JPH06203847A - Fuel cell solid electrolyte - Google Patents

Fuel cell solid electrolyte

Info

Publication number
JPH06203847A
JPH06203847A JP4357840A JP35784092A JPH06203847A JP H06203847 A JPH06203847 A JP H06203847A JP 4357840 A JP4357840 A JP 4357840A JP 35784092 A JP35784092 A JP 35784092A JP H06203847 A JPH06203847 A JP H06203847A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
fuel
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4357840A
Other languages
Japanese (ja)
Inventor
Hideto Koide
秀人 小出
Yoshiyuki Someya
喜幸 染谷
Motoaki Andou
基朗 安藤
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP4357840A priority Critical patent/JPH06203847A/en
Publication of JPH06203847A publication Critical patent/JPH06203847A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To restrain polarization resistance from increasing so as to prevent aged deterioration from proceeding by bringing particles of a metal or conductive metal compound of specific particle size into close contact with the surface of fuel-cell side solid electrolyte at specific surface coverage. CONSTITUTION:A solid electrolyte fuel cell comprises an air electrode formed on one side of a solid electrolyte plate and a fuel electrode formed on the other side. Particles of a metal or conductive metal compound, 90% or more of which are of particle size in the range 0.3 to 10mum, are brought into close contact with the surface of solid electrolyte on the fuel cell side at a surface coverage of 30 to 80%. Thus even if the current of the fuel cell increases, the solid electrolyte does not have any increase in polarization voltage and therefore has almost no polarization resistance, resulting in stabilization of its time-related characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分極抵抗を抑制し、電
池の出力や効率を経時的に安定化させる燃料電池用固体
電解質及びそれを用いた固体電解質型燃料電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte for a fuel cell, which suppresses polarization resistance and stabilizes the output and efficiency of the cell over time, and a solid electrolyte fuel cell using the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池において、両面に
各電極を形成させた固体電解質を作成する方法として
は、通常グリーンシート状のジルコニア電解質等の電解
質に電極組成物を塗布などにより被着したのち、一体焼
結する方法や、焼結されたジルコニア電解質等の焼結電
解質上に電極を塗布や印刷等で被着する方法が用いられ
ている。
2. Description of the Related Art In a solid oxide fuel cell, a method for preparing a solid electrolyte having electrodes formed on both sides thereof is usually to apply an electrode composition to an electrolyte such as a zirconia electrolyte in the form of a green sheet by coating or the like. After that, a method of integrally sintering or a method of applying an electrode on a sintered electrolyte such as a sintered zirconia electrolyte by coating or printing is used.

【0003】後者の被着法では、それで形成した電池を
発電すると電流が大きくなるにつれて分極抵抗が大きく
なったり、また長時間運転を行うと、アノードの焼結が
進行し、電解質からはがれてしまい、分極抵抗が増大し
経時的に劣化が進行するという欠点がある。
In the latter deposition method, the polarization resistance increases as the current increases when the battery formed therefrom is generated, and when the battery is operated for a long time, the anode is sintered and peeled from the electrolyte. However, there is a drawback that polarization resistance increases and deterioration progresses with time.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
従来の固体電解質型燃料電池のもつ欠点を克服し、発電
時に電流が大きくなっても、また長時間運転しても分極
抵抗の増大が抑制され、経時的に劣化することのない固
体電解質型燃料電池を与える燃料電池用固体電解質を提
供することを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional solid oxide fuel cell, and increases the polarization resistance even when the current becomes large during power generation or when the battery is operated for a long time. The present invention has been made for the purpose of providing a solid electrolyte for a fuel cell, which provides a solid oxide fuel cell in which the above-mentioned phenomenon is suppressed and does not deteriorate with time.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する燃料電池用固体電解質を開発するた
めに種々研究を重ねた結果、従来の前記被着法の欠点で
ある分極抵抗の増大は、燃料極と電解質間で強固な界面
が形成されていないことに起因することに着目し、強固
な燃料極/電解質界面を形成するために特有の工夫を施
すことにより、その目的を達成しうることを見出し、こ
の知見に基づいて本発明を完成するに至った。
The inventors of the present invention have conducted various studies to develop a solid electrolyte for a fuel cell having the above-mentioned preferable characteristics, and as a result, the polarization resistance, which is a drawback of the conventional deposition method, has been found. The increase in the fuel cell concentration is due to the fact that a strong interface between the fuel electrode and the electrolyte is not formed, and its purpose is to be improved by applying a unique device to form a strong fuel electrode / electrolyte interface. They have found that they can be achieved, and have completed the present invention based on this finding.

【0006】すなわち、本発明は、固体電解質板を挟ん
で、片方の面に空気極を、他方の面に燃料極をそれぞれ
形成させた固体電解質型燃料電池において、燃料極側固
体電解質表面に、90%以上が粒子径0.3〜10μm
の範囲にある金属又は導電性金属化合物の粒子を表面被
覆率30〜80%で密着させたことを特徴とする燃料電
池用固体電解質を提供するものである。
That is, the present invention is a solid electrolyte fuel cell in which an air electrode is formed on one surface and a fuel electrode is formed on the other surface with a solid electrolyte plate sandwiched between them. 90% or more has a particle size of 0.3 to 10 μm
The present invention provides a solid electrolyte for a fuel cell, characterized in that particles of a metal or a conductive metal compound in the above range are adhered at a surface coverage of 30 to 80%.

【0007】本発明の燃料電池用固体電解質の重要な構
成事項を成す金属又は導電性金属化合物の粒子は、その
90%以上が粒子径0.3〜10μmの範囲にあり、基
体あるいはマトリックスとなる上記電解質に表面被覆率
が30〜80%となるように強固に密着接合されてい
る。
90% or more of the particles of the metal or the conductive metal compound, which form an important component of the solid electrolyte for fuel cell of the present invention, have a particle diameter of 0.3 to 10 μm and serve as a substrate or a matrix. It is firmly and tightly bonded to the electrolyte so that the surface coverage is 30 to 80%.

【0008】燃料極は、後述するようにこのような固体
電解質の形成時に一体に形成させるか、あるいはこのよ
うな固体電解質上に上記被着法のような常法により形成
させることができる。上記粒子は燃料極と固体電解質と
の界面に介在して燃料極も強固に保持する。この界面に
介在する粒子により形成される層の厚さは10μm以
下、さらに有利には1〜5μm程度とするのが好まし
い。
The fuel electrode can be formed integrally when such a solid electrolyte is formed as described later, or can be formed on such a solid electrolyte by a conventional method such as the above-mentioned deposition method. The particles intervene at the interface between the fuel electrode and the solid electrolyte to firmly hold the fuel electrode. The thickness of the layer formed by the particles intervening at this interface is preferably 10 μm or less, more preferably about 1 to 5 μm.

【0009】本発明の燃料電池用固体電解質は、好適に
は、固体電解質の燃料極側表面上に金属薄膜又は金属化
合物薄膜を形成したのち、該薄膜を金属酸化膜とし、次
いでこの金属酸化膜上に燃料極用組成物を塗布したの
ち、還元処理を施すことによって得られる。その際、燃
料極も一体に形成される。
The solid electrolyte for a fuel cell of the present invention is preferably such that a metal thin film or a metal compound thin film is formed on the fuel electrode side surface of the solid electrolyte, the thin film is used as a metal oxide film, and then this metal oxide film is formed. It is obtained by applying the composition for fuel electrode on the top and then performing a reduction treatment. At that time, the fuel electrode is also integrally formed.

【0010】本発明に用いられる固体電解質としては、
イットリアなどが添加された安定化ジルコニアや部分安
定化ジルコニアなどのジルコニア系のものが好ましい。
また、このような固体電解質上に金属薄膜又は金属化合
物薄膜を形成するには、該電解質にめっき、電子ビーム
蒸着、スパツタリングなどによる表面処理を施すのがよ
く、特に密着性が良好で、均一な膜厚の皮膜が得られる
無電解めつき法によるのが望ましい。
The solid electrolyte used in the present invention includes:
Zirconia-based materials such as stabilized zirconia to which yttria and the like are added and partially stabilized zirconia are preferable.
Further, in order to form a metal thin film or a metal compound thin film on such a solid electrolyte, it is preferable to subject the electrolyte to a surface treatment such as plating, electron beam vapor deposition, and sputtering, which has particularly good adhesion and is uniform. It is preferable to use an electroless plating method that can obtain a film having a film thickness.

【0011】このようにして得られる薄膜は金属又は金
属化合物からなる緻密な薄膜であって、薄膜を構成する
金属としては、NiやCoが好ましく、また金属化合物
としては、金属酸化物や金属炭化物が好ましく、なかで
も酸化ニッケルや酸化コバルトが望ましい。
The thin film thus obtained is a dense thin film made of a metal or a metal compound, and Ni or Co is preferable as the metal constituting the thin film, and the metal compound is a metal oxide or a metal carbide. Are preferred, and nickel oxide and cobalt oxide are particularly preferred.

【0012】薄膜を介して電極を従来の被着法に準じて
形成させると、従来の電解質上に直接電極を形成させる
被着法によるのに比べ、電極と電解質との付着力が強固
になるが、薄膜が緻密すぎるために原料ガスや電池反応
で生じる生成ガスや水の拡散が遅くなり拡散抵抗が増大
する。
When an electrode is formed through a thin film according to a conventional deposition method, the adhesive force between the electrode and the electrolyte becomes stronger as compared with the conventional deposition method in which the electrode is directly formed on the electrolyte. However, since the thin film is too dense, the diffusion of the raw material gas, the product gas generated in the battery reaction and water is delayed, and the diffusion resistance increases.

【0013】この拡散抵抗の増大は、上記のようにして
得られた薄膜を、金属酸化膜とし、次いでこの金属酸化
膜上に燃料極用組成物を塗布したのち、還元処理を施す
ことにより抑制される。このような処理により、上記し
たような金属又は導電性金属化合物の所定の粒子が形成
される。それとともに電極も形成される。
This increase in diffusion resistance is suppressed by using the thin film obtained as described above as a metal oxide film, then applying the composition for fuel electrode on the metal oxide film, and then applying a reduction treatment. To be done. By such treatment, predetermined particles of the metal or conductive metal compound as described above are formed. Along with that, electrodes are also formed.

【0014】この具体的方法として、好適には金属薄膜
を800〜1200℃程度で1〜10時間程度酸化焼成
して金属酸化膜としたのち、この薄膜を燃料極/電解質
界面層とするように、この薄膜上に燃料極用組成物を塗
布したのち加熱昇温させ、300〜400℃まで昇温す
る過程でバインダー類を焼去し、800℃〜1200℃
で還元処理を施すことにより、金属酸化薄膜を還元して
粒子化するとともに、燃料極を形成する方法が挙げられ
る。還元処理は5〜20%の水素を添加した窒素を用い
るのが好ましく、またその開始時期は電池を作成してそ
れを昇温する際の800℃に達した時点からが望まし
い。
As a concrete method, preferably, a metal thin film is oxidized and baked at about 800 to 1200 ° C. for about 1 to 10 hours to form a metal oxide film, and this thin film is used as a fuel electrode / electrolyte interface layer. After coating the composition for fuel electrode on this thin film, the temperature is raised by heating, and the binders are burned off in the process of raising the temperature to 300 to 400 ° C., and 800 ° C. to 1200 ° C.
A method of forming a fuel electrode while reducing the metal oxide thin film into particles by performing a reduction treatment with the method of 1. It is preferable to use nitrogen added with 5 to 20% of hydrogen for the reduction treatment, and it is desirable to start the reduction treatment from the time when the temperature reaches 800 ° C. when the battery is manufactured and the temperature is raised.

【0015】また、本発明は、上記した所定粒子を密着
形成させた固体電解質を使用した固体電解質型燃料電池
をも包含する。
The present invention also includes a solid oxide fuel cell using a solid electrolyte in which the above-mentioned predetermined particles are closely formed.

【0016】[0016]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0017】実施例 5cm四方の(Y0.08(ZrO
0.92の板を固体電解質板として用いた。この酸素通
路側にLa0.8r0.2MnO粉末(平均粒径約
5μm)を有機系バインダーに分散した塗布用組成物を
16cmの面積に厚さ0.1〜0.2mm塗布してカ
ソード形成膜とした。また、水素通路側に下記の界面N
i系膜が挿入された状態でNi/ZrO(重量比10
/1)サーメット混合粉末を有機系バインダーに分散し
た塗布用組成物を16cmの面積に厚さ0.1〜0.
2mm塗布してアノード形成膜とした。界面のNi系膜
は、固体電解質板を無電解Niめっき浴中に20分間浸
し、2μm厚のNi緻密膜を形成したのち、この膜を1
000℃、空気雰囲気で1時間焼成することによって作
成した。
Example 5 (Y 2 O 3 ) 0.08 (ZrO 2 ) of 5 cm square
A 0.92 plate was used as the solid electrolyte plate. On this oxygen passage side, a coating composition in which La 0.8 S r0.2 MnO 3 powder (average particle size of about 5 μm) was dispersed in an organic binder was applied to an area of 16 cm 2 with a thickness of 0.1 to 0.2 mm. Then, a cathode forming film was obtained. In addition, the following interface N on the hydrogen passage side
Ni / ZrO 2 (weight ratio 10
/ 1) Thickness of the coating composition dispersed in an organic binder cermet powder mixture in an area of 16cm 2 of 0.1 to 0.
2 mm was applied to form an anode forming film. For the Ni-based film at the interface, the solid electrolyte plate was immersed in an electroless Ni plating bath for 20 minutes to form a Ni-dense film with a thickness of 2 μm, and then this film was
It was prepared by firing at 000 ° C. in an air atmosphere for 1 hour.

【0018】このようにして得られた電極形成膜を設け
た電解質板をそれと同大の2種の端子板と集積し固体電
解質型燃料電池を作製した。これら端子板は各原料ガス
を導通する溝を片面に設けた集電体、すなわちLa
0.8r0.2Cr0.9Co 0.1からなるカ
ソード側集電体と、Niからなるアノード側集電体で構
成した。
The electrode forming film thus obtained is provided.
The electrolyte plate is integrated with two kinds of terminal plates of the same size as the solid electrolyte plate.
A degradable fuel cell was produced. These terminal boards are for each source gas
Current collector having a groove for conducting electricity on one side, that is, La
0.8Sr0.2Cr0.9Co 0.1OThreeConsisting of
Consists of sword side current collector and Ni anode current collector
I made it.

【0019】このようにして作製した燃料電池を加熱し
た。室温から350℃までは加熱空気を流し、350℃
から800℃までは水素通路側にアノードの酸化を防止
するため、窒素ガスを流し、さらに800℃から100
0℃までの間はH/N=5/50(cc/min)
の混合ガスを流して還元し、いずれの操作も10℃/m
inで昇温した。この処理により固体電解質とアノード
との界面にNi粒子層が形成され、電極が焼成形成され
た。その後、1000℃に保持してアノード側に水素、
カソード側に酸素をそれぞれ200cc/min及び1
00cc/minの供給速度で流し、発電を開始した。
この電池の電流変化による分極特性を表1に示す。
The fuel cell thus manufactured was heated. Heated air flows from room temperature to 350 ℃, 350 ℃
From 800 to 800 ° C, nitrogen gas is flowed to prevent oxidation of the anode on the hydrogen passage side.
H 2 / N 2 = 5/50 (cc / min) up to 0 ° C
Flowing mixed gas to reduce, 10 ℃ / m
The temperature was raised in. By this treatment, a Ni particle layer was formed at the interface between the solid electrolyte and the anode, and the electrode was formed by firing. After that, the temperature is kept at 1000 ° C. and hydrogen is added to the anode side.
Oxygen at the cathode side of 200 cc / min and 1 respectively
Flowing at a supply rate of 00 cc / min to start power generation.
Table 1 shows the polarization characteristics of the battery depending on the change in current.

【0020】[0020]

【表1】 [Table 1]

【0021】これより、実施例の電池の分極抵抗につい
ては、電流が大きくなっても分極電圧自体増加すること
もないことから、電極反応に起因する抵抗がほとんどな
いことが分る。
From the above, it can be seen that the polarization resistance of the battery of the example does not increase even if the current increases, so that there is almost no resistance due to the electrode reaction.

【0022】この電池利用率(Uf)80%時の出力密
度と効率の経時特性を図1に示す。これより、電池性能
の経時特性が極めて安定していることが分る。
FIG. 1 shows the time-dependent characteristics of the output density and efficiency when the battery utilization rate (Uf) is 80%. From this, it can be seen that the temporal characteristics of the battery performance are extremely stable.

【0023】比較例 固体電解質板の水素通路側に、Ni粒子層が界面に介挿
されることなく、実施例と同じ所定サーメット粉末を有
機系バインダーに分散した塗布用組成物を実施例と同様
に塗布してアノード形成膜を形成させたこと以外は実施
例と同様にして、燃料電池を作成した。この燃料電池を
実施例と同様に加熱処理し発電させた。この電池の電流
変化による分極特性を表2に示す。
Comparative Example A coating composition prepared by dispersing the same predetermined cermet powder as in the example into an organic binder without interposing a Ni particle layer on the hydrogen passage side of the solid electrolyte plate was prepared in the same manner as in the example. A fuel cell was prepared in the same manner as in Example except that the anode forming film was formed by coating. This fuel cell was subjected to heat treatment and power generation in the same manner as in the example. Table 2 shows the polarization characteristics of the battery depending on the change in current.

【0024】[0024]

【表2】 [Table 2]

【0025】これより、比較例の電池は、実施例のNi
粒子層を介在させた電池に比べて分極抵抗が大きく、し
かも電流が大きくなると分極電圧も増大することから、
電極反応に起因する抵抗が相当あり、また分極の経時劣
化が大きいことが分る。この電池の利用率80%時の出
力密度と効率の経時特性を図2に示す。これより、Ni
粒子層が介挿された電池に比べ分極の経時劣化は明らか
に大きいことから、Ni粒子層を介挿させることにより
アノードの焼結による拡散抵抗の増加が防止されること
が分る。
From the above, the battery of the comparative example is the Ni of the example.
The polarization resistance is larger than that of the battery with the particle layer interposed, and the polarization voltage increases as the current increases.
It can be seen that there is a considerable resistance due to the electrode reaction, and the deterioration of polarization over time is large. FIG. 2 shows the time-dependent characteristics of output density and efficiency when the utilization rate of this battery is 80%. From this, Ni
Since the deterioration over time of polarization is obviously larger than that of the battery in which the particle layer is inserted, it can be seen that the insertion of the Ni particle layer prevents an increase in diffusion resistance due to sintering of the anode.

【0026】[0026]

【発明の効果】本発明の固体電解質は、それを用いた燃
料電池について、電流が大きくなっても分極電圧自体増
加することがないことから、分極抵抗がほとんどない
し、また所定の電池利用率(Uf)における出力密度や
効率の経時特性が極めて安定しており、所定の定電流下
の分極抵抗が経時的にも極めて少ないという利点があ
る。
INDUSTRIAL APPLICABILITY The solid electrolyte of the present invention has almost no polarization resistance in the fuel cell using the solid electrolyte because the polarization voltage itself does not increase even when the current increases, and the solid electrolyte has a predetermined cell utilization ratio ( The characteristics of Uf) such as output density and efficiency over time are extremely stable, and the polarization resistance under a predetermined constant current is extremely small over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の燃料電池の所定利用時の出力密度と
効率の経時特性を示すグラフ。
FIG. 1 is a graph showing the time-dependent characteristics of output density and efficiency when the fuel cell of the present invention is used for a predetermined time.

【図2】 従来の燃料電池の所定利用時の出力密度と効
率の経時特性を示すグラフ。
FIG. 2 is a graph showing a time-dependent characteristic of output density and efficiency when a conventional fuel cell is used for a predetermined time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 基朗 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoo Ando Nishitsurugaoka 1-3-1 Oi-cho, Iruma-gun, Saitama Tonen Co., Ltd. Research Institute (72) Toshihiko Yoshida Nishitsurugaoka, Oi-cho, Saitama 1-3-1 Tonen Co., Ltd. Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質板を挟んで、片方の面に空気
極を、他方の面に燃料極をそれぞれ形成させた固体電解
質型燃料電池において、燃料極側固体電解質表面に、9
0%以上が粒子径0.3〜10μmの範囲にある金属又
は導電性金属化合物の粒子を表面被覆率30〜80%で
密着させたことを特徴とする燃料電池用固体電解質。
1. A solid electrolyte type fuel cell in which an air electrode is formed on one surface and a fuel electrode is formed on the other surface with a solid electrolyte plate sandwiched therebetween.
A solid electrolyte for a fuel cell, characterized in that 0% or more of particles of a metal or a conductive metal compound having a particle diameter in the range of 0.3 to 10 μm are adhered at a surface coverage of 30 to 80%.
【請求項2】 請求項1記載の固体電解質を使用した固
体電解質型燃料電池。
2. A solid oxide fuel cell using the solid electrolyte according to claim 1.
JP4357840A 1992-12-25 1992-12-25 Fuel cell solid electrolyte Pending JPH06203847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357840A JPH06203847A (en) 1992-12-25 1992-12-25 Fuel cell solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357840A JPH06203847A (en) 1992-12-25 1992-12-25 Fuel cell solid electrolyte

Publications (1)

Publication Number Publication Date
JPH06203847A true JPH06203847A (en) 1994-07-22

Family

ID=18456199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357840A Pending JPH06203847A (en) 1992-12-25 1992-12-25 Fuel cell solid electrolyte

Country Status (1)

Country Link
JP (1) JPH06203847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678280A (en) * 2019-04-26 2021-11-19 日本碍子株式会社 Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678280A (en) * 2019-04-26 2021-11-19 日本碍子株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
US5937264A (en) Electrode structure for solid state electrochemical devices
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2002289248A (en) Unit cell for fuel cell and solid electrolytic fuel cell
KR20070085914A (en) Manufacturing method and current collector
JP3981418B2 (en) Electrode structure for solid state electrochemical devices
JP2003178769A (en) Thin film laminated body, its manufacturing method, and solid oxide type fuel cell using the same
JP2002216807A (en) Air electrode collector for solid electrolyte type fuel cell
EP1528615B1 (en) Fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JPH04133264A (en) Fuel electrode of solid electrolyte cell and its manufacture
JPH11219710A (en) Electrode of solid electrolyte fuel cell and manufacture thereof
JP3347561B2 (en) Solid oxide fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JPH06203847A (en) Fuel cell solid electrolyte
JP3447541B2 (en) Cylindrical solid oxide fuel cell and fuel cell
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JP3342621B2 (en) Solid oxide fuel cell
JP2001283876A (en) Unit cell of solid electrolytic fuel battery
JPH06119929A (en) Fuel electrode of solid electrolyte fuel cell and manufacture of fuel electrode
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JP6910172B2 (en) Manufacturing method of cell-to-cell connection member
KR20080057550A (en) Seperator for solid oxide fuel cell and preparing method thereof
JPH09190824A (en) Fuel electrode structure of fuel cell of solid electrolyte type and manufacture thereof
JP3405659B2 (en) Cylindrical solid oxide fuel cell
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell