JPH062040A - Production of grain-oriented silicon steel sheet having extremely high magnetic flux density - Google Patents

Production of grain-oriented silicon steel sheet having extremely high magnetic flux density

Info

Publication number
JPH062040A
JPH062040A JP16315392A JP16315392A JPH062040A JP H062040 A JPH062040 A JP H062040A JP 16315392 A JP16315392 A JP 16315392A JP 16315392 A JP16315392 A JP 16315392A JP H062040 A JPH062040 A JP H062040A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
magnetic flux
flux density
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16315392A
Other languages
Japanese (ja)
Other versions
JP3300034B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16315392A priority Critical patent/JP3300034B2/en
Publication of JPH062040A publication Critical patent/JPH062040A/en
Application granted granted Critical
Publication of JP3300034B2 publication Critical patent/JP3300034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide high magnetic flux density by subjecting a slab of silicon steel containing Al as inhibitor-forming component to annealing, after final cold rolling, in hydrogen having a specific dew point. CONSTITUTION:A slab of a silicon steel containing 0.2-4.5% Si and also containing Al as inhibitor component is hot-rolled and then cold-rolled once or cold-rolled two or more times while process-annealed between the cold rolling stages and formed to the final sheet thickness. Then annealing is done in an atmosphere containing >=at least 10% hydrogen and having <=15 deg. dew point at 750-1050 deg.C for 30sec-10min. Subsequently decarburizing annealing is done in the ordinary wet atmosphere. Successively a separation agent at annealing, composed essentially of MgO, is applied and final finish annealing is performed at about 1200 deg.C. It is preferable that the silicon steel slab has a composition containing 2.0-4.5% Si, 0.02-0.10% C, 0.010-0.065% Al, 0.0010-0.0150% N, 0.02-0.20% Mn, and 0.01-0.040%, independently or in total, of S or Se.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電気
機器の鉄心などの用途に好適な磁束密度の極めて高い、
方向性珪素鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an extremely high magnetic flux density suitable for applications such as iron cores of transformers and other electrical equipment.
The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet.

【0002】[0002]

【従来の技術】変圧器その他電気機器の鉄心などに利用
される方向性鋼板には、低鉄損とともに高い磁束密度を
有することが求められている。磁束密度を向上させるた
めには、冷間圧延時の圧下率を80%以上にして、ゴス
方位からのずれが小さい二次再結晶粒を発生させる必要
がある。しかし冷間圧延率を80%以上とすると、脱炭
焼鈍後の一次再結晶組織中の二次再結晶の核となるべき
ゴス方位やそれに近い結晶粒の数が減るために二次再結
晶は困難となる。
2. Description of the Related Art Oriented steel sheets used for iron cores of transformers and other electric equipment are required to have low iron loss and high magnetic flux density. In order to improve the magnetic flux density, it is necessary to set the rolling reduction during cold rolling to 80% or more to generate secondary recrystallized grains with a small deviation from the Goss orientation. However, if the cold rolling rate is 80% or more, the secondary recrystallization is reduced because the Goss orientation and the number of crystal grains close to it, which should be the nucleus of the secondary recrystallization in the primary recrystallization structure after decarburization annealing, decrease. It will be difficult.

【0003】それを解決したのがAlの添加によるAl
Nをインヒビターとする素材を用いる技術である。Al
NはMnSあるいはMnSeに比較して、高い温度まで
一次再結晶粒成長を強く抑制する力を持っている。その
ため冷間圧延時の圧下率を80%以上にして、一次再結
晶粒径を小さくした場合にも結晶粒の成長は抑制され二
次再結晶を生起させることができた。しかしながら、A
lNをインヒビターとする方向性珪素鋼の磁束密度の向
上と安定のためには多大の努力がはらわれてきている。
The problem was solved by the addition of Al
This is a technique using a material having N as an inhibitor. Al
N has a power of strongly suppressing primary recrystallized grain growth up to a higher temperature than MnS or MnSe. Therefore, even when the reduction ratio during cold rolling was set to 80% or more and the primary recrystallized grain size was reduced, the crystal grain growth was suppressed and secondary recrystallization could be caused. However, A
A great deal of effort has been made to improve and stabilize the magnetic flux density of grain-oriented silicon steel using 1N as an inhibitor.

【0004】[0004]

【発明が解決しようとする課題】AlNをインヒビター
とした素材を用いる技術の問題として、冷間圧下率が高
いことに起因する二次再結晶の不安定さがある。その不
安定さを改善するためには、一次再結晶組織の改善が必
要である。良好な一次再結晶組織を得るために、脱炭焼
鈍の前に、予備的な焼鈍を施す技術が開示されている。
例えば、特公昭40−16769号公報には冷間圧延後
の鋼板を500〜700℃の範囲に少なくとも2分以上
保持することにより一次再結晶粒を発生させる技術が開
示されている。しかしこの技術は、500〜700℃の
温度域での一次再結晶により比較的広い酸可溶性Al範
囲で二次再結晶を生起させることが主眼であり、磁束密
度の値を向上させるという点では極めて不十分である。
また特開昭59−70723号公報には最終冷間圧延板
に再結晶温度以下の焼鈍を行うことにより、再結晶組織
中の(110)組織を増加させ磁気特性を改善する技術
が開示されている。この技術を用いることにより磁気特
性は向上したものの二次再結晶が困難である板厚の薄い
場合の磁束密度の向上は不十分であり、たとえば特開昭
59−70723号公報の実施例3においては板厚0.
225mmでの磁束密度の値(B10)は、1.93T
(B8では1.92Tと推定される)であり、磁束密度
の向上は不十分である。
A problem of the technique using a material using AlN as an inhibitor is instability of secondary recrystallization due to high cold reduction. In order to improve the instability, it is necessary to improve the primary recrystallization structure. In order to obtain a good primary recrystallized structure, a technique of performing preliminary annealing before decarburization annealing is disclosed.
For example, Japanese Examined Patent Publication No. 40-16769 discloses a technique for generating primary recrystallized grains by holding a steel sheet after cold rolling in the range of 500 to 700 ° C. for at least 2 minutes or more. However, the main purpose of this technique is to cause secondary recrystallization in a relatively wide range of acid-soluble Al by primary recrystallization in the temperature range of 500 to 700 ° C., and it is extremely difficult to improve the value of magnetic flux density. Is insufficient.
Further, JP-A-59-70723 discloses a technique for increasing the (110) structure in the recrystallized structure and improving the magnetic properties by annealing the final cold rolled plate at a temperature lower than the recrystallization temperature. There is. By using this technique, the magnetic characteristics are improved, but the secondary recrystallization is difficult to improve the magnetic flux density when the plate thickness is thin. For example, in Example 3 of JP-A-59-70723. Is a plate thickness of 0.
The value of the magnetic flux density at 225 mm (B10) is 1.93T.
(It is estimated to be 1.92T in B8), and the improvement of the magnetic flux density is insufficient.

【0005】そこでこの発明は、従来技術ではなし得な
かった、極めて高い磁束密度をもつ方向性珪素鋼板を安
定して製造する方法について提案することを目的とす
る。
Therefore, an object of the present invention is to propose a method for stably producing a grain-oriented silicon steel sheet having an extremely high magnetic flux density, which cannot be achieved by the prior art.

【0006】[0006]

【課題を解決するための手段】さて発明者らは、二次再
結晶現象について綿密な検討を加えた結果、最終冷間圧
延後脱炭焼鈍前に露点15℃以下の水素中で焼鈍を行う
ことにより所期の目的が有利に達成されるとの知見を得
た。この発明は上記の知見に立脚するものである。
Means for Solving the Problems Now, as a result of careful investigation on the secondary recrystallization phenomenon, the inventors perform annealing in hydrogen having a dew point of 15 ° C. or lower after decarburization annealing after final cold rolling. Therefore, we have found that the intended purpose can be achieved advantageously. The present invention is based on the above findings.

【0007】すなわちこの発明は、Siを2.0〜4.
5%含み、さらにAlをインヒビター形成成分として含
有する珪素鋼スラブを熱間圧延後、1回または中間焼鈍
を含む2回以上の冷間圧延を施して最終板厚とし、つい
で脱炭焼鈍を施した後、鋼板表面にMgOを主成分とす
る焼鈍分離剤を塗布してから二次再結晶焼鈍および純化
焼鈍を施す一連の工程において方向性珪素鋼を製造する
に当たり、最終冷間圧延後に、750〜1050℃の温
度において30秒〜10分間、少なくとも10%以上の
水素を含む露点15℃以下の焼鈍雰囲気中での焼鈍を施
した後に、通常の脱炭焼鈍を施すことを特徴とする磁束
密度の極めて高い方向性珪素鋼の製造方法であり、また
好ましくは上記珪素鋼スラブの組成が、Si:2.0〜
4.5%、C:0.02〜0.10%、Al:0.01
0〜0.065%、N:0.0010〜0.0150
%、Mn:0.02〜0.20%、SまたはSeのいず
れか1種を単独または合計で0.01〜0.040%を
含むことを特徴とする磁束密度の極めて高い方向性珪素
鋼板の製造方法であり、またさらに好ましくは上記珪素
鋼スラブの組成が、Si:2.0〜4.5%、C:0.
02〜0.10%、Al:0.010〜0.065%、
N:0.0010〜0.0150%、Mn:0.02〜
0.20%、SまたはSeのいずれか1種を単独または
合計で0.01〜0.040%を含み、さらにSb:
0.01〜0.20%、Cu:0.02〜0.20%、
P:0.01〜0.30%、Mo:0.01〜0.05
%、Sn:0.02〜0.20%、Ge:0.005〜
0.30%、Ni:0.02〜0.20%のうちから選
んだ1種または2種以上を含むことを特徴とする磁束密
度の極めて高い方向性珪素鋼板の製造方法である。
That is, according to the present invention, Si is added in the range of 2.0-4.
A silicon steel slab containing 5% and further containing Al as an inhibitor-forming component is hot-rolled, then cold-rolled once or twice or more including an intermediate annealing to obtain a final plate thickness, and then decarburized-annealed. Then, in order to manufacture the grain-oriented silicon steel in a series of steps of applying an annealing separator having MgO as a main component on the surface of the steel sheet and then performing secondary recrystallization annealing and purification annealing, after the final cold rolling, 750 A magnetic flux density characterized by performing normal decarburizing annealing after annealing in an annealing atmosphere having a dew point of 15 ° C or less containing at least 10% or more hydrogen for 30 seconds to 10 minutes at a temperature of 1050 ° C. The method of manufacturing a grain-oriented silicon steel having a very high degree of grain size, and preferably the composition of the silicon steel slab is Si: 2.0 to
4.5%, C: 0.02 to 0.10%, Al: 0.01
0 to 0.065%, N: 0.0010 to 0.0150
%, Mn: 0.02 to 0.20%, and any one of S and Se alone or in a total amount of 0.01 to 0.040% is included. And more preferably the composition of the silicon steel slab is Si: 2.0 to 4.5%, C: 0.
02-0.10%, Al: 0.010-0.065%,
N: 0.0010 to 0.0150%, Mn: 0.02
0.20%, including any one of S and Se alone or in total 0.01 to 0.040%, and further Sb:
0.01 to 0.20%, Cu: 0.02 to 0.20%,
P: 0.01 to 0.30%, Mo: 0.01 to 0.05
%, Sn: 0.02-0.20%, Ge: 0.005-
This is a method for producing a grain-oriented silicon steel sheet having an extremely high magnetic flux density, which contains one or more selected from 0.30% and Ni: 0.02 to 0.20%.

【0008】[0008]

【作用】以下、この発明の基礎になった実験結果につい
て説明する。C:0.069%、Si:3.31%、M
n:0.078%、Se:0.024%、Sb:0.0
26%、Al:0.025%およびN:0.0089%
を含むスラブを、1420℃に加熱後2.2mm厚の熱
間圧延板としたのち、1000℃、30秒の熱間圧延板
焼鈍を行ってから、冷間圧延で1,5mm厚の中間厚と
したのち、1100℃、60秒の中間焼鈍後、冷間圧延
によって0.22mm厚の厚さとした。ついで露点ー2
0℃の水素雰囲気中で900℃で5分の焼鈍を行った。
比較として露点−20℃の窒素雰囲気で焼鈍を施した条
件と焼鈍を行わない条件の実験も行った。その後840
℃2分の露点65℃の湿潤水素雰囲気で脱炭焼鈍を施し
た。脱炭焼鈍後の表面の集合組織をX線インバース法で
調査した。その後MgOに6%のTiO2 を添加した焼
鈍分離剤を塗布した。それらのコイルから切り板のサン
プルを採取し、常温から20℃/hの昇温速度で水素7
5%窒素25%の雰囲気で仕上げ焼鈍を行い、850℃
から15℃おきにサンプルを取り出し、結晶組織を観察
して、表層と中心層の一次再結晶粒径の変化を調査し
た。そしてコイルの本体も、同様の条件で仕上げ焼鈍を
行い最終の磁気特性を調査した。
The following is a description of the experimental results on which the present invention is based. C: 0.069%, Si: 3.31%, M
n: 0.078%, Se: 0.024%, Sb: 0.0
26%, Al: 0.025% and N: 0.0089%
After heating the slab containing 1 to 1420 ° C. to form a hot-rolled plate having a thickness of 2.2 mm, hot-rolled plate is annealed at 1000 ° C. for 30 seconds, and then cold-rolled to an intermediate thickness of 1.5 mm. After that, after intermediate annealing at 1100 ° C. for 60 seconds, it was cold-rolled to a thickness of 0.22 mm. Then dew point-2
Annealing was performed at 900 ° C. for 5 minutes in a hydrogen atmosphere at 0 ° C.
As a comparison, an experiment was conducted under the conditions of annealing in a nitrogen atmosphere with a dew point of -20 ° C and conditions without annealing. Then 840
Decarburization annealing was performed in a wet hydrogen atmosphere with a dew point of 65 ° C. for 2 minutes. The texture of the surface after decarburization annealing was investigated by the X-ray inverse method. After that, an annealing separator containing 6% TiO 2 added to MgO was applied. A sample of the cut plate was taken from those coils, and hydrogen was added at a temperature rising rate of 20 ° C / h from room temperature to 7% hydrogen.
Finish annealing is performed in an atmosphere of 5% nitrogen and 25%, and 850 ° C.
Samples were taken out every 15 ° C. to observe the crystal structure and investigate the change in the primary recrystallized grain size of the surface layer and the central layer. The body of the coil was also subjected to finish annealing under the same conditions and the final magnetic characteristics were investigated.

【0009】かくして得られた脱炭焼鈍板表面の集合組
織を図1に、仕上げ焼鈍における表層と中心層の一次再
結晶粒径変化を図2に、製品板の磁性結果を図3にそれ
ぞれ示す。図1より明らかなように、最終冷間圧延後の
焼鈍により集合組織は変化しないこと、図2より明らか
なように、最終冷間圧延後の焼鈍を水素雰囲気で行った
場合に、表層の一次再結晶粒の成長が促進され、二次再
結晶温度が100℃程度低下していること、図3より明
らかなように、最終冷間圧延後、脱炭焼鈍前に水素中焼
鈍した条件のコイルは著しく磁束密度が良好であること
がわかる。
The texture of the surface of the decarburized annealed sheet thus obtained is shown in FIG. 1, the change in primary recrystallized grain size of the surface layer and the central layer in the final annealing is shown in FIG. 2, and the magnetic result of the product sheet is shown in FIG. . As is clear from FIG. 1, the texture does not change due to the annealing after the final cold rolling. As is clear from FIG. 2, when the annealing after the final cold rolling is performed in a hydrogen atmosphere, the primary As it is clear from FIG. 3 that the growth of recrystallized grains is promoted and the secondary recrystallization temperature is lowered by about 100 ° C., the coil under the condition of annealing in hydrogen after the final cold rolling and before decarburization annealing. Shows that the magnetic flux density is remarkably good.

【0010】このようにこの発明は、最終冷間圧延後、
脱炭焼鈍前に水素中で焼鈍することにより磁束密度が著
しく向上するという全く新しい知見に基づいて完成され
たものである。ここにこの発明によって磁束密度が向上
する理由については、必ずしも明らかでないが次のとお
りであると考えられる。
As described above, according to the present invention, after the final cold rolling,
It was completed based on a completely new finding that the magnetic flux density is significantly improved by annealing in hydrogen before decarburization annealing. The reason why the magnetic flux density is improved by the present invention is not clear, but it is considered as follows.

【0011】最終冷間圧延後、脱炭焼鈍前に水素中で焼
鈍することにより、脱炭焼鈍板の集合組織はほとんど変
化しておらず、この焼鈍の効果は一次再結晶集合組織に
変化を与えているものではない。最終冷間圧延後、脱炭
焼鈍前に水素中で焼鈍することの効果は、この焼鈍を窒
素中で行ったものや焼鈍を行わないものに比べて、仕上
げ焼鈍中に表層の結晶粒の成長が促進され、二次再結晶
温度が低下することにある。
By annealing in hydrogen after the final cold rolling and before decarburizing and annealing, the texture of the decarburized and annealed sheet hardly changed, and the effect of this annealing changed to the primary recrystallization texture. Not what you are giving. After the final cold rolling, the effect of annealing in hydrogen before decarburizing annealing is that the growth of the crystal grains of the surface layer during finish annealing is greater than that of annealing performed in nitrogen or not annealed. Is promoted and the secondary recrystallization temperature is lowered.

【0012】その理由は、最終冷間圧延後の水素中での
焼鈍は、脱炭焼鈍前であるので表層にはSiO2を主体とす
る内部酸化層が形成されていないために、表層のNの分
解が促進されるためであると考えられる。その結果表層
においては、仕上げ焼鈍初期のAlN量が少ないため
に、低い温度で二次再結晶核の生成が起こると考えられ
る。中心部では表層に比べると、仕上げ焼鈍初期のAl
N量が多く、粒成長は進行せずに一次再結晶粒が保存さ
れている。その結果最終冷間圧延後に水素中で焼鈍を行
った条件のものでは、低温で表層において発生した二次
再結晶核は、よりインヒビターの抑制力がたもたれてい
る状態で中心部のマトリックスを食って成長することに
なる。図2より明らかなように、最終冷間圧延後の焼鈍
を水素雰囲気で行った場合の二次再結晶開始直前におけ
る中心層の一次再結晶(粒径10μm程度)は、最終冷
間圧延後の焼鈍を窒素雰囲気で行った条件や、焼鈍を行
わなかった条件の二次再結晶開始直前の中心層の一次再
結晶粒(粒径15〜19μm程度)に比べて小さく、二
次再結晶開始時に抑制力が保たれているものといえる。
このような中心層の抑制力が保たれた状態で、表層より
成長した二次再結晶粒の方位が、極めて理想ゴス方位に
近い方位であるために磁束密度が極めて高くなるものと
いえるが、おそらく理想ゴス方位ほど、インヒビターの
抑制力が保たれている場合には、優先的に中心部のマト
リックスを食って早く成長する性質があるものと思われ
る。
The reason is that since the annealing in hydrogen after the final cold rolling is before decarburization annealing, the surface layer is not formed with an internal oxide layer mainly composed of SiO 2 , and therefore the N of the surface layer is not formed. It is considered that this is because the decomposition of As a result, in the surface layer, since the amount of AlN in the initial stage of finish annealing is small, it is considered that secondary recrystallization nuclei are generated at a low temperature. Compared to the surface layer in the center part, Al in the initial stage of finish annealing
The amount of N is large, and the grain growth does not proceed, and the primary recrystallized grains are preserved. As a result, under the condition of annealing in hydrogen after the final cold rolling, the secondary recrystallization nuclei generated in the surface layer at low temperature erode the matrix in the center while the inhibitory force of the inhibitor is more leaning. Will grow up. As is clear from FIG. 2, when the annealing after the final cold rolling is performed in a hydrogen atmosphere, the primary recrystallization (grain size of about 10 μm) of the center layer immediately before the start of the secondary recrystallization is similar to that after the final cold rolling. It is smaller than the primary recrystallized grains (grain size of about 15 to 19 μm) of the central layer immediately before the start of secondary recrystallization under the conditions of annealing in a nitrogen atmosphere and the condition of not performing annealing, and at the time of starting secondary recrystallization. It can be said that the restraining power is maintained.
It can be said that the magnetic flux density is extremely high because the orientation of the secondary recrystallized grains grown from the surface layer is extremely close to the ideal Goss orientation in a state where the suppression force of the central layer is maintained, Probably, when the inhibitory power of the inhibitor is maintained as much as the ideal Goth orientation, it preferentially eats the matrix in the central portion and grows faster.

【0013】従来二次再結晶の安定化と磁束密度の向上
のためには一次再結晶組織の改善、特に二次再結晶核と
なるべき(110)組織の増加という観点で多くの技術
が開示されている。たとえば、冷間圧延中あるいは冷間
圧延のパス間に時効処理を施す方法や、中間焼鈍時に表
層から一部脱炭してα→γ変態を抑える方法や脱炭焼鈍
の昇温速度を高める方法などがある。前述の特開昭59
−70723号公報で開示されている冷間圧延板の予備
焼鈍技術も同じ効果である。しかしこれらの方法では単
に一次再結晶組織中の(110)を増加させ、二次再結
晶粒が発生する確率を高くする効果が主であるために、
二次再結晶は安定するもののゴス方位からずれた二次再
結晶粒が発生して磁束密度が低下することが本質的に避
けられなかった。本発明の方法はこれらの一次再結晶組
織の改善効果と技術思想を全く異にしており、一次再結
晶組織中の(110)を増加させることでなく、二次再
結晶する際に、低温で表層において二次再結晶核を発生
させて、理想ゴス方位に極めて近い粒のみを選択的に、
中心部へと成長させてきわめて高い磁束密度を得るとい
う画期的な技術である。
In order to stabilize secondary recrystallization and improve magnetic flux density, many techniques have been disclosed from the viewpoint of improving the primary recrystallization structure, particularly increasing the (110) structure that should be the secondary recrystallization nucleus. Has been done. For example, a method of performing an aging treatment during cold rolling or between passes of cold rolling, a method of decarburizing a part of the surface layer during intermediate annealing to suppress α → γ transformation, and a method of increasing the temperature rising rate of decarburizing annealing. and so on. The above-mentioned JP-A-59
The pre-annealing technique for cold-rolled sheets disclosed in Japanese Patent No. 70723 has the same effect. However, in these methods, the main effect is to simply increase (110) in the primary recrystallized structure and increase the probability that secondary recrystallized grains are generated.
Although secondary recrystallization was stable, it was essentially unavoidable that secondary recrystallized grains deviated from the Goss orientation occurred and the magnetic flux density decreased. The method of the present invention is completely different in the improvement effect of these primary recrystallization structures and the technical idea, and does not increase (110) in the primary recrystallization structure, but at the low temperature at the time of secondary recrystallization. By generating secondary recrystallization nuclei in the surface layer, only the grains extremely close to the ideal Goss orientation are selectively
This is an epoch-making technology that grows to the center and obtains an extremely high magnetic flux density.

【0014】さらに本発明の技術では、磁束密度の向上
のために、必ずしも一次再結晶組織中の(110)の存
在量をさほど高める必要はないために、前述した冷間圧
延工程での時効処理や中間焼鈍における表層脱炭などを
行う必要がないために、焼鈍回数は1回増加するもの
の、総合的に判断すると生産の観点においても工業的に
極めて有用な技術であるといえる。
Further, according to the technique of the present invention, it is not always necessary to increase the amount of (110) present in the primary recrystallization structure in order to improve the magnetic flux density. Therefore, the aging treatment in the cold rolling step described above is performed. Since it is not necessary to perform decarburization of the surface layer in the intermediate annealing or the like, the number of times of annealing is increased by one, but it can be said that it is an industrially extremely useful technique from the viewpoint of production when judged comprehensively.

【0015】この発明で対象とする素材は、Siを2〜
4.5%を含み、さらにAlをインヒビター形成成分と
して含有する珪素鋼スラブであり、ここで珪素鋼スラブ
の好適成分組成は、上記Siのほか、C:0.02〜
0.10%、そしてAl:0.010〜0.065%、
N:0.0010〜0.0150%、Mn:0.02〜
0.20%、SまたはSeの少なくともいずれか1種を
単独または合計で0.010〜0.040%を含み、そ
の他必要に応じSb:0.01〜0.20%、Cu:
0.02〜0.20%、P:0.01〜0.30%、M
o:0.01〜0.05%、Sn:0.02〜0.20
%、Ge:0.005〜0.30%、Ni:0.02〜
0.20%、のうちから選んだ1種または2種以上を含
むものである。 ここに各成分を上記の範囲に限定した
理由は次の通りである。
The material targeted by the present invention is Si containing 2 to
It is a silicon steel slab containing 4.5% and further containing Al as an inhibitor-forming component. Here, the preferred component composition of the silicon steel slab is C: 0.02 to C in addition to the above Si.
0.10%, and Al: 0.010 to 0.065%,
N: 0.0010 to 0.0150%, Mn: 0.02
0.20%, at least one of S and Se alone or in a total of 0.010 to 0.040%, and optionally Sb: 0.01 to 0.20%, Cu:
0.02 to 0.20%, P: 0.01 to 0.30%, M
o: 0.01 to 0.05%, Sn: 0.02 to 0.20
%, Ge: 0.005 to 0.30%, Ni: 0.02
0.20%, including one or more selected from the group. The reason why each component is limited to the above range is as follows.

【0016】Siは、製品の電気抵抗を高め渦電流損を
低減させる上で必要な元素であるが、2.0%に満たな
いと最終仕上げ焼鈍中にα−γ変態によって結晶方位が
損なわれ、一方4.5%を越えると冷間圧延性に問題が
生じるので、2.0〜4.5%に限定した。Cは0.0
2%未満では良好な一次再結晶組織が得られず、一方
0.010%越えると脱炭不良となり磁気特性が劣化す
るので、0.02〜0.10%とする。
Si is an element necessary for increasing the electrical resistance of the product and reducing the eddy current loss, but if it is less than 2.0%, the crystal orientation is impaired by α-γ transformation during final finish annealing. On the other hand, if it exceeds 4.5%, there arises a problem in cold rolling property, so it is limited to 2.0 to 4.5%. C is 0.0
If it is less than 2%, a good primary recrystallization structure cannot be obtained. On the other hand, if it exceeds 0.010%, decarburization becomes poor and the magnetic properties deteriorate, so the content is made 0.02 to 0.10%.

【0017】AlとNはインヒビターとして機能するも
のであるが、良好な磁束密度を得るためには、Al:
0.010〜0.065%、N:0.0010〜0.0
150%が必要である。というのはこれを越える量では
AlNが粗大化して抑制力を失い、一方これ未満ではA
lNの量が不足し、所望のインヒビター効果が期待でき
ないからである。
Al and N function as inhibitors, but in order to obtain a good magnetic flux density, Al:
0.010 to 0.065%, N: 0.0010 to 0.0
150% is required. When the amount exceeds this, AlN coarsens and loses its restraining power.
This is because the amount of 1N is insufficient and the desired inhibitory effect cannot be expected.

【0018】MnとSおよびSeはインヒビターとして
機能するものであるが、Mnが0.02%未満、あるい
はSまたは/およびSeが0.010%未満ではインヒ
ビター機能が不十分であり、一方Mnが0.20%超、
Sまたは/およびSeが0.040%超ではスラブ加熱
に要する温度が高すぎて実用的でないので、Mnは0.
02〜0.20%、Sまたは/およびSeは0.010
〜0.040%とする。
Mn, S and Se function as inhibitors, but if Mn is less than 0.02% or S and / or Se is less than 0.010%, the inhibitor function is insufficient, while Mn is Over 0.20%,
If S or / and Se exceeds 0.040%, the temperature required for slab heating is too high to be practical.
02 to 0.20%, S or / and Se is 0.010
~ 0.040%.

【0019】また磁束密度を向上させるためにSb、C
u、Pを添加させることは可能である。しかしながらS
bが0.20%を越えると脱炭性が悪くなり、一方0.
01%未満ではSb添加の効果が弱いので0.01〜
0.20%が望ましい。Cuは、0.20%を越えると
酸洗性が悪くなり、一方0.01%未満ではCu添加効
果が弱いので0.01〜0.20%が望ましい。Pは
0.30%を越えると脆性が悪化し、0.01%未満で
はP添加の効果に乏しいので0.01〜0.30%とす
る。
Further, in order to improve the magnetic flux density, Sb, C
It is possible to add u and P. However, S
When b exceeds 0.20%, the decarburizing property deteriorates, while 0.
If less than 01%, the effect of Sb addition is weak, so 0.01-
0.20% is desirable. If the Cu content exceeds 0.20%, the pickling property deteriorates. On the other hand, if the Cu content is less than 0.01%, the effect of adding Cu is weak, so 0.01 to 0.20% is desirable. If P exceeds 0.30%, the brittleness deteriorates, and if it is less than 0.01%, the effect of P addition is poor, so 0.01 to 0.30% is set.

【0020】さらに表面性状を完全にするためにMoを
0.05%添加できるが、0.05%を越えると脱炭性
が悪くなり、一方0.01%未満では添加効果が乏しい
ので添加する場合には0.01〜0.05%が好まし
い。さらに鉄損を向上させるためにSn、Ge、Niを
添加することができる。Snは0.30%を越えると脆
化し、0.01%未満では添加効果が乏しいので0.0
1〜0,30%が好ましい。Geは0.30%を越える
と良好な一次再結晶組織が得られず、一方0.005%
未満では効果が乏しいので0.005〜00.30%が
望ましい。Niは0.20%を越えると熱間強度が低下
し、0.01%未満では効果が乏しいので0.01〜
0.20%が望ましい。
Further, 0.05% Mo can be added to complete the surface properties, but if it exceeds 0.05%, the decarburizing property is deteriorated, while if it is less than 0.01%, the effect of addition is poor, so addition is carried out. In this case, 0.01 to 0.05% is preferable. Further, Sn, Ge, and Ni can be added to improve the iron loss. If Sn exceeds 0.30%, it becomes brittle, and if it is less than 0.01%, the effect of addition is poor.
1 to 0.30% is preferable. When Ge exceeds 0.30%, a good primary recrystallized structure cannot be obtained, while 0.005%
If it is less than 0.005%, the effect is poor, so 0.005 to 0.30% is desirable. If Ni exceeds 0.20%, the hot strength decreases, and if it is less than 0.01%, the effect is poor.
0.20% is desirable.

【0021】次に、この発明に従う製造方法について具
体的に説明する。この発明の対象としている方向性珪素
鋼の製造においては、従来用いられている製鋼法で得ら
れた溶鋼を連続鋳造法または造塊法で鋳造し、必要に応
じて熱間圧延板焼鈍を行った後、1回または中間焼鈍を
挟む2回以上の冷間圧延により最終板厚とする。
Next, the manufacturing method according to the present invention will be specifically described. In the production of grain-oriented silicon steel, which is the object of the present invention, molten steel obtained by a conventional steelmaking method is cast by a continuous casting method or an ingot casting method, and hot rolling plate annealing is performed as necessary. After that, cold rolling is performed once or twice or more with intermediate annealing to obtain the final plate thickness.

【0022】さてこの発明では最終冷間圧延の後で焼鈍
を施すことが重要である。ここに焼鈍温度は750〜1
050℃で30秒〜10分とする。というのは焼鈍温度
が750℃に満たないと磁束密度の向上効果に乏しく、
1050℃を越えると逆に磁束密度が低下するので75
0〜1050℃とする。また焼鈍時間は30秒未満では
磁束密度の向上効果に乏しく、10分を越えると磁束密
度が低下するので30秒〜10分とする。焼鈍雰囲気は
露点15℃以下で少なくとも10%以上の水素を含ませ
ることが肝要である。というのは露点が15℃以上であ
ると酸化膜が表面に形成され、表層のAlNの分解効果
が不十分かつ、次工程である脱炭焼鈍における脱炭が阻
害され磁束密度が低下するためであり、水素が10%未
満であると板表層でのAlNの分解効果が不十分である
ために磁束密度の向上効果がないからである。焼鈍方法
としては最終冷間圧延後に独立の工程で行っても良い
が、脱炭焼鈍工程の前半で行えば生産能率的には有利で
ある。
In the present invention, it is important to anneal after the final cold rolling. Here, the annealing temperature is 750 to 1
It is 30 seconds to 10 minutes at 050 ° C. If the annealing temperature is less than 750 ° C, the effect of improving the magnetic flux density is poor,
On the contrary, when the temperature exceeds 1050 ° C, the magnetic flux density decreases.
It is set to 0 to 1050 ° C. If the annealing time is less than 30 seconds, the effect of improving the magnetic flux density is poor, and if it exceeds 10 minutes, the magnetic flux density decreases, so the annealing time is set to 30 seconds to 10 minutes. It is essential that the annealing atmosphere contains at least 10% hydrogen at a dew point of 15 ° C. or less. This is because when the dew point is 15 ° C. or higher, an oxide film is formed on the surface, the effect of decomposing AlN in the surface layer is insufficient, and decarburization in the decarburization annealing that is the next step is hindered and the magnetic flux density is reduced. If hydrogen is less than 10%, the effect of decomposing AlN in the surface layer of the plate is insufficient, and the effect of improving the magnetic flux density is not obtained. The annealing method may be performed in an independent step after the final cold rolling, but it is advantageous in terms of production efficiency if performed in the first half of the decarburization annealing step.

【0023】上記の焼鈍に続き通常の湿潤雰囲気での脱
炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を塗布
し、ついで1200℃程度の温度で最終仕上げ焼鈍を行
い、必要に応じ張力を付与するコーティングを施して製
品とする。
Subsequent to the above annealing, decarburization annealing in a normal wet atmosphere is performed, an annealing separating agent containing MgO as a main component is applied, and then final finishing annealing is performed at a temperature of about 1200 ° C. A coating is applied to give a product.

【0024】[0024]

【実施例】【Example】

(実施例1)C:0.069%、Si:3.25%、A
l:0.024%、N:0.0085%、Mn:0.0
75%、Se:0.020%およびSb:0.026%
を含み、残部実質的にFeからなる珪素鋼スラブを、1
420℃で30分加熱した後、熱間圧延して2,2mm
厚の熱間圧延板とした後、1000℃で30秒焼鈍して
から1.5mmまで冷間圧延し、ついで1100℃で6
0秒焼鈍してから0.23mmまで冷間圧延した。つい
で表1に表される条件で焼鈍を行ったのち、840℃で
120秒の脱炭焼鈍を施し、MgOを塗布してから、1
200℃で5時間の仕上げ焼鈍を行った。
(Example 1) C: 0.069%, Si: 3.25%, A
1: 0.024%, N: 0.0085%, Mn: 0.0
75%, Se: 0.020% and Sb: 0.026%
A silicon steel slab containing
After heating at 420 ℃ for 30 minutes, hot-roll it to 2.2 mm
After making a thick hot-rolled sheet, annealed at 1000 ° C for 30 seconds, cold-rolled to 1.5 mm, and then at 1100 ° C for 6 seconds.
It was annealed for 0 seconds and then cold rolled to 0.23 mm. Then, after annealing under the conditions shown in Table 1, decarburization annealing was performed at 840 ° C. for 120 seconds, MgO was applied, and then 1
Finish annealing was performed at 200 ° C. for 5 hours.

【0025】かくして得られた製品の磁気特性について
調べた結果を表1に併記する。
The results of examining the magnetic properties of the products thus obtained are also shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例2)表2に示される成分組成にな
る珪素鋼スラブを、1430℃で20分間加熱後、熱間
圧延により2.3mm厚の熱間圧延板としたのち、10
00℃で60秒の焼鈍を施し、ついで1.5mm厚まで
冷間圧延したのち、1100℃で2分間の中間焼鈍後、
冷間圧延で0.23mmに仕上げた。ついで900℃で
3分間の露点−20℃、水素50%窒素50%の雰囲気
で焼鈍を行った。その後840℃で2分間の脱炭焼鈍を
施し、MgOを塗布してから、1200℃で5時間の仕
上げ焼鈍を施した。
Example 2 A silicon steel slab having the composition shown in Table 2 was heated at 1430 ° C. for 20 minutes and then hot-rolled into a hot-rolled sheet having a thickness of 2.3 mm, and then 10
Annealing is performed at 00 ° C for 60 seconds, and then cold rolling is performed to a thickness of 1.5 mm, and then intermediate annealing is performed at 1100 ° C for 2 minutes.
Cold rolled to 0.23 mm. Then, it was annealed at 900 ° C. for 3 minutes in an atmosphere of dew point -20 ° C., hydrogen 50% and nitrogen 50%. Thereafter, decarburization annealing was performed at 840 ° C. for 2 minutes, MgO was applied, and then final annealing was performed at 1200 ° C. for 5 hours.

【0028】かくして得られた製品の磁気特性について
調べた結果を表2に併記する。
The results of examining the magnetic properties of the products thus obtained are also shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】かくしてこの発明によれば、最終冷間圧
延後に水素を少なくとも10%含む雰囲気で焼鈍するこ
とにより、表層のAlNを分解し、二次再結晶温度を低
下させ、理想ゴス方位の選択的成長を促進させることに
より、極めて高い磁束密度を得ることが出来る。
As described above, according to the present invention, after the final cold rolling, annealing is performed in an atmosphere containing at least 10% of hydrogen to decompose AlN in the surface layer, lower the secondary recrystallization temperature, and reduce the ideal Goss orientation. By promoting selective growth, an extremely high magnetic flux density can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱炭焼鈍板表面の集合組織の測定結果を示す。FIG. 1 shows the measurement results of the texture of the decarburized annealed plate surface.

【図2】仕上げ焼鈍時の表層と中心部の一次再結晶粒径
を示す。
FIG. 2 shows the primary recrystallized grain size of the surface layer and the central portion during finish annealing.

【図3】最終冷間圧延後の焼鈍条件と製品の磁気特性の
関係を示す。
FIG. 3 shows the relationship between the annealing conditions after the final cold rolling and the magnetic properties of the product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Siを0.2〜4.5%含み、さらにA
lをインヒビター形成成分として含有する珪素鋼スラブ
を熱間圧延後、1回または中間焼鈍を含む2回以上の冷
間圧延を施して最終板厚とし、ついで脱炭焼鈍を施した
後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布
してから二次再結晶焼鈍および純化焼鈍を施す一連の工
程において方向性珪素鋼を製造するに当たり、最終冷間
圧延後に、750〜1050℃の温度において30秒〜
10分間、少なくとも10%以上の水素を含む露点15
℃以下の焼鈍雰囲気中での焼鈍を施した後に、通常の脱
炭焼鈍を施すことを特徴とする磁束密度の極めて高い方
向性珪素鋼板の製造方法。
1. Containing 0.2 to 4.5% of Si, and further comprising A
After hot-rolling a silicon steel slab containing 1 as an inhibitor-forming component, it is cold-rolled once or twice or more including intermediate annealing to obtain a final plate thickness, and then decarburized-annealed, and then the steel plate surface In producing a grain-oriented silicon steel in a series of steps of applying an annealing separator containing MgO as a main component, and then performing secondary recrystallization annealing and purification annealing, after the final cold rolling, a temperature of 750 to 1050 ° C. 30 seconds ~
Dew point 15 containing at least 10% hydrogen for 10 minutes
A method for producing a grain-oriented silicon steel sheet having an extremely high magnetic flux density, which comprises performing an ordinary decarburization annealing after performing an annealing in an annealing atmosphere at ℃ or less.
【請求項2】 請求項1記載の珪素鋼スラブの組成が、
Si:2.0〜4.5%、C:0.02〜0.10%、
Al:0.010〜0.065%、N:0.0010〜
0.0150%、Mn:0.02〜0.20%、Sまた
はSeのいずれか1種を単独または合計で0.01〜
0.040%を含むことを特徴とする磁束密度の極めて
高い方向性珪素鋼板の製造方法。
2. The composition of the silicon steel slab according to claim 1,
Si: 2.0-4.5%, C: 0.02-0.10%,
Al: 0.010 to 0.065%, N: 0.0010
0.0150%, Mn: 0.02 to 0.20%, any one of S and Se alone or in total 0.01 to.
A method for producing a grain-oriented silicon steel sheet having an extremely high magnetic flux density, which comprises 0.040%.
【請求項3】請求項1記載の珪素鋼スラブの組成が、S
i:2.0〜4.5%、C:0.02〜0.10%、A
l:0.010〜0.065%、N:0.0010〜
0.0150%、Mn:0.02〜0.20%、Sまた
はSeのいずれか1種を単独または合計で0.01〜
0.040%を含み、さらにSb:0.01〜0.20
%、Cu:0.02〜0.20%、P:0.01〜0.
30%、Mo:0.01〜0.05%、Sn:0.02
〜0.20%、Ge:0.005〜0.30%、Ni:
0.02〜0.20%のうちから選んだ1種または2種
以上を含むことを特徴とする磁束密度の極めて高い方向
性珪素鋼板の製造方法。
3. The composition of the silicon steel slab according to claim 1 is S
i: 2.0 to 4.5%, C: 0.02 to 0.10%, A
1: 0.010 to 0.065%, N: 0.0010
0.0150%, Mn: 0.02 to 0.20%, any one of S and Se alone or in total 0.01 to.
0.040%, and Sb: 0.01 to 0.20
%, Cu: 0.02 to 0.20%, P: 0.01 to 0.
30%, Mo: 0.01 to 0.05%, Sn: 0.02
-0.20%, Ge: 0.005-0.30%, Ni:
A method for producing a grain-oriented silicon steel sheet having an extremely high magnetic flux density, which comprises one or more selected from 0.02 to 0.20%.
JP16315392A 1992-06-22 1992-06-22 Method for producing oriented silicon steel sheet with extremely high magnetic flux density Expired - Fee Related JP3300034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16315392A JP3300034B2 (en) 1992-06-22 1992-06-22 Method for producing oriented silicon steel sheet with extremely high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16315392A JP3300034B2 (en) 1992-06-22 1992-06-22 Method for producing oriented silicon steel sheet with extremely high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH062040A true JPH062040A (en) 1994-01-11
JP3300034B2 JP3300034B2 (en) 2002-07-08

Family

ID=15768236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16315392A Expired - Fee Related JP3300034B2 (en) 1992-06-22 1992-06-22 Method for producing oriented silicon steel sheet with extremely high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3300034B2 (en)

Also Published As

Publication number Publication date
JP3300034B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
JP5780378B1 (en) Method for producing grain-oriented electrical steel sheet
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS61117215A (en) Manufacture of grain oriented magnetic steel sheet of low iron loss
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2001032021A (en) Manufacture of grain oriented silicon steel sheet
JPH055126A (en) Production of nonoriented silicon steel sheet
EP0468819B1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP3928275B2 (en) Electrical steel sheet
JP3300034B2 (en) Method for producing oriented silicon steel sheet with extremely high magnetic flux density
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3492716B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2002069532A (en) Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP2004285402A (en) Manufacturing method of grain-oriented magnetic steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH042724A (en) Production of thin grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees