JPH06202793A - Three-dimensional position inputting device - Google Patents
Three-dimensional position inputting deviceInfo
- Publication number
- JPH06202793A JPH06202793A JP87393A JP87393A JPH06202793A JP H06202793 A JPH06202793 A JP H06202793A JP 87393 A JP87393 A JP 87393A JP 87393 A JP87393 A JP 87393A JP H06202793 A JPH06202793 A JP H06202793A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- base point
- dimensional position
- ultrasonic wave
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、立体状の対象物表面
の各箇所の3次元位置を、コンピュータなどのデータ処
理装置に入力する3次元位置入力装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional position input device for inputting the three-dimensional position of each position on the surface of a three-dimensional object to a data processing device such as a computer.
【0002】[0002]
【従来の技術】従来例について、その斜視図の図5を参
照しながら説明する。この従来例は、図形データ処理用
の2次元位置入力装置で、表面にX,Yの各座標軸が設
定された基板20と、超音波送波器21が先端に設けられた
ペン状の指示棒22とからなる。指示棒22の先端が、基板
20の表面上で位置決めされると、その位置に係るX,Y
の各座標値が、超音波送波器21から発信される超音波
の、X,Yの各座標軸に到達する所要時間に基づいて求
められる。なお、図5 においては、所要時間を測定し、
これに基づいてX,Yの各座標値を算出する、測距部お
よび演算部の図示は省略してある。指示棒22によって指
示されたX,Yの各座標値は、ディジタルの形でコンピ
ュータやデータ処理装置に入力され、所要の図形データ
処理のために用いられる。2. Description of the Related Art A conventional example will be described with reference to a perspective view of FIG. This conventional example is a two-dimensional position input device for processing graphic data, and is a pen-shaped indicator rod having a substrate 20 having X and Y coordinate axes set on the surface and an ultrasonic wave transmitter 21 at the tip. It consists of 22 and. The tip of the indicator rod 22 is the substrate
Once positioned on the surface of 20, the X, Y associated with that position
Each coordinate value of 1 is obtained based on the time required for the ultrasonic wave transmitted from the ultrasonic wave transmitter 21 to reach each of the X and Y coordinate axes. In addition, in Figure 5, the required time was measured and
The distance measuring unit and the arithmetic unit, which calculate the X and Y coordinate values based on this, are not shown. The X and Y coordinate values designated by the pointing rod 22 are digitally input to a computer or a data processing device and used to process the required graphic data.
【0003】[0003]
【発明が解決しようとする課題】従来の位置入力装置
は、あくまで図形データ処理用の2次元形式の位置入力
装置である。近年、立体状対象物たとえば自動車の輪郭
形状に係る問題解析、最適化などのために、立体形状に
係るデータ処理が必要になり、そのための3次元位置入
力の要求が高まっている。The conventional position input device is only a two-dimensional position input device for processing graphic data. In recent years, data processing related to a three-dimensional object is required for problem analysis and optimization related to a three-dimensional object such as a contour shape of an automobile, and a demand for three-dimensional position input for that is increasing.
【0004】この発明の課題は、従来の技術がもつ以上
の問題点を解消し、立体状の対象物表面の各箇所の3次
元位置を、コンピュータなどのデータ処理装置に高精度
で入力可能であり、しかも不使用時にはコンパクトにな
る3次元位置入力装置を提供することにある。An object of the present invention is to solve the above problems of the prior art and to enable highly accurate input of the three-dimensional position of each position on the surface of a three-dimensional object to a data processing device such as a computer. It is to provide a three-dimensional position input device that is compact when not in use.
【0005】[0005]
【課題を解決するための手段】請求項1に係る3次元位
置入力装置は、対向させて平行配置された2個の基板
と:測距に係る第1の基点が先端に設けられたペン状指
示棒と;各基板の対向面に設定された少なくとも3個
の、同一直線上にない測距に係る第2の各基点と;第1
基点と、各第2基点との間の距離を測定可能な測距手段
と;第1基点と、第2基点の内の少なくとも3個との間
の各距離に基づいて、各基板の対向空間における第1基
点の3次元位置を求める位置演算手段と;を備える。A three-dimensional position input device according to a first aspect of the present invention is a pen-shaped device having two substrates arranged in parallel to face each other: a first base point for distance measurement is provided at the tip. An indicator rod; at least three second base points for distance measurement that are not on the same straight line and are set on the opposite surfaces of the respective substrates;
Distance measuring means capable of measuring a distance between the base point and each of the second base points; an opposing space of each substrate based on each distance between the first base point and at least three of the second base points Position calculating means for obtaining the three-dimensional position of the first base point in.
【0006】請求項2に係る3次元位置入力装置は、請
求項1に記載の装置において、第1基点には、超音波送
波器が、各第2基点には、超音波受波器が、それぞれ設
置される。請求項3に係る3次元位置入力装置は、請求
項1または2に記載の装置において、2個の基板の対向
間隔が、伸縮可能に互いに平行運動リンク機構を介して
連結される。A three-dimensional position input device according to a second aspect is the device according to the first aspect, wherein an ultrasonic transmitter is provided at the first base point and an ultrasonic receiver is provided at each second base point. , Installed respectively. A three-dimensional position input device according to a third aspect of the present invention is the device according to the first or second aspect, in which two substrates are opposed to each other so that they can extend and contract via a parallel motion link mechanism.
【0007】[0007]
【作用】請求項1ないし3のいずれかの項に係る3次元
位置入力装置では、測距手段によって、指示棒によって
位置決めされた各基板対向空間における第1基点と、第
2基点の内の少なくとも3個との間の各距離が測定さ
れ、その各距離に基づき、位置演算手段によって、各基
板の対向空間における第1基点の3次元位置が求められ
る。In the three-dimensional position input device according to any one of claims 1 to 3, at least one of the first base point and the second base point in each substrate facing space positioned by the pointing rod by the distance measuring means. Each distance between the three substrates is measured, and the three-dimensional position of the first base point in the facing space of each substrate is obtained by the position calculation means based on each distance.
【0008】とくに請求項2に係る3次元位置入力装置
では、第1基点の超音波送波器から発信された超音波
が、第2基点の内の少なくとも3個の各超音波受波器で
受信されるまでの所要到達時間に基づいて、第1基点
と、第2基点の内の少なくとも3個との間の各距離が測
定される。とくに請求項3に係る3次元位置入力装置で
は、2個の基板が、両者を連結する平行運動リンク機構
を介して、対向間隔を縮小または伸長可能である。Particularly, in the three-dimensional position input device according to the second aspect, the ultrasonic wave transmitted from the ultrasonic wave transmitter of the first base point is received by at least three ultrasonic wave receivers of the second base point. Each distance between the first base point and at least three of the second base points is measured based on the required arrival time until reception. Particularly, in the three-dimensional position input device according to the third aspect, the two substrates can reduce or extend the facing distance via the parallel movement link mechanism connecting the two substrates.
【0009】[0009]
【実施例】この発明に係る3次元位置入力装置の実施例
について、以下に図を参照しながら説明する。図1は実
施例の斜視図である。図1において、2は下側の基板、
3は上側の基板で、これらは互いに平行に対向配置され
るように、平行運動機構としてのリンク機構5を介し、
対向間隔を伸縮可能に連結される。基板2の表面にX,
Yの各座標軸が設定され、この各座標軸に辺を一致させ
る方形の各角部に、超音波受波器( 以下、単に受波器と
いう) 11〜14が設けられる。この各受波器11〜14に対向
して、基板3 の対向面にも各送波器15〜18が設けられ
る。また、基板2のX,Yの各座標軸の交点である原点
から垂直上方にZ軸を設定する。4 はペン状の指示棒
で、その先端に超音波送波器 (以下、単に送波器とい
う) 1 が設けられる。Embodiments of the three-dimensional position input device according to the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the embodiment. In FIG. 1, 2 is the lower substrate,
Reference numeral 3 denotes an upper substrate, which is arranged in parallel and opposed to each other via a link mechanism 5 as a parallel movement mechanism,
It is connected so as to be capable of expanding and contracting the facing interval. X on the surface of the substrate 2,
Each coordinate axis of Y is set, and ultrasonic wave receivers (hereinafter, simply referred to as “wave receivers”) 11 to 14 are provided at each corner of the rectangle whose sides coincide with each coordinate axis. The wave transmitters 15 to 18 are provided on the facing surface of the substrate 3 so as to face the wave receivers 11 to 14, respectively. Further, the Z axis is set vertically upward from the origin, which is the intersection of the X and Y coordinate axes of the substrate 2. Reference numeral 4 is a pen-shaped indicator rod, on the tip of which an ultrasonic wave transmitter (hereinafter simply referred to as a wave transmitter) 1 is provided.
【0010】10は立体状の対象物で、基板2 の表面に載
置される。6 はデータ処理器で、測距部7 と、演算部8
と、出力部9 とからなる。測距部7 は、送波器1 から発
信される超音波を、各受波器11〜18の少なくとも3 個に
よって受信したときの到達時間に基づいて、送波器1 と
各受波器との間の距離を算出する。ここで、少なくとも
3個によって受信したとき、ということについては詳し
く後述する。演算部8は、その各距離に基づいて送波器1
のX,Y,Zの各座標を算出し、出力部8 を介して座
標信号として外部に出力する。したがって、指示棒4 の
先端を、対象物10の表面に倣って移動させるときの、そ
の各箇所の3次元位置が、データ処理器6 を介して、コ
ンピュータなどのデータ処理装置に入力される。A three-dimensional object 10 is placed on the surface of the substrate 2. 6 is a data processor, which includes a distance measuring unit 7 and an arithmetic unit 8
And an output unit 9. The distance measuring unit 7 determines whether the ultrasonic wave transmitted from the transmitter 1 is received by at least three of the wave receivers 11 to 18 based on the arrival time. Calculate the distance between. Here, the case where at least three are received will be described in detail later. The calculation unit 8 uses the transmitter 1 based on each distance.
X, Y, and Z coordinates are calculated and output to the outside as a coordinate signal via the output unit 8. Therefore, the three-dimensional position of each position when the tip of the pointing rod 4 is moved following the surface of the object 10 is input to the data processing device such as a computer via the data processing device 6.
【0011】ところで、二つの基板2,3 の各対向面上に
設けられる受波器は、同一直線上にない形の少なくとも
3 個でよい。これは、各基板2,3 の対向空間における送
波器の位置を確定するには、その送波器と、いずれかの
基板上の3 個の受波器との間の三つの距離が必要である
からである。正確には、二つの基板で合計3 個の受波器
があればよいが、実際には対象物の陰になって送波器か
らの超音波が受信できない受波器もありうるから、対向
する各基板について、最低で3 個の受波器が必要になる
としたわけである。なお、各基板2,3 の受波器を、実施
例におけるように、方形の各角部に位置させることで、
座標演算を簡単にすることができる。By the way, the wave receivers provided on the respective facing surfaces of the two substrates 2 and 3 have at least a shape not on the same straight line.
Three is enough. This requires three distances between the transmitter and three receivers on any one of the substrates to determine the position of the transmitter in the facing space of each substrate 2,3. Because it is. To be exact, it is enough that there are a total of three wave receivers on two boards, but in reality there may be a wave receiver that is behind the target object and cannot receive the ultrasonic waves from the wave transmitter. For each board to be used, at least three wave receivers are required. In addition, by placing the wave receivers of the substrates 2 and 3 at the corners of the square as in the embodiment,
The coordinate calculation can be simplified.
【0012】実施例の構成について、図2の構成図を参
照しながら補足説明する。図2において、指示棒4 の先
端に送波器1 が設けられ、これが対象物10の表面に倣っ
て移動する。一方、合計8個の各受波器11〜18が空間配
置される。詳しくは、図1 に示すように、各受波器11〜
14が下側の基板2 の上面に、各受波器15〜18が上側の基
板3 の、基板2 に対する対向面に、それぞれ設けられ
る。送波器1 から発信される超音波が、各受波器11〜18
で受信される。超音波が送波器1 から各受波器11〜18に
到達するまでの時間が、測距部7 によって測定される。
ここで、超音波は全受波器で受信されるわけでなく、一
部は対象物10の陰になって到達できない。また、送波器
1 の空間位置、つまりX,Y,Zの各座標を確定するた
めには、最低三つの送波器・受波器間距離が必要である
が、なるべく多くの距離があれば、それだけ座標の確度
を高めることができる。測距部7 によって得られた少な
くとも三つの距離に基づいて、演算部8 によって、送波
器1 の空間位置、つまりX,Y,Zの各座標が求めら
れ、出力部9 を介して外部のコンピュータなどのデータ
処理装置に送出される。The configuration of the embodiment will be supplementarily described with reference to the configuration diagram of FIG. In FIG. 2, the wave transmitter 1 is provided at the tip of the indicator rod 4, and moves along the surface of the object 10. On the other hand, a total of eight wave receivers 11 to 18 are spatially arranged. Specifically, as shown in Fig. 1, each wave receiver 11-
14 is provided on the upper surface of the lower substrate 2, and the wave receivers 15 to 18 are provided on the upper surface of the upper substrate 3 facing the substrate 2. The ultrasonic wave transmitted from the transmitter 1 is transmitted to each of the receivers 11 to 18
Will be received at. The time required for the ultrasonic waves to reach the wave receivers 11 to 18 from the wave transmitter 1 is measured by the distance measuring unit 7.
Here, the ultrasonic waves are not received by all the wave receivers, and some of them are behind the object 10 and cannot reach them. Also the transmitter
In order to determine the spatial position of 1, that is, each coordinate of X, Y, and Z, at least three transmitter-receiver distances are necessary, but if there are as many distances as possible, the coordinate The accuracy can be increased. Based on at least three distances obtained by the distance measuring unit 7, the spatial position of the transmitter 1, that is, each coordinate of X, Y, and Z is obtained by the arithmetic unit 8, and the external position is obtained via the output unit 9. It is sent to a data processing device such as a computer.
【0013】図3は実施例を押圧,縮小したときの斜視
図、図4は実施例の側面図である。図4 において、リン
ク機構5は、中央部で回動可能に連結される一対のリン
クからなり、各リンクの右側の端部が、各基板2,3の
手前側と向こう側の各端面の右端部に回動可能に支持さ
れ、各リンクの左側の端部が、そこに固定される案内ピ
ンと、各基板2,3の端面に沿って設けられる溝との遊
合によって直進案内される。したがって、各基板2,3
は、その対向間隔が伸縮するように、平行移動すること
ができ、実線が使用状態で、伸びて正規の対向間隔をと
ったとき、破線が不使用状態で、もっとも縮小したとき
である。図3 は、実施例が使用されない場合、コンパク
トに収納できるように、各基板2,3 を押圧, 縮小して一
体化させたときを示す。FIG. 3 is a perspective view when the embodiment is pressed and reduced, and FIG. 4 is a side view of the embodiment. In FIG. 4, the link mechanism 5 is composed of a pair of links that are rotatably connected at the central portion, and the right end of each link is the right end of each of the front and rear end surfaces of each substrate 2 and 3. The left end of each link is rotatably supported by the section, and is guided straight by a play between a guide pin fixed thereto and a groove provided along the end face of each substrate 2, 3. Therefore, each board 2, 3
Is when the facing distance can be moved in parallel so as to expand and contract, when the solid line is in the used state, extends to take the regular facing distance, and the broken line is in the unused state, and is the most contracted state. FIG. 3 shows a case where the substrates 2 and 3 are pressed and reduced to be integrated so that they can be stored compactly when the embodiment is not used.
【0014】[0014]
【発明の効果】請求項1ないし3のいずれかの項に係る
3次元位置入力装置では、測距手段によって、指示棒に
よって位置決めされた各基板対向空間における第1基点
と、第2基点の内の少なくとも3個との間の各距離が測
定され、その各距離に基づき、位置演算手段によって、
各基板の対向空間における第1基点の3次元位置が求め
られる。したがって、この入力装置を用いて、立体状の
対象物表面の各箇所の3次元位置を、コンピュータなど
のデータ処理装置に高精度で入力可能であり、たとえば
自動車の輪郭形状に係る問題解析、最適化などに適用可
能である。In the three-dimensional position input device according to any one of claims 1 to 3, of the first base point and the second base point in each substrate facing space positioned by the pointer by the distance measuring means. Each distance between at least three of the
The three-dimensional position of the first base point in the facing space of each substrate is obtained. Therefore, using this input device, the three-dimensional position of each position on the surface of a three-dimensional object can be input to a data processing device such as a computer with high accuracy. It can be applied to
【0015】とくに請求項2に係る3次元位置入力装置
では、第1基点の超音波送波器から発信された超音波
が、第2基点の内の少なくとも3個の各超音波受波器で
受信されるまでの所要到達時間に基づいて、第1基点
と、第2基点の内の少なくとも3個との間の各距離が測
定されるから、実現の可能性またはコスト低減の可能性
が高く、実用性が大である。Particularly, in the three-dimensional position input device according to the second aspect, the ultrasonic wave transmitted from the ultrasonic wave transmitter of the first base point is received by at least three ultrasonic wave receivers of the second base point. Since each distance between the first base point and at least three of the second base points is measured based on the required arrival time until reception, there is a high possibility of realization or cost reduction. , Practicality is great.
【0016】とくに請求項3に係る3次元位置入力装置
では、2個の基板が、両者を連結する平行運動リンク機
構を介して、対向間隔を縮小または伸長可能であるか
ら、不使用時には押圧,縮小してコンパクトになしう
る。Particularly, in the three-dimensional position input device according to the third aspect, since the two substrates can be reduced or extended in the facing distance via the parallel motion link mechanism connecting the two substrates, the two substrates are pressed when not in use, It can be reduced to be compact.
【図1】本発明に係る実施例の斜視図FIG. 1 is a perspective view of an embodiment according to the present invention.
【図2】実施例の構成図FIG. 2 is a configuration diagram of an embodiment.
【図3】実施例を押圧,縮小したときの斜視図FIG. 3 is a perspective view when the embodiment is pressed and reduced.
【図4】実施例の側面図FIG. 4 is a side view of the embodiment.
【図5】従来例の斜視図FIG. 5 is a perspective view of a conventional example.
1 超音波送波器 2 基板(下側) 3 基板(上側) 4 指示棒 5 リンク機構 6 データ処理器 7 測距部 8 演算部 9 出力部 10 対象物 11〜18 超音波受波器 1 Ultrasonic Wave Transmitter 2 Substrate (Lower Side) 3 Substrate (Upper Side) 4 Pointing Rod 5 Link Mechanism 6 Data Processor 7 Distance Measuring Section 8 Calculation Section 9 Output Section 10 Target 11-18 Ultrasonic Receiver
Claims (3)
測距に係る第1の基点が先端に設けられたペン状指示棒
と;各基板の対向面に設定された少なくとも3個の、同
一直線上にない測距に係る第2の各基点と;第1基点
と、各第2基点との間の距離を測定可能な測距手段と;
第1基点と、第2基点の内の少なくとも3個との間の各
距離に基づいて、各基板の対向空間における第1基点の
3次元位置を求める位置演算手段と;を備えることを特
徴とする3次元位置入力装置。1. Two substrates arranged in parallel to face each other:
A pen-shaped indicator rod having a first base point for distance measurement provided at its tip; and at least three second base points for distance measurement that are not on the same straight line and are set on opposing surfaces of the respective substrates; Distance measuring means capable of measuring the distance between the first base point and each second base point;
Position calculating means for determining a three-dimensional position of the first base point in the facing space of each substrate based on each distance between the first base point and at least three of the second base points. 3D position input device.
には、超音波送波器が、各第2基点には、超音波受波器
が、それぞれ設置されることを特徴とする3次元位置入
力装置。2. The apparatus according to claim 1, wherein an ultrasonic wave transmitter is installed at the first base point and an ultrasonic wave receiver is installed at each second base point. Three-dimensional position input device.
2個の基板は、その対向間隔が伸縮可能に、互いに平行
運動リンク機構を介して連結されることを特徴とする3
次元位置入力装置。3. The apparatus according to claim 1 or 2, wherein
The two substrates are connected to each other through a parallel motion link mechanism so that the facing distance between them can be expanded and contracted.
Dimensional position input device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP87393A JPH06202793A (en) | 1993-01-07 | 1993-01-07 | Three-dimensional position inputting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP87393A JPH06202793A (en) | 1993-01-07 | 1993-01-07 | Three-dimensional position inputting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06202793A true JPH06202793A (en) | 1994-07-22 |
Family
ID=11485794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP87393A Pending JPH06202793A (en) | 1993-01-07 | 1993-01-07 | Three-dimensional position inputting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06202793A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007064736A (en) * | 2005-08-30 | 2007-03-15 | Maeda Corp | Surface flaw data recording device of concrete |
-
1993
- 1993-01-07 JP JP87393A patent/JPH06202793A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007064736A (en) * | 2005-08-30 | 2007-03-15 | Maeda Corp | Surface flaw data recording device of concrete |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8199104B2 (en) | Character input device using bio radar unit and tilt sensor | |
JPS6279306A (en) | Inspection machine with free probe | |
Martın et al. | Estimating the 3D-position from time delay data of US-waves: experimental analysis and a new processing algorithm | |
Tong et al. | A method for short or long range time-of-flight measurements using phase-detection with an analog circuit | |
US6502056B2 (en) | Method and apparatus for measuring geometry elements | |
CN110108450A (en) | A kind of TOF mould group obtains method, test suite and the test macro of point cloud chart | |
TWI452322B (en) | Method and system for detecting object position by using sound wave | |
US7158126B2 (en) | Acoustic based pointing device | |
US6466325B1 (en) | Method and apparatus for calibrating positions of a plurality of first light sources on a first part | |
JPH06202793A (en) | Three-dimensional position inputting device | |
JPH01302106A (en) | Method and device for measuring volume | |
JP3126901B2 (en) | Three-dimensional input device and input / output device using three-dimensional input device | |
CN108036777B (en) | Satellite phase center indirect measurement method | |
JPH01141307A (en) | Method and device for measuring volume | |
JPH0829152A (en) | Measurement treatment method and device of coordinate measuring instrument | |
JP2001099641A (en) | Surface shape measurement method | |
JP3011254B2 (en) | 3D measuring instrument with unlimited measurement range | |
KR100476234B1 (en) | Radius determination device | |
KR200225522Y1 (en) | Three-dimensional scanner | |
JP2953285B2 (en) | Pointing device | |
KR100457048B1 (en) | Ultrasonic coordinates measurement method | |
JPS63266376A (en) | Acoustic wave positioning system | |
JPH0675693A (en) | Three-dimensional pointing device | |
JP2003122495A (en) | Position detecting device | |
JP2002215315A (en) | Device and method for inputting coordinate value on board face |