion-implanting a high-concentration impurity region such as a source and a drain, the sidewall The method is characterized by including a step of removing the protective film, a step of implanting ions into low-concentration impurity regions such as a source and a drain, and a step of forming an interlayer insulating film and opening a contact hole from the element to provide wiring.

【0009】[0009]

【実施例】以下本発明の実施例を、図1を用いて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to FIG.

【0010】ハーフミクロンのCMOSゲートアレイの
製造に適用した場合に於いて、N,Pウェル12が形成
されたSi基板11にフィールド絶縁膜13を選択酸化
で形成しそのアクティブ領域にゲート酸化膜14を形成
しチャンネル注入によりしきい値電圧を調整後、リンド
ープされたPolySi2500Å上に最小寸法0.4
5μmのゲート電極15パターンをホトレジスト23で
形成し、これをマスクに選択ドライエッチングを行う
(図1(a))。この時のエッチングは平行平板のRI
E装置を使用し、塩素100cc/分に酸素を約5%を
添加し圧力25mtorrとし、500wでエッチ速度
約2000∂,選択比約75程度の条件とし、同時にゲ
ート電極15の側壁に約0.12μm幅の保護膜24を
形成した。この時、酸素は約10%まで添加量を調整す
ることにより、形成される保護膜24は0.02〜0.
2μm位まで寸法制御が可能である。次にホトレジスト
23剥離後、ソース,ドレインの高濃度不純物領域19
のNchに砒素,PchにBF2 を約50kevで0.
1から1×1016cmー2程度を各々イオン注入した(図
1(b))。ここで側壁の保護膜24はMOSトランジ
スタのオフセット領域を形成するスペーサーの役割を果
たすことになる。続いて、水酸化アンモニウム水溶液:
過酸化水素水=1:1に2〜10倍程度の水を加え40
〜80℃に加熱した溶液に5分前後浸漬させ側壁の保護
膜24を除去する。次に結晶欠陥の発生を防ぐ目的で約
150Åのシリコン酸化膜20を気相成長し、ソース,
ドレインの低濃度不純物領域(オフセット領域)16の
Nchにリン,PchにBF2 を約60kevで0.5
から5×1013cmー2程度各々イオン注入した。次に層
間絶縁膜としてSiH4にN2Oを気相反応させたノンド
ープのシリコン酸化膜21を2000ÅとBPSG膜2
2を気相成長で積層後、平坦化の為のリフローと活性化
を兼ねて850〜900℃のアニールを行った(図1
(c))。続けてコンタクトホールを開孔後Al合金等
を成長させ、更に層間膜成長や配線工程を繰り返した多
層配線構造とし、最後にパッシベーション膜をかけ外部
電極取り出し用のボンディングパッド部を開孔した半導
体装置を製造した。
When applied to the manufacture of a half-micron CMOS gate array, the field insulating film 13 is formed by selective oxidation on the Si substrate 11 on which the N and P wells 12 are formed, and the gate oxide film 14 is formed on the active region thereof. After adjusting the threshold voltage by forming a channel and injecting a channel, the minimum dimension 0.4 on the phosphorus-doped PolySi2500Å
A 5 μm gate electrode 15 pattern is formed from a photoresist 23, and selective dry etching is performed using this as a mask (FIG. 1A). The etching at this time is RI of a parallel plate.
Using an E apparatus, 100 cc / min of chlorine was added with about 5% of oxygen to a pressure of 25 mtorr, the etching rate was about 2000∂, and the selection ratio was about 75 at 500 w. A protective film 24 having a width of 12 μm was formed. At this time, by adjusting the addition amount of oxygen to about 10%, the protective film 24 formed is 0.02 to 0.
Dimension control is possible up to about 2 μm. Next, after removing the photoresist 23, the high-concentration impurity regions 19 of the source and drain are formed.
Arsenic on Nch and BF2 on Pch at about 50 kev.
Ions were implanted at about 1 to 1 × 10 16 cm −2 (FIG. 1B). Here, the protective film 24 on the side wall serves as a spacer forming the offset region of the MOS transistor. Then, an ammonium hydroxide aqueous solution:
Hydrogen peroxide water = 1: 1 and add about 2 to 10 times water to 40
The protective film 24 on the side wall is removed by immersing the solution in a solution heated to -80 ° C. for about 5 minutes. Next, in order to prevent the generation of crystal defects, a silicon oxide film 20 of about 150 Å is vapor-deposited and the source,
Phosphorus on Nch and BF2 on Pch in the low concentration impurity region (offset region) 16 of the drain is about 60 kev and 0.5.
To about 5 × 10 13 cm −2, respectively. Next, 2000 liters of non-doped silicon oxide film 21 obtained by vapor-phase reaction of SiH4 with N2O and BPSG film 2 are used as an interlayer insulating film.
2 was deposited by vapor phase growth, and then annealed at 850 to 900 ° C. for both reflow for planarization and activation (FIG. 1).
(C)). A semiconductor device in which a contact hole is continuously opened, an Al alloy or the like is grown, and an interlayer film growth and a wiring process are repeated to form a multilayer wiring structure, and finally a passivation film is applied to open a bonding pad portion for extracting an external electrode. Was manufactured.

【0011】以上説明した本発明の半導体装置及び製造
方法によれば、まず側壁スペーサー形成の為のシリコン
酸化膜成長と全面エッチバックの工程が不要になりパー
ティクルの低減と工程短縮が図られ、更にフィールド絶
縁膜13のエグレやソース、ドレイン表面の欠陥発生の
防止にも効果が認められ、平坦化とジャンクションリー
ク等の低減がなされた。又イオン注入スペーサーの役割
をする側壁保護膜の寸法制御が容易となり、MOSトラ
ンジスタのパンチスルーやホットキャリアに対する特性
の安定化も図られた上、0.5μmルール以下の微細構
造のMOSトランジスタの安定形成も可能とになった。
According to the semiconductor device and the manufacturing method of the present invention described above, the steps of growing a silicon oxide film and forming a full-scale etch back for forming sidewall spacers are not required, so that particles are reduced and the steps are shortened. The effect was also found to prevent the occurrence of defects on the surface of the field insulating film 13 and the surface of the source and drain, and the flattening and the reduction of junction leakage were achieved. In addition, it is easy to control the size of the side wall protective film that functions as an ion implantation spacer, stabilize the characteristics of the MOS transistor against punch-through and hot carriers, and stabilize the MOS transistor with a fine structure of 0.5 μm rule or less. Formation is now possible.

【0012】他の実施例として、シリコン酸化膜20を
1000Å程度に厚く、且つイオン注入加速電圧を高く
してソース,ドレインの低濃度不純物領域16を形成す
ることにより、BPSG膜22のバリアとなるシリコン
酸化膜21をなくした構造や、斜めイオン注入によって
ゲートをオーバーラップLDD構造としたMOS−LS
Iも製造したが、いずれも従来に比べ工程短縮等の課題
改善がなされ、電気特性や信頼性の向上が図れた。
In another embodiment, the silicon oxide film 20 is thickened to about 1000Å and the ion implantation acceleration voltage is increased to form the low-concentration impurity regions 16 of the source and drain, thereby forming a barrier of the BPSG film 22. MOS-LS having a structure in which the silicon oxide film 21 is removed, or a gate having an overlapped LDD structure by oblique ion implantation
I was also manufactured, but in each case, problems such as shortening of the process were improved compared to the conventional method, and the electrical characteristics and reliability were improved.

【0013】更に、ゲート電極をエッチングする際CH
F3 又はCH2F2を塩素100cc/分と酸素ガス10
cc/分に対して1〜15%程度添加する事によって、
剥がれや膜厚ばらつきの少ない側壁保護膜24が形成さ
れ、特にゲート電極15膜厚が2500Å如以下に薄く
なる場合にも有効性が確認された。このCHF3 等の添
加量によって該保護膜24の形状と0.01〜0.25
μm程度の寸法制御ができた。尚、ホトレジスト23剥
離後に残った側壁保護膜24が、イオン注入スペーサー
として必要な形状により安定して残る為には、ホトレジ
スト23側壁に付着する保護膜は少ない方が良く、これ
には酸素の含有割合を5〜20%位に増やしホトレジス
トの側面をテーパー化させることや、真空度を20mt
orr以下にしていくのが有効である。
Further, when etching the gate electrode, CH
F3 or CH2 F2 with chlorine 100 cc / min and oxygen gas 10
By adding about 1 to 15% to cc / min,
The side wall protective film 24 with less peeling and thickness variation was formed, and its effectiveness was confirmed especially when the thickness of the gate electrode 15 is reduced to 2500 Å or less. Depending on the amount of CHF3 or the like added, the shape of the protective film 24 and the range of 0.01-0.25.
Dimension control of about μm was possible. In order that the side wall protective film 24 remaining after the photoresist 23 is peeled off is stably left in a shape required as an ion implantation spacer, it is preferable that the protective film adhered to the side wall of the photoresist 23 is small, and the side wall protective film 24 contains oxygen. The ratio is increased to about 5 to 20% and the side surface of the photoresist is tapered, and the degree of vacuum is set to 20 mt.
It is effective to keep it below orr.

【0014】一方、MOSトランジスタの高濃度領域を
先に形成する為、オフセット領域形成工程前に施せる熱
処理の自由度が増し、シリコン酸化膜21を気相成長に
変わって約900℃の熱酸化で形成させた場合や、ラン
プアニラーや拡散炉を用て高濃度領域の活性化工程を導
入し、従来に比べ拡散層やコンタクト抵抗を下げたデバ
イスも製造できた。このことは、デバイス仕様から決め
られた拡散抵抗値を得る場合に、後工程での熱処理を減
らすことが可能となり、トランジスタのパンチスルーマ
ージン等の向上に有利となる。
On the other hand, since the high-concentration region of the MOS transistor is formed first, the degree of freedom of heat treatment that can be applied before the offset region forming step is increased, and the silicon oxide film 21 is changed to vapor phase growth by thermal oxidation at about 900.degree. A device with a lower diffusion layer and lower contact resistance than the conventional one could be manufactured by introducing the activation process in the high concentration region using a lamp aniler or a diffusion furnace. This makes it possible to reduce the heat treatment in the subsequent process when obtaining the diffusion resistance value determined from the device specifications, which is advantageous in improving the punch-through margin of the transistor.

【0015】尚、本発明の実施例では、PolySiゲ
ート構造を持つ多層配線のLSIの製造について示した
が、ゲート電極にMoやWの様な高融点金属のシリサイ
ドを積層したポリサイド構造であっても良く、Poly
Siやシリサイドの配線,高抵抗やTFTを有するメモ
リーにも適用できるものである。又、単チャンネルMO
S構造の場合には、PchとNchの選択イオン注入の
必要がないのでゲート電極15パターンのホトレジスト
剥離は、高濃度イオン注入を行ってから行っても良い。
In the embodiment of the present invention, the manufacture of a multilayer wiring LSI having a PolySi gate structure has been described. However, it is a polycide structure in which a silicide of a refractory metal such as Mo or W is laminated on the gate electrode. Good, Poly
It can also be applied to Si or silicide wiring, a memory having high resistance or TFT. Also, single channel MO
In the case of the S structure, it is not necessary to perform selective ion implantation of Pch and Nch. Therefore, the photoresist peeling of the pattern of the gate electrode 15 may be performed after the high concentration ion implantation.

【0016】[0016]

【発明の効果】以上の様に本発明によれば、ゲート電極
エッチングの際に形成した側壁の保護膜を、MOSトラ
ンジスタのオフセット領域を形成するスペーサーとして
用いることにより、工程短縮とコストの低減、更に電気
特性や品質に係わる信頼性や歩留りの向上がなされ、よ
り微細,多機能化された半導体装置の量産安定供給に寄
与出来るものである。
As described above, according to the present invention, by using the protective film on the side wall formed at the time of etching the gate electrode as a spacer for forming the offset region of the MOS transistor, the process is shortened and the cost is reduced. Further, the reliability and yield related to the electrical characteristics and quality are improved, which can contribute to stable mass production of finer and more multifunctional semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(c)は、本発明による半導体装置の
製造方法を示す概略断面図である。
1A to 1C are schematic cross-sectional views showing a method for manufacturing a semiconductor device according to the present invention.

【図2】(a)〜(b)は、従来の半導体装置の製造方
法に係わる概略断面図である。
2A to 2B are schematic cross-sectional views related to a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

11 Si基板 12 ウェル 13 フィールド絶縁膜 14 ゲート酸化膜 15 ゲート電極 16 低濃度不純物領域 17,20,21 シリコン酸化膜 18 スペーサー 19 高濃度不純物領域 22 BPSG膜 23 ホトレジスト 24 側壁保護膜 11 Si substrate 12 well 13 field insulating film 14 gate oxide film 15 gate electrode 16 low concentration impurity region 17, 20, 21 silicon oxide film 18 spacer 19 high concentration impurity region 22 BPSG film 23 photoresist 24 sidewall protection film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/28 L 7376−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 21/28 L 7376-4M

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ゲート電極の選択エッチング時に形成さ
せた側壁保護膜を、MOSトランジスタ不純物領域形成
の為のイオン注入マスクの一部としたことを特徴する半
導体装置の製造方法。
1. A method of manufacturing a semiconductor device, wherein a side wall protective film formed during selective etching of a gate electrode is used as a part of an ion implantation mask for forming a MOS transistor impurity region.
【請求項2】 MOSトランジスタの形成に際し、少な
くとも主エッチングガスに側壁保護膜の成長を促進させ
る反応ガスを添加させながらゲート電極を選択エッチン
グする工程、ソース,ドレイン等の高濃度不純物領域に
イオン注入する工程、前記側壁保護膜を除去する工程、
ソース,ドレイン等の低濃度不純物領域にイオン注入す
る工程、層間絶縁膜を形成し素子からのコンタクトホー
ルを開孔し配線を施す工程を具備したことを特徴とする
半導体装置の製造方法。
2. A step of selectively etching a gate electrode while adding a reaction gas that promotes growth of a sidewall protective film to at least a main etching gas when forming a MOS transistor, and ion implantation into a high concentration impurity region such as a source and a drain. A step of removing the side wall protective film,
A method of manufacturing a semiconductor device, comprising: a step of implanting ions into low-concentration impurity regions such as a source and a drain; and a step of forming an interlayer insulating film, opening contact holes from elements and providing wiring.
【請求項3】 請求項2記載に於て、主エッチングガス
ガスとして塩素,弗素及び臭素あるいはこれらの化合物
の少なくとも一方が共存することを特徴とする半導体装
置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 2, wherein chlorine, fluorine and bromine or at least one of these compounds coexist as a main etching gas.
【請求項4】 請求項2記載の側壁保護膜の成長を促進
させる反応ガスが酸素であることを特徴とする半導体装
置の製造方法。
4. A method of manufacturing a semiconductor device, wherein the reaction gas for promoting the growth of the side wall protective film according to claim 2 is oxygen.
【請求項5】 請求項2記載の側壁保護膜の成長を促進
させる反応ガスとして、水素あるいは炭素が含まれる化
合物が少なくとも1種以上含まれていることを特徴とす
る半導体装置の製造方法。
5. A method of manufacturing a semiconductor device, wherein at least one compound containing hydrogen or carbon is contained as a reaction gas for promoting the growth of the sidewall protective film according to claim 2.
【請求項6】 請求項2記載の側壁保護膜を除去する工
程は、水酸化アンモニウムと過酸化水素の混合水溶液に
よることを特徴とする半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 2, wherein the step of removing the side wall protective film is performed by using a mixed aqueous solution of ammonium hydroxide and hydrogen peroxide.
JP107993A 1993-01-07 1993-01-07 Manufacturing method of semiconductor device Pending JPH06204243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP107993A JPH06204243A (en) 1993-01-07 1993-01-07 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP107993A JPH06204243A (en) 1993-01-07 1993-01-07 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06204243A true JPH06204243A (en) 1994-07-22

Family

ID=11491501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP107993A Pending JPH06204243A (en) 1993-01-07 1993-01-07 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06204243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030026B2 (en) 2002-10-31 2006-04-18 Fujitsu Limited Semiconductor device fabrication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030026B2 (en) 2002-10-31 2006-04-18 Fujitsu Limited Semiconductor device fabrication method

Similar Documents

Publication Publication Date Title
US7312138B2 (en) Semiconductor device and method of manufacture thereof
US6475888B1 (en) Method for forming ultra-shallow junctions using laser annealing
US5726081A (en) Method of fabricating metal contact of ultra-large-scale integration metal-oxide semiconductor field effect transistor with silicon-on-insulator structure
US20010025994A1 (en) Process for producing semiconductor device and semiconductor device
JPH09298300A (en) Manufacture of semiconductor device
JPH06333944A (en) Semiconductor device
KR0170436B1 (en) Method of manufacturing mosfet
JP3284415B2 (en) Method for manufacturing semiconductor device
US6107173A (en) Method of manufacturing semiconductor device
JPH06204243A (en) Manufacturing method of semiconductor device
JP3088556B2 (en) Semiconductor device manufacturing method
JPS6138858B2 (en)
JP2919690B2 (en) Method for manufacturing semiconductor device
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JPH01110762A (en) Manufacture of semiconductor device
JPH03155641A (en) Manufacture of mos type semiconductor device
KR0172260B1 (en) Method of forming cobalt silicide of semiconductor device
JPS63275181A (en) Manufacture of semiconductor device
JPH07153939A (en) Semiconductor element and manufacture thereof
JPH04245642A (en) Mos transistor and its manufacture
KR100390901B1 (en) Method for manufactruing transistor in sram device
JPH0917999A (en) Semiconductor device manufacturing method
JP3489232B2 (en) Method for manufacturing semiconductor memory device
JP2925868B2 (en) Method for manufacturing semiconductor device
JP3380069B2 (en) Method for manufacturing MOS semiconductor device