JPH06201316A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPH06201316A
JPH06201316A JP34754292A JP34754292A JPH06201316A JP H06201316 A JPH06201316 A JP H06201316A JP 34754292 A JP34754292 A JP 34754292A JP 34754292 A JP34754292 A JP 34754292A JP H06201316 A JPH06201316 A JP H06201316A
Authority
JP
Japan
Prior art keywords
optical path
path difference
semiconductor laser
change
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34754292A
Other languages
Japanese (ja)
Inventor
Katsuo Seta
勝男 瀬田
Masami Yamamoto
正美 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kubota Corp filed Critical Agency of Industrial Science and Technology
Priority to JP34754292A priority Critical patent/JPH06201316A/en
Publication of JPH06201316A publication Critical patent/JPH06201316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To provide an interferometer for which the measurement accuracy of the optical path difference from two reflection parts, is improved. CONSTITUTION:An interferometer is provided with a semiconductor laser element 1 for radiating laser beam to two reflection parts 2a, 2b, and a phase difference measurement means P for measuring the phase difference of the reflection lights from the reflection parts 2a, 2b, and the optical path difference of the two reflection light is measured based on the measurement information of the phase difference measurement means P. In the interferometer, a frequency changing means F for changing the oscillating frequency by changing the temperature of the semiconductor laser element 1, is provided, and the amount of the change in the ratio of the laser beam of the optical path difference to the frequency by means of the change in the oscillating frequency, is determined based on the measurement information of the phase difference measurement means P. An approximate value of the optical path difference is determined based on the amount of change. The integer part of the ratio is determined based on the approximate value of the optical path difference, and the decimal parts of the ratio is determined based on the measurement information of the phase difference measurement means P, to determine the optical path difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二つの反射部に対して
レーザ光を照射する半導体レーザ素子と、前記二つの反
射部からの二つの反射光の位相差を測定する位相差測定
手段とを備え、その位相差測定手段の測定情報に基づい
て、前記二つの反射光の光路差を測定する干渉計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device for irradiating two reflecting portions with laser light, and a phase difference measuring means for measuring the phase difference between the two reflected lights from the two reflecting portions. And an interferometer for measuring the optical path difference between the two reflected lights based on the measurement information of the phase difference measuring means.

【0002】[0002]

【従来の技術】かかる干渉計は、二つの反射光の光路差
を求めて、二つの反射部の間の距離を求めるのに利用さ
れる。前記光路差を求める一般的な手法は以下の通りで
ある。求めようとする光路差をDとおくと、光路差D
は、 D=(c/ν)・(N+ε) (1) c:光速度、ν:半導体レーザ素子から出射するレーザ
光の発振周波数 で表される。上記(1) 式中、N+εは光路差Dのレーザ
光の波長に対する比を意味し、Nはその比の整数部分、
εはその比の小数点以下の部分である。位相差測定手段
により、εを求めることはできるが、Nの値を直接的に
決定することはできない。
2. Description of the Related Art An interferometer of this type is used to find the optical path difference between two reflected lights and to find the distance between two reflecting portions. The general method for obtaining the optical path difference is as follows. If the optical path difference to be obtained is D, the optical path difference D
Is represented by D = (c / ν) · (N + ε) (1) c: speed of light, ν: oscillation frequency of laser light emitted from the semiconductor laser device. In the above formula (1), N + ε means the ratio of the optical path difference D to the wavelength of the laser light, N is the integer part of the ratio,
ε is the fractional part of the ratio. Although ε can be obtained by the phase difference measuring means, the value of N cannot be directly determined.

【0003】そこで、レーザ光の発振周波数をΔνだけ
変化させると、上記(1) 式は、 D=(c/Δν)・(ΔN+Δε) (2) と表すことができる。上記(2) 式中、ΔN及びΔεは、
レーザ光の発振周波数をΔν変化させたときの、N及び
εの変化量を夫々示す。このΔN+Δεは、発振周波数
をΔν変化させたときの二つの反射光の位相差を測定す
ることで求めることができる。すなわち、二つの反射光
の位相差の変化量を2πで除したものの整数部分がΔN
であり、小数点以下の部分がΔεに相当するのである。
ΔN+Δεが求まると、上記(2) 式により光路差Dを求
めることができる。
Therefore, when the oscillation frequency of the laser light is changed by Δν, the above equation (1) can be expressed as D = (c / Δν) · (ΔN + Δε) (2). In the above equation (2), ΔN and Δε are
The change amounts of N and ε when the oscillation frequency of the laser light is changed by Δν are shown respectively. This ΔN + Δε can be obtained by measuring the phase difference between the two reflected lights when the oscillation frequency is changed by Δν. That is, the integer part of the amount of change in the phase difference between the two reflected lights divided by 2π is ΔN.
And the part after the decimal point corresponds to Δε.
When ΔN + Δε is obtained, the optical path difference D can be obtained by the above equation (2).

【0004】このような手法により光路差を求める干渉
計として、従来、半導体レーザ素子の駆動電流を変化さ
せることにより、その発振周波数を変化させて光路差を
求める構成の干渉計があった。
As an interferometer for obtaining an optical path difference by such a method, there has been an interferometer having a configuration for obtaining an optical path difference by changing the oscillation frequency of the semiconductor laser device by changing the drive current.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来構成の干渉計では、半導体レーザ素子の駆動電流の変
化による発振周波数の変化幅は10〜50GHz程度と
小さいものであるために、上記(2) 式により光路差を求
めても、その精度は数μm〜数mmの程度であり、更に
測定精度の向上が望まれていた。本発明は、上記実情に
鑑みてなされたものであって、その目的は、光路差の測
定精度を向上させた干渉計を提供することにある。
However, in the interferometer of the above-mentioned conventional structure, the variation width of the oscillation frequency due to the variation of the driving current of the semiconductor laser element is as small as about 10 to 50 GHz, and therefore the above (2) Even if the optical path difference is calculated by the formula, the accuracy is about several μm to several mm, and further improvement in measurement accuracy has been desired. The present invention has been made in view of the above circumstances, and an object thereof is to provide an interferometer with improved measurement accuracy of optical path difference.

【0006】[0006]

【課題を解決するための手段】本発明の干渉計は、二つ
の反射部に対してレーザ光を照射する半導体レーザ素子
と、前記二つの反射部からの二つの反射光の位相差を測
定する位相差測定手段とを備え、その位相差測定手段の
測定情報に基づいて、前記二つの反射光の光路差を測定
するものであって、その第1特徴構成は、前記半導体レ
ーザ素子の温度を変化させることにより、その発振周波
数を変化させる周波数変化手段と、前記半導体レーザ素
子の発振周波数の変化に伴って変化する、前記光路差の
レーザ光の波長に対する比の変化量を、前記位相差測定
手段の測定情報に基づいて求める変化量検出手段と、前
記変化量に基づいて前記光路差の概略値を求める概略値
決定手段と、その光路差の概略値に基づいて、前記光路
差のレーザ光の波長に対する比の整数部分を決定する整
数部分決定手段と、前記位相差測定手段の測定情報に基
づいて、前記光路差のレーザ光の波長に対する比の小数
点以下の部分を求める端数部分決定手段とを備え、前記
整数部分決定手段と前記端数部分決定手段の決定情報に
基づいて前記光路差を求めるように構成されている点あ
る。
An interferometer of the present invention measures a phase difference between a semiconductor laser device that irradiates two reflecting portions with laser light and two reflected light beams from the two reflecting portions. And a phase difference measuring unit for measuring the optical path difference between the two reflected lights based on the measurement information of the phase difference measuring unit, wherein the first characteristic configuration is to measure the temperature of the semiconductor laser device. The frequency difference changing means for changing the oscillation frequency by changing it, and the change amount of the ratio of the optical path difference to the wavelength of the laser light, which changes with the change of the oscillation frequency of the semiconductor laser element, are measured by the phase difference measurement. Change amount detection means obtained based on the measurement information of the means, an approximate value determination means for obtaining an approximate value of the optical path difference based on the change amount, and a laser beam of the optical path difference based on the approximate value of the optical path difference Wave of An integer part determining means for determining an integer part of the ratio, and, based on the measurement information of the phase difference measuring means, a fractional part determining means for obtaining the part after the decimal point of the ratio of the optical path difference to the wavelength of the laser light. The optical path difference is obtained based on the determination information of the integer part determining means and the fractional part determining means.

【0007】第2特徴構成は、上記第1特徴構成の干渉
計において、前記半導体レーザ素子の出射光の一部を一
つ又は自由スペクトル域の異なる複数のファブリペロー
エタロンに入射させ、そのファブリペローエタロンの透
過光に基づいて、又は、そのファブリペローエタロンの
透過光と予め求めてある前記半導体レーザ素子のモード
ジャンプによる周波数変化量の情報とに基づいて、前記
周波数変化手段が変化させる前記半導体レーザ素子の発
振周波数の変化幅を測定する変化幅測定手段を備えた点
にある。
According to a second characteristic configuration, in the interferometer of the first characteristic configuration, a part of the emitted light of the semiconductor laser device is made incident on one or a plurality of Fabry-Perot etalons having different free spectral regions, and the Fabry-Perot is used. Based on the transmitted light of the etalon, or based on the transmitted light of the Fabry-Perot etalon and the information of the frequency change amount due to the mode jump of the semiconductor laser element that is previously obtained, the semiconductor laser that the frequency changing means changes The point is that a change width measuring means for measuring the change width of the oscillation frequency of the element is provided.

【0008】第3特徴構成は、上記第1特徴構成又は第
2特徴構成の干渉計において、前記半導体レーザ素子の
出射光量を一定に保つべく調整するレーザ出力調整手段
を備えた点にある。
A third characteristic structure is that the interferometer of the first characteristic structure or the second characteristic structure is provided with a laser output adjusting means for adjusting the amount of light emitted from the semiconductor laser element to be constant.

【0009】[0009]

【作用】本発明の第1特徴構成によれば、周波数変化手
段により、半導体レーザ素子の発振周波数を変化させる
と、それに伴って二つの反射光の位相差が変化する。こ
れを位相差測定手段により測定し、変化量測定手段が、
位相差測定手段の測定結果から、光路差のレーザ光の波
長に対する比の変化量すなわち二つの反射光の位相差の
変化量を求める。概略値決定手段は、このようにして求
めた変化量に基づいて、上記(2) 式から、光路差の概略
値を求める。
According to the first characteristic construction of the present invention, when the oscillation frequency of the semiconductor laser device is changed by the frequency changing means, the phase difference between the two reflected lights changes accordingly. This is measured by the phase difference measuring means, and the change amount measuring means
From the measurement result of the phase difference measuring means, the amount of change in the ratio of the optical path difference to the wavelength of the laser light, that is, the amount of change in the phase difference between the two reflected lights is determined. The approximate value determining means determines the approximate value of the optical path difference from the above equation (2) based on the amount of change thus obtained.

【0010】整数部分決定手段は、こうして光路差の概
略値が求まると、上記(1) 式から、光路差のレーザ光の
波長に対する比の整数部分を決定できる。又、端数部分
決定手段は、位相差測定手段の測定結果から光路差のレ
ーザ光の波長に対する比の小数点以下の部分を決定でき
る。光路差のレーザ光の波長に対する比の整数部分及び
小数点以下の部分を決定できると、上記(1) 式から、二
つの反射光の光路差を求めることができるのである。
When the approximate value of the optical path difference is obtained in this way, the integer part determining means can determine the integer part of the ratio of the optical path difference to the wavelength of the laser light from the above equation (1). Further, the fractional part determining means can determine the part below the decimal point of the ratio of the optical path difference to the wavelength of the laser light from the measurement result of the phase difference measuring means. If the integer part and the part after the decimal point of the ratio of the optical path difference to the wavelength of the laser light can be determined, the optical path difference between the two reflected lights can be obtained from the above equation (1).

【0011】上記の如く光路差を求めるにおいて、光路
差の概略値から、上記(1) 式によって、光路差のレーザ
光の波長に対する比の整数部分を決定するためには、位
相差は精度良く測定できるので、光路差の概略値と真値
との誤差がレーザ光の波長の1/2以内である必要があ
る。概略値決定手段が決定する光路差の概略値の精度
は、半導体レーザ素子の発振周波数の変化幅の大きさに
大きく依存するのであるが、半導体レーザ素子の温度を
変化させることによって得られる発振周波数の変化幅
は、例えば、半導体レーザ素子の駆動電流を変化させて
ことで得られる発振周波数の変化幅より十分大きく、光
路差の概略値の精度を向上させることができて、光路差
のレーザ光の波長に対する比の整数部分を決定すること
ができるのである。
In determining the optical path difference as described above, in order to determine the integer part of the ratio of the optical path difference to the wavelength of the laser light from the approximate value of the optical path difference, the phase difference is calculated with high accuracy. Since it can be measured, the error between the approximate value and the true value of the optical path difference needs to be within 1/2 of the wavelength of the laser light. The accuracy of the approximate value of the optical path difference determined by the approximate value determining means largely depends on the magnitude of the change width of the oscillation frequency of the semiconductor laser element, but the oscillation frequency obtained by changing the temperature of the semiconductor laser element. The change width of the laser light is sufficiently larger than the change width of the oscillation frequency obtained by changing the drive current of the semiconductor laser device, and the accuracy of the approximate value of the optical path difference can be improved. The integer part of the ratio of to the wavelength can be determined.

【0012】その結果、光路差の測定誤差としては、光
路差のレーザ光の波長に対する比の小数点以下の部分の
誤差すなわち位相差の測定誤差が残るのみとなって、例
えば200〜400THz程度の発振周波数の半導体レ
ーザ素子を用いれば、光路差の測定精度を数nm程度と
することができるのである。
As a result, as the measurement error of the optical path difference, only the error in the part after the decimal point of the ratio of the optical path difference to the wavelength of the laser beam, that is, the measurement error of the phase difference remains, and for example, oscillation of about 200 to 400 THz occurs. If a semiconductor laser device having a frequency is used, the measurement accuracy of the optical path difference can be set to about several nm.

【0013】本発明の第2特徴構成によれば、変化幅測
定手段は、ファブリペローエタロンの透過光を測定する
ことにより、周波数変化手段が変化させる半導体レーザ
素子の発振周波数の変化幅を測定する。ファブリペロー
エタロンは、自由スペクトル域に相当する一定の周波数
間隔で並ぶ特定の周波数の光のみを透過させる特性を有
しており、半導体レーザ素子の発振周波数が変化する途
中において、その特定の周波数に一致した場合に、半導
体レーザ素子のレーザ光がファブリペローエタロンを透
過する。従って、半導体レーザ素子の発振周波数が変化
する途中で、レーザ光がファブリペローエタロンを透過
する回数を計数することで半導体レーザ素子の発振周波
数の変化幅を測定できるのである。
According to the second characteristic configuration of the present invention, the change width measuring means measures the transmitted light of the Fabry-Perot etalon to measure the change width of the oscillation frequency of the semiconductor laser element changed by the frequency changing means. . The Fabry-Perot etalon has the property of transmitting only light of a specific frequency arranged at constant frequency intervals corresponding to the free spectral range. When they match, the laser light of the semiconductor laser element passes through the Fabry-Perot etalon. Therefore, the variation width of the oscillation frequency of the semiconductor laser element can be measured by counting the number of times the laser light passes through the Fabry-Perot etalon while the oscillation frequency of the semiconductor laser element changes.

【0014】又、半導体レーザ素子は、温度変化によっ
て発振周波数を変化させると、温度変化に対し連続的に
変化していた発振周波数が突然に発振周波数が不連続に
変化する、いわゆるモードジャンプといわれる性質を有
している。このモードジャンプによる発振周波数の変化
は予め測定しておくことが可能であり、これにより、所
定の温度変化の範囲内でモードジャンプにより半導体レ
ーザ素子の発振周波数が不連続に変化する場合でも、モ
ードジャンプ後の発振周波数の値を推定して、発振周波
数の変化幅を測定することができる。
Further, in the semiconductor laser device, when the oscillation frequency is changed by the temperature change, the oscillation frequency which has been continuously changed with the temperature change is suddenly and discontinuously changed, which is called a mode jump. It has the property. The change in the oscillation frequency due to this mode jump can be measured in advance, so that even if the oscillation frequency of the semiconductor laser element changes discontinuously due to the mode jump within a predetermined temperature change range, The value of the oscillation frequency after the jump can be estimated to measure the change width of the oscillation frequency.

【0015】上記のモードジャンプ後の発振周波数の推
定値には一定の誤差幅が存在し、その誤差幅を含めた推
定値がファブリペローエタロンの透過周波数と隣の透過
周波数との間に収まる場合は、モードジャンプしても正
確に発振周波数の変化幅を測定できるのであるが、前記
誤差幅を含めた推定値がファブリペローエタロンの透過
周波数を含んでしまう場合には、モードジャンプ後の発
振周波数を正確に特定するのは困難である。
When the estimated value of the oscillation frequency after the above mode jump has a certain error width, and the estimated value including the error width falls between the transmission frequency of the Fabry-Perot etalon and the adjacent transmission frequency. Can accurately measure the variation width of the oscillation frequency even if the mode jump, but if the estimated value including the error width includes the transmission frequency of the Fabry-Perot etalon, the oscillation frequency after the mode jump Is difficult to pinpoint.

【0016】モードジャンプ後の発振周波数を正確に特
定するのが困難な場合は、自由スペクトル域の異なるフ
ァブリペローエタロンを並列して用いて同様に測定す
る。自由スペクトル域が異なるため、前記誤差幅を含め
た推定値がファブリペローエタロンの透過周波数と隣の
透過周波数との間に収まるようにすることができ、結果
として、発振周波数の変化幅を正確に測定できるのであ
る。
When it is difficult to accurately specify the oscillation frequency after the mode jump, Fabry-Perot etalons having different free spectrum regions are used in parallel and similarly measured. Since the free spectral range is different, the estimated value including the error width can be set to fall between the transmission frequency of the Fabry-Perot etalon and the adjacent transmission frequency, and as a result, the variation width of the oscillation frequency can be accurately measured. It can be measured.

【0017】本発明の第3特徴構成によれば、半導体レ
ーザ素子は、駆動電流一定のもとでは、温度が変化する
と出射光量が変化してしまう性質を有するため、レーザ
出力調整手段が、光路差の測定中、半導体レーザ素子の
出射光量を一定に保つ。
According to the third characteristic configuration of the present invention, the semiconductor laser device has a property that the amount of emitted light changes with a change in temperature under a constant drive current. During the measurement of the difference, the amount of light emitted from the semiconductor laser device is kept constant.

【0018】[0018]

【発明の効果】上記第1特徴構成によれば、上記した如
く、高精度で二つの反射光の光路差を測定することがで
き、光路差の測定精度を向上させた干渉計を提供するに
至ったのである。上記第2特徴構成によれば、上記第1
特徴構成による効果に加え、周波数変化手段により変化
する半導体レーザ素子の発振周波数の変化幅を正確に測
定することができる。上記第3特徴構成によれば、上記
第1特徴構成又は上記第2特徴構成に加え、半導体レー
ザ素子の出射光量が一定に保たれるため、位相差測定手
段による位相差の測定精度を向上することができる。
According to the first characteristic structure, as described above, it is possible to measure the optical path difference between two reflected lights with high accuracy, and to provide an interferometer with improved optical path difference measurement accuracy. It has arrived. According to the second characteristic configuration, the first
In addition to the effect of the characteristic configuration, it is possible to accurately measure the variation width of the oscillation frequency of the semiconductor laser device which is changed by the frequency changing means. According to the third characteristic configuration, in addition to the first characteristic configuration or the second characteristic configuration, the emitted light amount of the semiconductor laser device is kept constant, so that the accuracy of measuring the phase difference by the phase difference measuring means is improved. be able to.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1に示す干渉計の概略構成図において、半導体
レーザ素子1からの出射光は二つの反射部すなわち段差
のある試料2の上段側の面2a及び下段側の面2bに照
射され、夫々からの反射光は光検出器3,4に夫々入射
し、光検出器3及び光検出器4に含まれる信号成分の位
相差を位相計5によって測定する。位相計5の出力信号
は制御装置6に入力され、試料2の上段側の面2aで反
射するレーザ光と下段側の面2bで反射するレーザ光と
の間の光路差を測定するのに利用される。
Embodiments of the present invention will be described below with reference to the drawings. In the schematic configuration diagram of the interferometer shown in FIG. 1, light emitted from the semiconductor laser device 1 is irradiated on two reflecting portions, that is, an upper surface 2a and a lower surface 2b of a sample 2 having a step, and the light is emitted from each of them. The reflected light enters the photodetectors 3 and 4, respectively, and the phase difference between the signal components included in the photodetector 3 and the photodetector 4 is measured by the phase meter 5. The output signal of the phase meter 5 is input to the control device 6 and used to measure the optical path difference between the laser light reflected by the upper surface 2a of the sample 2 and the laser light reflected by the lower surface 2b of the sample 2. To be done.

【0020】以下、干渉計の具体構成を詳述する。半導
体レーザ素子1は、ペルチェ素子10上に配置され、こ
のペルチェ素子10は温度制御器11により制御され
る。又、半導体レーザ素子1はレーザ発振のために必要
な駆動電流を、LD電流源12から供給される。LD電
流源12から駆動電流を供給されて、半導体レーザ素子
1がレーザ発振すると、その出射したレーザ光は、コリ
メータレンズ13でコリメートされ第1偏光ビームスプ
リッタ14に入射する。この第1偏光ビームスプリッタ
14は、入射するレーザ光を偏光方向が互いに直交する
二つの光に分離するように配置されており、その分離し
たレーザ光のうち一方は直進し他方は分岐する。
The specific structure of the interferometer will be described in detail below. The semiconductor laser device 1 is arranged on a Peltier device 10, and the Peltier device 10 is controlled by a temperature controller 11. Further, the semiconductor laser device 1 is supplied with a drive current required for laser oscillation from the LD current source 12. When a driving current is supplied from the LD current source 12 and the semiconductor laser element 1 oscillates, the emitted laser light is collimated by the collimator lens 13 and enters the first polarization beam splitter 14. The first polarization beam splitter 14 is arranged so as to split an incident laser beam into two beams whose polarization directions are orthogonal to each other. One of the split laser beams goes straight and the other splits.

【0021】第1偏光ビームスプリッタ14を直進した
レーザ光は、第1音響光学素子15に入射して数十MH
z程度の周波数偏倚を受ける。第1音響光学素子15を
通過したレーザ光は、第1ビームイクスパンダ16に入
射して、そのビーム径が拡大され、第2偏光ビームスプ
リッタ17に入射する。この第2偏光ビームスプリッタ
17は、第1偏光ビームスプリッタ14を直進したレー
ザ光を直進させ、そのレーザ光の偏光方向に垂直な偏光
方向のレーザ光を分岐させるように配置されており、第
2偏光ビームスプリッタ17に入射して直進するレーザ
光は、更に、1/4波長板18を通過し、試料2に照射
される。試料2に照射されたレーザ光は、試料2の上段
側の面2a及び下段側の面2bにて夫々反射され、再び
1/4波長板18を通過する。従って、レーザ光は1/
4波長板18を2度通過することになるので偏光方向が
90度回転し、第2偏光ビームスプリッタ17で分岐さ
れる。
The laser light traveling straight through the first polarization beam splitter 14 is incident on the first acousto-optic element 15 and has a frequency of several tens of MH.
It is subject to frequency deviation of about z. The laser light that has passed through the first acousto-optic element 15 enters the first beam expander 16, the beam diameter of which is expanded, and enters the second polarization beam splitter 17. The second polarization beam splitter 17 is arranged so as to cause the laser light, which has traveled straight through the first polarization beam splitter 14, to travel straight, and split the laser light having a polarization direction perpendicular to the polarization direction of the laser light. The laser light that enters the polarization beam splitter 17 and travels straight further passes through the quarter-wave plate 18 and is irradiated on the sample 2. The laser light applied to the sample 2 is reflected by the upper surface 2 a and the lower surface 2 b of the sample 2, respectively, and passes through the quarter-wave plate 18 again. Therefore, the laser light is 1 /
Since the light passes through the four-wave plate 18 twice, the polarization direction is rotated by 90 degrees and is split by the second polarization beam splitter 17.

【0022】試料2で反射し第2偏光ビームスプリッタ
17で分岐されたレーザ光は、1/2波長板19を通過
して、偏光方向が90度回転する。これにより、レーザ
光の偏光方向は第1偏光ビームスプリッタ14を直進し
て時点の偏光方向に戻るのである。1/2波長板19を
通過したレーザ光は、第3偏光ビームスプリッタ20に
入射する。一方、第1偏光ビームスプリッタ14で分岐
されたレーザ光は、反射鏡21で光路を屈曲された後、
第2音響光学素子22に入射し、第1音響光学素子15
による偏倚周波数と数十kHz異なる周波数偏倚を受け
る。第2音響光学素子22を通過したレーザ光は、ビー
ムスプリッタ23によって第2ビームイクスパンダ24
に向かうものと、ファブリペローエタロン25に向かう
ものに分離される。
The laser light reflected by the sample 2 and split by the second polarization beam splitter 17 passes through the half-wave plate 19 and has its polarization direction rotated by 90 degrees. As a result, the polarization direction of the laser light goes straight through the first polarization beam splitter 14 and returns to the polarization direction at the time point. The laser light that has passed through the half-wave plate 19 enters the third polarization beam splitter 20. On the other hand, the laser light split by the first polarization beam splitter 14 has its optical path bent by the reflecting mirror 21,
It is incident on the second acousto-optic element 22, and the first acousto-optic element 15
Due to the frequency deviation of several tens of kHz. The laser beam that has passed through the second acousto-optic element 22 is reflected by the beam splitter 23 into a second beam expander 24.
It is separated into the one that goes to the Fabry-Perot etalon 25.

【0023】ビームスプリッタ23を直進して第2ビー
ムイクスパンダ24に入射したレーザ光は、そのビーム
径を拡大されて、第3偏光ビームスプリッタ20に入射
する。第3偏光偏光ビームスプリッタ20は、1/2波
長板19側から入射するレーザ光を直進させ、第2ビー
ムイクスパンダ24側から入射するレーザ光を分岐する
ように配置されているので、結局、これら2方向から入
射するレーザ光は第3偏光ビームスプリッタ20を同一
方向に出射する。
The laser light that has passed straight through the beam splitter 23 and has entered the second beam expander 24 has its beam diameter enlarged and enters the third polarization beam splitter 20. The third polarization polarization beam splitter 20 is arranged so that the laser light incident from the side of the half-wave plate 19 is made to go straight and the laser light incident from the side of the second beam expander 24 is branched. Laser light entering from these two directions exits the third polarization beam splitter 20 in the same direction.

【0024】偏光ビームスプリッタ20を出射したレー
ザ光は、偏光方向が90度異なる、1/2波長板19側
からのレーザ光と第2ビームイクスパンダ24側からの
レーザ光とが単に混在しているだけであるが、これが偏
光子26を通過すると、偏光子26は前記混在するレー
ザ光の夫々の偏光方向と45度の角度をなす方向の偏光
方向の成分を透過させるように配置してあるので、偏向
子26を出射するレーザ光は同一の偏光方向を有するた
め、互いに干渉することになる。その結果、偏光子26
を出射するレーザ光のうち、試料2の上段側の面2aか
らの反射光の部分を受光する光検出器3と、下段側に面
2bからの反射光の部分を受光する光検出器4とは、第
1音響光学素子15による周波数偏倚と第2音響光学素
子22による周波数偏倚との差の周波数の信号であるい
わゆるヘテロダイン信号を出力する。
The laser light emitted from the polarization beam splitter 20 is a mixture of the laser light from the half-wave plate 19 side and the laser light from the second beam expander 24 side in which the polarization directions are different by 90 degrees. However, when it passes through the polarizer 26, the polarizer 26 is arranged so as to transmit a component of the polarization direction of a direction that makes an angle of 45 degrees with each polarization direction of the mixed laser light. Therefore, the laser beams emitted from the deflector 26 have the same polarization direction and thus interfere with each other. As a result, the polarizer 26
Of the laser light emitted from the sample 2, a photodetector 3 that receives a portion of the reflected light from the upper surface 2a of the sample 2 and a photodetector 4 that receives a portion of the reflected light from the surface 2b to the lower side. Outputs a so-called heterodyne signal which is a signal having a frequency difference between the frequency deviation caused by the first acousto-optic element 15 and the frequency deviation caused by the second acousto-optic element 22.

【0025】位相計5により測定される、光検出器3及
び光検出器4の夫々のヘテロダイン信号の位相差は、試
料2の上段側の面2aからの反射光と、下段側に面2b
からの反射光との位相差をそのまま反映している。尚、
第1音響光学素子15による周波数偏倚と第2音響光学
素子22による周波数偏倚との差の周波数は数十kHz
程度であり、光検出器3,4として例えばAPD等を用
いることで容易に検出できる。
The phase difference between the heterodyne signals of the photodetector 3 and the photodetector 4 measured by the phase meter 5 is the reflected light from the upper surface 2a of the sample 2 and the lower surface 2b of the surface.
It directly reflects the phase difference from the reflected light from. still,
The frequency difference between the frequency deviation due to the first acousto-optic element 15 and the frequency deviation due to the second acousto-optic element 22 is several tens kHz.
This is a degree and can be easily detected by using, for example, an APD or the like as the photodetectors 3 and 4.

【0026】又、ビームスプリッタ23にてファブリペ
ローエタロン25の側に分岐されたレーザ光は、ファブ
リペローエタロン25を通過して光検出器27に入射す
る。ファブリペローエタロン25は、自由スペクトル域
に相当する一定の周波数間隔で並ぶ特定の周波数の光の
みを透過させる特性を有しており、レーザ光の周波数が
その特定の周波数の一致した場合のみ、光検出器27は
レーザを受光する。光検出器27の出力信号は、制御装
置6に入力され半導体レーザ素子1の発振周波数の変化
を測定するのに用いられると共に、駆動電流制御回路2
8に入力される。駆動電流制御回路28は、光検出器2
7の出力信号が一定値を維持するようにLD電流源12
の出力電流を制御する。この結果、半導体レーザ素子1
の出射光量はほぼ一定に保たれる。
The laser beam branched to the Fabry-Perot etalon 25 side by the beam splitter 23 passes through the Fabry-Perot etalon 25 and enters the photodetector 27. The Fabry-Perot etalon 25 has a characteristic of transmitting only light of a specific frequency arranged at constant frequency intervals corresponding to the free spectral range, and only when the frequency of the laser light coincides with the specific frequency, The detector 27 receives the laser. The output signal of the photodetector 27 is input to the control device 6 and is used to measure the change in the oscillation frequency of the semiconductor laser device 1, and the drive current control circuit 2 is used.
8 is input. The drive current control circuit 28 includes the photodetector 2
LD current source 12 so that the output signal of 7 maintains a constant value.
Control the output current of. As a result, the semiconductor laser device 1
The amount of emitted light is kept substantially constant.

【0027】以下、上記構成の干渉計の動作を説明す
る。半導体レーザ素子1の温度を、温度制御器11の制
御によりペルチェ素子10を駆動し、上昇あるいは下降
の一定方向に変化させる。これに伴い、半導体レーザ素
子1の発振周波数が変化し、試料2の上段側の面2aで
反射するレーザ光と下段側の面2bで反射するレーザ光
との間の光路差のレーザ光の波長に対する比も変化す
る。この比の変化量は、制御装置6が、位相計5が検出
する位相差の変化量から求める。つまり、位相差の変化
量を2πで除したものが前記光路差のレーザ光の波長に
対する比の変化量となる。
The operation of the interferometer having the above structure will be described below. The temperature of the semiconductor laser device 1 is controlled by the temperature controller 11 to drive the Peltier device 10 to change it in a fixed direction of rising or falling. Along with this, the oscillation frequency of the semiconductor laser element 1 changes, and the wavelength of the laser light having an optical path difference between the laser light reflected on the upper surface 2a of the sample 2 and the laser light reflected on the lower surface 2b of the sample 2. The ratio to The amount of change in the ratio is obtained by the control device 6 from the amount of change in the phase difference detected by the phase meter 5. That is, the amount of change in the phase difference divided by 2π is the amount of change in the ratio of the optical path difference to the wavelength of the laser light.

【0028】制御装置6は、こうして求めた前記比の変
化量と、ファブリペローエタロン25の透過光を検出す
る光検出器27から出力されるパルス状の信号を計数す
ることにより得られる半導体レーザ素子1の発振周波数
の変化幅とから、前記光路差の概略値を求める。尚、こ
のとき、半導体レーザ素子1の発振周波数がいわゆるモ
ードジャンプによって不連続に変化してしまう場合があ
るが、この場合は、位相計5が測定する位相差も不連続
に変化し、又、光検出器27から出力されるパルス状の
信号の計数値から発振周波数の変化幅を求めることはで
きない。従って、モードジャンプによる発振周波数の変
化分を補正する必要があるが、この補正は、モードジャ
ンプによる発振周波数の変化分を予め求めておくことに
より行う。
The control device 6 obtains the semiconductor laser device obtained by counting the amount of change in the ratio thus obtained and the pulsed signal output from the photodetector 27 which detects the transmitted light of the Fabry-Perot etalon 25. An approximate value of the optical path difference is obtained from the change width of the oscillation frequency of 1. At this time, the oscillation frequency of the semiconductor laser device 1 may change discontinuously due to so-called mode jump, but in this case, the phase difference measured by the phase meter 5 also changes discontinuously, and It is not possible to obtain the variation width of the oscillation frequency from the count value of the pulsed signal output from the photodetector 27. Therefore, it is necessary to correct the change in the oscillation frequency due to the mode jump, but this correction is performed by obtaining the change in the oscillation frequency due to the mode jump in advance.

【0029】位相差の不連続な変化に対しては、発振周
波数が連続的に変化している部分における発振周波数の
変化量に対する位相差の変化量の変化の割合と、モード
ジャンプ後の位相差とから、モードジャンプによる位相
差の変化量を求めて補正を行う。又、発振周波数の変化
幅については、モードジャンプによる発振周波数の変化
分を、光検出器27のパルス状の信号の計数値に換算し
ておき、測定した計数値に加算することで補正を行う。
With respect to the discontinuous change in the phase difference, the ratio of the change amount of the phase difference to the change amount of the oscillation frequency in the portion where the oscillation frequency changes continuously and the phase difference after the mode jump From this, the amount of change in the phase difference due to the mode jump is calculated and corrected. Further, the variation width of the oscillation frequency is corrected by converting the variation of the oscillation frequency due to the mode jump into the count value of the pulsed signal of the photodetector 27 and adding it to the measured count value. .

【0030】制御装置6は、次に、上記の如くして求め
た光路差の概略値を利用して、前記光路差のレーザ光の
波長に対する比の整数部を決定する。つまり、前記光路
差のレーザ光の波長に対する比の小数点以下の部分は、
位相計5が検出する位相差を2πで除することにより求
まるので、前記光路差の概略値と真値との誤差がレーザ
光の波長の1/2以内であれば、前記整数部を決定でき
るのである。
Next, the control device 6 determines the integer part of the ratio of the optical path difference to the wavelength of the laser light by using the approximate value of the optical path difference obtained as described above. That is, the fractional part of the ratio of the optical path difference to the wavelength of the laser light is
Since it is found by dividing the phase difference detected by the phase meter 5 by 2π, the integer part can be determined if the error between the approximate value and the true value of the optical path difference is within 1/2 of the wavelength of the laser light. Of.

【0031】この結果、制御装置6は、前記光路差のレ
ーザ光の波長に対する比が正確に求まり、この値と、半
導体レーザ素子1が出射するレーザ光の波長との積か
ら、試料2の上段側の面2aで反射するレーザ光と下段
側の面2bで反射するレーザ光との間の光路差を精度良
く求めることができるのである。
As a result, the control device 6 accurately obtains the ratio of the optical path difference to the wavelength of the laser light. From the product of this value and the wavelength of the laser light emitted from the semiconductor laser element 1, the upper stage of the sample 2 is determined. The optical path difference between the laser light reflected on the side surface 2a and the laser light reflected on the lower side surface 2b can be accurately obtained.

【0032】従って、光検出器3,4及び位相計5は、
試料2の上段側の面2aで反射するレーザ光と下段側の
面2bで反射するレーザ光との間の位相差を測定する位
相差測定手段Pとして機能し、ペルチェ素子10及び温
度制御器11は、半導体レーザ素子1の発振周波数を変
化させる周波数変化手段Fとして機能し、制御装置6
は、前記光路差のレーザ光の波長に対する比の変化量を
検出する変化量検出手段D、前記光路差の概略値を求め
る概略値決定手段A、前記光路差のレーザ光の波長に対
する比の整数部分を決定する整数部分決定手段I、及
び、前記光路差のレーザ光の波長に対する比の少数点以
下の部分を決定する端数部分決定手段Uとして機能す
る。又、ファブリペローエタロン25、光検出器27、
及び、制御装置6は、半導体レーザ素子1の発振周波数
の変化幅を測定する変化幅測定手段Wとして機能し、駆
動電流制御回路28及びLD電流源12は、レーザ出力
調整手段Oとして機能する。
Therefore, the photodetectors 3 and 4 and the phase meter 5 are
The Peltier element 10 and the temperature controller 11 function as phase difference measuring means P for measuring the phase difference between the laser light reflected on the upper surface 2a of the sample 2 and the laser light reflected on the lower surface 2b. Functions as frequency changing means F for changing the oscillation frequency of the semiconductor laser device 1, and the controller 6
Is a change amount detecting means D for detecting a change amount of the ratio of the optical path difference to the wavelength of the laser light, a rough value determining means A for obtaining a rough value of the optical path difference, and an integer of the ratio of the optical path difference to the wavelength of the laser light. It functions as an integer part determining means I for determining a part and a fractional part determining means U for determining a part below the decimal point of the ratio of the optical path difference to the wavelength of the laser light. In addition, Fabry-Perot etalon 25, photodetector 27,
Further, the control device 6 functions as a change width measuring unit W that measures the change width of the oscillation frequency of the semiconductor laser element 1, and the drive current control circuit 28 and the LD current source 12 function as a laser output adjusting unit O.

【0033】〔別実施例〕以下、別実施例を列記する。 上記実施例では、いわゆるヘテロダイン方式によ
り、試料2の上段側の面2aで反射するレーザ光と下段
側の面2bで反射するレーザ光との間の位相差を求めて
いるが、試料2の上段側の面2aで反射するレーザ光と
下段側の面2bで反射するレーザ光とを直接干渉させ
て、その干渉パターンを直接観察して前記位相差を求め
ても良い。
[Other Embodiments] Other embodiments will be listed below. In the above embodiment, the phase difference between the laser light reflected on the upper surface 2a of the sample 2 and the laser light reflected on the lower surface 2b of the sample 2 is obtained by the so-called heterodyne method. The phase difference may be obtained by directly interfering the laser light reflected by the side surface 2a with the laser light reflected by the lower surface 2b and directly observing the interference pattern.

【0034】 上記実施例では、半導体レーザ素子1
の発振周波数がモードジャンプによって不連続に変化す
る場合、予めそのモードジャンプによる発振周波数の変
化幅を測定しておくことによって補正を行っているが、
そのモードジャンプによる発振周波数の変化幅からジャ
ンプ先の周波数を特定する際、ジャンプ先の周波数がフ
ァブリペローエタロン25の透過周波数に近接して、ジ
ャンプ先を正確に特定できないような場合に対応するた
め、自由スペクトル域の異なるファブリペローエタロン
25を複数個設けて、同様に測定を行い、ジャンプ先を
正確に特定できるようにしても良い。
In the above embodiment, the semiconductor laser device 1
If the oscillation frequency of changes discontinuously due to the mode jump, it is corrected by measuring the variation width of the oscillation frequency due to the mode jump in advance.
To identify the jump destination frequency from the variation width of the oscillation frequency due to the mode jump, and to cope with the case where the jump destination frequency is close to the transmission frequency of the Fabry-Perot etalon 25 and the jump destination cannot be accurately identified. It is also possible to provide a plurality of Fabry-Perot etalons 25 having different free spectral regions, perform the same measurement, and specify the jump destination accurately.

【0035】 上記実施例では、駆動電流制御回路2
8が、光検出器27の出力信号が一定値を維持するよう
にLD電流源12の出力電流を制御しているが、モータ
駆動可能な透過量可変フィルタを光路中に設置して光量
を調整しても良い。
In the above embodiment, the drive current control circuit 2
Reference numeral 8 controls the output current of the LD current source 12 so that the output signal of the photodetector 27 maintains a constant value. A transmission amount variable filter capable of driving a motor is installed in the optical path to adjust the light amount. You may.

【0036】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構造に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる干渉計の概略構成図FIG. 1 is a schematic configuration diagram of an interferometer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体レーザ素子 2a,2b 反射部 A 概略値決定手段 D 変化量検出手段 F 周波数変化手段 I 整数部分決定手段 P 位相差測定手段 U 端数部分決定手段 DESCRIPTION OF SYMBOLS 1 Semiconductor laser element 2a, 2b Reflecting part A Approximate value determining means D Change amount detecting means F Frequency changing means I Integer part determining means P Phase difference measuring means U Fraction part determining means

フロントページの続き (72)発明者 山本 正美 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内Continued Front Page (72) Inventor Masami Yamamoto 1-1-1 Hama, Amagasaki City, Hyogo Prefecture Kubota Technology Development Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二つの反射部(2a,2b)に対してレ
ーザ光を照射する半導体レーザ素子(1)と、前記二つ
の反射部(2a,2b)からの二つの反射光の位相差を
測定する位相差測定手段(P)とを備え、 その位相差測定手段(P)の測定情報に基づいて、前記
二つの反射光の光路差を測定する干渉計であって、 前記半導体レーザ素子(1)の温度を変化させることに
より、その発振周波数を変化させる周波数変化手段
(F)と、 前記半導体レーザ素子(1)の発振周波数の変化に伴っ
て変化する、前記光路差のレーザ光の波長に対する比の
変化量を、前記位相差測定手段(P)の測定情報に基づ
いて求める変化量検出手段(D)と、 前記変化量に基づいて前記光路差の概略値を求める概略
値決定手段(A)と、 その光路差の概略値に基づいて、前記光路差のレーザ光
の波長に対する比の整数部分を決定する整数部分決定手
段(I)と、 前記位相差測定手段(P)の測定情報に基づいて、前記
光路差のレーザ光の波長に対する比の小数点以下の部分
を求める端数部分決定手段(U)とを備え、 前記整数部分決定手段(I)と前記端数部分決定手段
(U)の決定情報に基づいて前記光路差を求めるように
構成されている干渉計。
1. A semiconductor laser device (1) for irradiating two reflection parts (2a, 2b) with laser light, and a phase difference between two reflection lights from the two reflection parts (2a, 2b). An interferometer for measuring the optical path difference between the two reflected lights based on the measurement information of the phase difference measuring means (P), the semiconductor laser device comprising: Frequency changing means (F) for changing the oscillation frequency of the semiconductor laser element (1) by changing the temperature of 1), and the wavelength of the laser light of the optical path difference that changes with the change of the oscillation frequency of the semiconductor laser element (1). Change amount detecting means (D) for obtaining the change amount of the ratio based on the measurement information of the phase difference measuring means (P), and an approximate value determining means (for obtaining an approximate value of the optical path difference based on the change amount). A) and the approximate value of the optical path difference Then, based on the measurement information of the integer part determining means (I) for determining the integer part of the ratio of the optical path difference to the wavelength of the laser light, and the measurement information of the phase difference measuring means (P), A fractional part determining means (U) for obtaining a fractional part of the ratio to the wavelength, and for obtaining the optical path difference based on the determination information of the integer part determining means (I) and the fractional part determining means (U). An interferometer configured to.
【請求項2】 前記半導体レーザ素子(1)の出射光の
一部を一つ又は自由スペクトル域の異なる複数のファブ
リペローエタロンに入射させ、そのファブリペローエタ
ロンの透過光に基づいて、又は、そのファブリペローエ
タロンの透過光と予め求めてある前記半導体レーザ素子
(1)のモードジャンプによる周波数変化量の情報とに
基づいて、前記周波数変化手段(F)が変化させる前記
半導体レーザ素子(1)の発振周波数の変化幅を測定す
る変化幅測定手段(W)を備えた請求項1記載の干渉
計。
2. A part of the emitted light of the semiconductor laser device (1) is made incident on one or a plurality of Fabry-Perot etalons having different free spectrum regions, and based on the transmitted light of the Fabry-Perot etalon, or Based on the transmitted light of the Fabry-Perot etalon and the information of the amount of frequency change due to the mode jump of the semiconductor laser device (1) which is obtained in advance, the frequency changing means (F) changes the semiconductor laser device (1). The interferometer according to claim 1, further comprising change width measuring means (W) for measuring a change width of the oscillation frequency.
【請求項3】 前記半導体レーザ素子(1)の出射光量
を一定に保つべく調整するレーザ出力調整手段(O)を
備えた請求項1又は2記載の干渉計。
3. The interferometer according to claim 1, further comprising laser output adjusting means (O) for adjusting the amount of light emitted from the semiconductor laser element (1) to be constant.
JP34754292A 1992-12-28 1992-12-28 Interferometer Pending JPH06201316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34754292A JPH06201316A (en) 1992-12-28 1992-12-28 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34754292A JPH06201316A (en) 1992-12-28 1992-12-28 Interferometer

Publications (1)

Publication Number Publication Date
JPH06201316A true JPH06201316A (en) 1994-07-19

Family

ID=18390934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34754292A Pending JPH06201316A (en) 1992-12-28 1992-12-28 Interferometer

Country Status (1)

Country Link
JP (1) JPH06201316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990713A (en) * 2019-04-04 2019-07-09 清华大学 A kind of high-resolution phase detection method based on plane grating laser interferometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990713A (en) * 2019-04-04 2019-07-09 清华大学 A kind of high-resolution phase detection method based on plane grating laser interferometer
CN109990713B (en) * 2019-04-04 2020-08-18 清华大学 High-resolution phase detection method based on planar grating laser interferometer
WO2020200257A1 (en) * 2019-04-04 2020-10-08 清华大学 High-resolution phase detection method and system based on plane grating laser interferometer

Similar Documents

Publication Publication Date Title
US5106191A (en) Two-frequency distance and displacement measuring interferometer
JP5226078B2 (en) Interferometer device and method of operating the same
JP2962819B2 (en) Displacement measuring device
US5493395A (en) Wavelength variation measuring apparatus
JP2010038558A (en) Method and apparatus for measuring distance by optoical wave interference
JP2000205814A (en) Heterodyne interferometer
JP2732849B2 (en) Interferometer
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
JPH04326005A (en) Straightness measuring apparatus
JPH0640071B2 (en) Highly accurate humidity measurement method using the second derivative curve of water vapor absorption line
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
JPH11183116A (en) Method and device for light wave interference measurement
JPH06201316A (en) Interferometer
JP7110686B2 (en) Concentration measuring device
EP0307451B1 (en) Apparatus and method for locating the direction of an atomic beam
JP3787332B2 (en) Thermal lens absorption analyzer
JPH0740181Y2 (en) Variable frequency light source using laser frequency characteristic measuring device and nuclear device
JPH06117810A (en) Absolute type length measuring equipment with correcting function of external disturbance
JPS61501340A (en) Mirror scan speed control device
JP7452227B2 (en) Measuring device and measuring method
SU913182A1 (en) Gas mixture analysis method
JPS60500733A (en) Dynamic mirror alignment control device
JP2687631B2 (en) Interference signal processing method of absolute length measuring device
JPH0763506A (en) Gauge interferometer
SU938660A1 (en) Device for remote measuring of distances