JPH06200352A - High strength alloy with low thermal expansion - Google Patents

High strength alloy with low thermal expansion

Info

Publication number
JPH06200352A
JPH06200352A JP5144627A JP14462793A JPH06200352A JP H06200352 A JPH06200352 A JP H06200352A JP 5144627 A JP5144627 A JP 5144627A JP 14462793 A JP14462793 A JP 14462793A JP H06200352 A JPH06200352 A JP H06200352A
Authority
JP
Japan
Prior art keywords
alloy
thermal expansion
less
strength
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5144627A
Other languages
Japanese (ja)
Other versions
JP3061977B2 (en
Inventor
Koji Sato
光司 佐藤
Takehiro Oono
丈博 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5144627A priority Critical patent/JP3061977B2/en
Priority to US08/151,808 priority patent/US6221183B1/en
Publication of JPH06200352A publication Critical patent/JPH06200352A/en
Application granted granted Critical
Publication of JP3061977B2 publication Critical patent/JP3061977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength low thermal expansion alloy having tensile strength equal to that of piano wire and high twisting property and further having low coefficient of thermal expansion over the range between ordinary temp. and about 300 deg.C. CONSTITUTION:This alloy is a high strength low thermal expansion alloy having a composition which consists of, by weight, 0.06-0.50% C, <=1.0% Si, <=2.0% Mn, 22.8-29.2% Ni, 9.3-20% Co, and the balance Fe except impurities and where the relationship between Ni and Co satisfies 58-(5/3)Ni<Co<=86.25-(5/2)Ni and also having a structure containing austenite phase and martensite phase resulting from strain induced transformation as main phases. If necessary, prescribed amounts of Cr, Mo, W, B, Mg, Ca, V, Ti, Nb, Ta, Hf, Zr, Al, and REM can be added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用中の昇温によって
支障をきたす精密機械部品や、低弛度耐熱送電線用芯線
等に使用される高強度低熱膨張合金に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength and low-thermal-expansion alloy used for precision machine parts which are affected by temperature rise during use, core wires for low-sag heat-resistant power transmission lines, and the like.

【0002】[0002]

【従来の技術】従来より、架空送電線については、鋼芯
アルミ撚線(ACSR線)が使用されてきたが、近年の
電力需要の増大と地価高騰が相まって従来の鋼芯アルミ
撚線に代わる高強度で低い熱膨張係数をもつ合金線が望
まれるようになった。この用途では高強度低熱膨張合金
をアルミ撚線の芯材として使用するので、複数本の線材
を撚って束ねる作業が入る。この撚線作業の性能を評価
する手法として、線材の一端を固定して他端をねじる捻
回試験を実施し、捻回値として要求されている。
2. Description of the Related Art Conventionally, a steel core aluminum stranded wire (ACSR wire) has been used for an overhead power transmission line, but it has been replaced by a conventional steel core aluminum stranded wire due to the recent increase in power demand and soaring land prices. Alloy wires with high strength and low coefficient of thermal expansion have been desired. In this application, the high-strength, low-thermal expansion alloy is used as the core material of the aluminum stranded wire, so the work of twisting and bundling multiple wires is required. As a method for evaluating the performance of this twisting work, a twisting test in which one end of the wire is fixed and the other end is twisted is carried out, and the twisting value is required.

【0003】このような用途に対し、特公昭56−45
990号、特開昭55−41928号、特公昭57−1
7942号、特開昭55−122855号、特開昭55
−128565号、特開昭55−131155号、特開
昭56−142851号、特開昭57−26144号、
特開昭58−11767号および特開昭58−1176
8号等のFe−Ni系合金が提案されている。さらに、
これらの合金の強度と捻回特性を向上させる目的で、特
公昭60−34613号、特公平2−15606号、特
公平2−41577号および特公平2−55495号等
の高強度低熱膨張合金線(ACIR線)あるいは合金線の
製造方法が開示されている。
For such applications, Japanese Patent Publication No. 56-45
990, JP-A-55-41928, and JP-B-57-1.
7942, JP-A-55-122855, JP-A-55
-128565, JP-A-55-131155, JP-A-56-142851, JP-A-57-26144,
JP-A-58-11767 and JP-A-58-1176
Fe-Ni alloys such as No. 8 have been proposed. further,
For the purpose of improving the strength and twisting properties of these alloys, high-strength and low-thermal expansion alloy wires such as Japanese Patent Publication No. 60-34613, Japanese Patent Publication No. 2-15606, Japanese Patent Publication No. 2-41577 and Japanese Patent Publication No. 2-55595. A method for producing (ACIR wire) or alloy wire is disclosed.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の高強度
低熱膨張合金は、いずれもNiまたはNi+Coを35
〜50%の範囲で含み、さらにCやNの侵入型固溶強化
元素やCr、Moなどの数種の置換型固溶強化元素やT
i、Nbなどの数種の析出強化型元素を低熱膨張特性を
損なわない範囲で含み、残部がFeからなる合金組成で
ある。これらの合金は、いずれも固溶化熱処理あるい
は、焼鈍熱処理状態においては、良好な捻回特性が得ら
れるものの、引張強さはたかだか50〜80kgf/mm2
範囲であり、この状態では低弛度架空送電線用芯線の用
途には適さない。しかし、これらの合金は、いずれも加
工硬化能が、従来の低熱膨張合金である36%Ni−F
e合金や、42%Ni−Fe合金に比べて大きく、冷間
加工によって100〜130kgf/mm2の引張強さが得ら
れ、一部で実用化されるようになった。
The conventional high-strength low-thermal expansion alloys described above all contain Ni or Ni + Co.
In the range of up to 50%, and further includes C and N interstitial solid solution strengthening elements, several substitutional solid solution strengthening elements such as Cr and Mo, and T.
The alloy composition contains several precipitation strengthening elements such as i and Nb within a range that does not impair the low thermal expansion characteristics, and the balance is Fe. In the case of solution heat treatment or annealing heat treatment, all of these alloys have good twisting characteristics, but the tensile strength is at most 50-80 kgf / mm 2 , and in this state, low sag Not suitable for use as a core wire for overhead power lines. However, all of these alloys have work hardening ability of 36% Ni-F which is a conventional low thermal expansion alloy.
It is larger than the e alloy and the 42% Ni-Fe alloy, and a tensile strength of 100 to 130 kgf / mm 2 was obtained by cold working, and it was partially put to practical use.

【0005】しかし、従来の鋼芯アルミ撚線の芯線に用
いられているピアノ線の強度は、170kgf/mm2クラス
のものがより多くをしめており、これらの送電線の送電
容量を鉄塔の建て替えなしに高めるためには、170kg
f/mm2クラスのピアノ線と同程度の引張強さをもつ、低
熱膨張合金線が必要となっていた。また、ここで述べた
従来の高強度低熱膨張合金線は、単純に冷間域で強加工
を加えただけではねじりに対する変形能を表わす捻回特
性は大きく低下してしまうので、引張強さと捻回特性を
両立させるために上記の公報に開示された合金を種々の
煩雑な製造によって伸線化する方法が提案されている。
たとえば、特公昭60−34613号や特公平2−15
606号では、いずれも冷間加工の前段階または冷間加
工の途中で歪取焼鈍を実施し、強度と捻回特性の両立が
試みられている。これらの製造方法には皮剥によって生
じる表面の歪みを焼鈍熱処理で除去することにより、良
好な捻回特性を得ることが開示されている。
However, the strength of the piano wire used as the core wire of the conventional steel core aluminum stranded wire is 170 kgf / mm 2 class, and the transmission capacity of these power transmission lines is rebuilt on the steel tower. 170kg to increase without
A low thermal expansion alloy wire that has the same tensile strength as a piano wire of f / mm 2 class was required. In addition, the conventional high-strength low-thermal expansion alloy wire described here has a large decrease in the twisting property, which represents the deformability against torsion, simply by subjecting it to strong working in the cold region. A method has been proposed in which the alloys disclosed in the above-mentioned publications are wire-drawn by various complicated productions in order to achieve both the rolling characteristics.
For example, Japanese Patent Publication No. 60-34613 and Japanese Patent Publication No. 2-15
In No. 606, stress relief annealing is performed before the cold working or in the middle of the cold working to try to achieve both strength and twisting property. It is disclosed in these manufacturing methods that good twisting characteristics are obtained by removing the surface strain caused by peeling by annealing heat treatment.

【0006】これに対し、特公平2−41577号およ
び特公平2−55495号に開示される合金線は上記の
特公昭60−34613号や特公平2−15606号と
ほぼ同一の製造プロセスをとるが、ここでは、冷間加工
後の焼鈍時に生成するMoC炭化物が強度と捻回特性の
向上に寄与すると述べられている。しかし、特公平2−
41577号および特公平2−55495号の発明人の
1人は「Effect ofprocesses of drawing on torsional
property of high-tensile strength Invar alloy wir
e」(Wire Journal International vol.21,No.4(1988),P8
4)と題して捻回特性の改善に触れている。
On the other hand, the alloy wires disclosed in Japanese Examined Patent Publication No. 2-41577 and Japanese Examined Patent Publication No. 2-55495 take substantially the same manufacturing process as those of Japanese Examined Patent Publication No. 60-34613 and Japanese Examined Patent Publication No. 2-15606. However, it is stated here that the MoC carbide generated during annealing after cold working contributes to the improvement of strength and twisting characteristics. However, Tokuhei 2-
One of the inventors of No. 41577 and Japanese Examined Patent Publication No. 2-55495 describes “Effect of processes of drawing on torsional
property of high-tensile strength Invar alloy wir
e '' (Wire Journal International vol.21, No.4 (1988), P8
The subject is 4) and touches on the improvement of the twisting characteristic.

【0007】この論文において、捻回特性の改善は冷間
加工後にMo2C炭化物を析出させる焼鈍熱処理を実施
するだけでは不十分で、とくに引抜後の合金線の横断面
の硬さ分布において、中心部の硬さがもっとも高くなる
ように、ダイスの引抜角を小さく、かつ潤滑性を高める
ためのクリストファーソンチューブと称される特殊な治
具が必要であると報告されている。しかし、ダイスの引
抜角を小さくしたり、潤滑性を高めるためのクリストフ
ァーソンチューブと称される特殊な治具を使用して捻回
特性を高めることは、引抜パス回数の増大(引抜角が小
さくなると摩擦抵抗が大きくなり、1パスあたりの減面
率を高くとることができない)を招き、ラインの工程変
更にも時間がとられ、全長数kmにもおよぶ合金線の製
造に対してははなはだ効率の悪い製造方法である。
In this paper, the improvement of the twisting property is not sufficient only by carrying out an annealing heat treatment for precipitating Mo2C carbide after cold working, and especially in the hardness distribution of the cross section of the alloy wire after drawing, the central part It has been reported that a special jig called a Christopherson tube is required to reduce the drawing angle of the die and to improve the lubricity so that the hardness of the steel becomes the highest. However, increasing the twisting characteristics by using a special jig called a Christopherson tube to reduce the die pull-out angle and lubricity increases the number of pulling passes (small pull-out angle). In that case, the frictional resistance becomes large, and it is not possible to obtain a high surface reduction rate per pass.) It also takes time to change the process of the line, and it is difficult to manufacture alloy wires with a total length of several kilometers. This is an inefficient manufacturing method.

【0008】このような観点から、本発明者は、特願平
4−102564号において、ステンレスインバーと呼
ばれる54Co−9Cr−残部Feの合金と、スーパー
インバーと呼ばれる31Ni−6Co−残部Feの合金
を、よりオーステナイト相が不安定な方向の組成とした
合金を比例関係で結ぶ領域に、さらにオーステナイト相
の加工硬化と加工誘起マルテンサイトの強度向上に大き
く寄与するCを適量添加した合金を提案した。この合金
は、従来のインバー線よりもさらに高強度で、むしろピ
アノ線に近い引張強さと、煩雑な焼鈍工程を入れる必要
もなく、単純な冷間引抜工程を行なうだけで、従来のピ
アノ線と同じレベルの捻回値が得られる。しかし、この
合金では、低弛度架空送電線の常用温度域である常温か
ら200℃程度までの温度範囲では、確かに低い熱膨張
係数が得られるものの、使用最大温度範囲となる常温か
ら、300℃の温度範囲となると従来の低弛度架空送電
線よりもあきらかに高い熱膨張率を示すことがわかっ
た。
From this point of view, the present inventor has proposed, in Japanese Patent Application No. 4-102564, an alloy of 54Co-9Cr-remaining Fe called stainless invar and an alloy of 31Ni-6Co-remaining Fe called superinvar. , An alloy in which an alloy having a composition in which the austenite phase is more unstable is connected in a proportional relationship, and further, an appropriate amount of C, which greatly contributes to the work hardening of the austenite phase and the improvement of the strength of work-induced martensite, has been proposed. This alloy has higher strength than conventional Invar wire, rather it has tensile strength close to that of a piano wire, and does not require a complicated annealing process. The same level of twist value is obtained. However, with this alloy, although a low coefficient of thermal expansion is certainly obtained in the temperature range from normal temperature, which is a normal temperature range of low-slack overhead power transmission lines to about 200 ° C., it is 300 from the normal temperature, which is the maximum use temperature range. It was found that the thermal expansion coefficient in the temperature range of ℃ was significantly higher than that of conventional low-slack overhead transmission lines.

【0009】以上の問題点を鑑み、本発明の目的は、従
来のFe−Ni系高強度低熱膨張合金の強度 100〜130k
gf/mm2よりはるかに上のピアノ線に匹敵する170kgf/mm2
程度の引張強さをもち、かつ煩雑な工程を経ずとも安定
して高い捻回特性をもち、さらに常温から300℃程度
の温度域まで、従来の低弛度架空送電線並みの低い熱膨
張係数を有する高強度低熱膨張合金を提供することであ
る。
In view of the above problems, the object of the present invention is to provide a conventional Fe--Ni-based high strength low thermal expansion alloy having a strength of 100 to 130 k.
comparable to the piano wire of the above far more than gf / mm 2 170kgf / mm 2
It has high tensile strength, stable and high twisting characteristics without complicated process, and low thermal expansion from ordinary temperature to about 300 ℃ in the temperature range of conventional low-slack overhead power transmission line. It is to provide a high strength low thermal expansion alloy having a coefficient.

【0010】[0010]

【課題を解決するための手段】本発明者らは、このよう
なピアノ線並みの高強度と広い温度域での低熱膨張係数
の両立を目的として、Fe−Co−Ni系合金に種々の
合金元素を添加した組成の熱間鍛造素材を用い、その合
金線の引張特性、捻回特性および熱膨張係数を調査し
た。その結果、熱膨張曲線の曲率の変化を表わす変移点
(変移点は、ほぼキュリー温度に相当し、変移点までの
温度領域においてインバー特性がえられ低い熱膨張係数
となるが、変移点を超える温度域では、急激に熱膨張係
数が大きくなる)が、特願平4−102564号に示さ
れる合金組成群では200℃前後に位置し、そのために
低弛度架空送電線の使用最大温度範囲となる常温から、
300℃の温度範囲では従来の低弛度架空送電線よりも
あきらかに高い熱膨張率を示すことがわかった。そこ
で、特願平4−102564号と同じ加工誘起マルテン
サイト変態を利用した高強度化の手法が利用できるFe
−Co−Ni系合金の組成範囲で、さらに変移点が高く
とれる領域を検討した結果、特願平4−102564号
に比べてNi+Co量が比較的高く、Cr+Mo+W量
が比較的低い領域に高強度と低熱膨張係数を両立する合
金組成領域が存在することを見出した。
The present inventors have made various alloys into Fe-Co-Ni-based alloys for the purpose of achieving both high strength comparable to that of a piano wire and low coefficient of thermal expansion in a wide temperature range. The tensile properties, twisting properties, and coefficient of thermal expansion of the alloy wire were investigated using a hot forging material with a composition containing elements. As a result, the transition point that represents the change in the curvature of the thermal expansion curve (the transition point is almost equivalent to the Curie temperature, the Invar characteristic is obtained in the temperature range up to the transition point, and the coefficient of thermal expansion is low, but it exceeds the transition point. In the temperature range, the coefficient of thermal expansion increases sharply), but in the alloy composition group shown in Japanese Patent Application No. 4-102564, it is located around 200 ° C., and therefore, the maximum temperature range of use of the low sag overhead transmission line is From normal temperature,
It was found that in the temperature range of 300 ° C, the coefficient of thermal expansion is clearly higher than that of the conventional low-slack overhead power transmission line. Therefore, Fe which can use the same method as that of Japanese Patent Application No. 4-102564 for strengthening by utilizing the transformation induced martensite transformation is Fe.
As a result of studying a region where the transition point can be further increased in the composition range of the —Co—Ni alloy, high strength is obtained in a region where the Ni + Co amount is relatively high and the Cr + Mo + W amount is relatively low compared to Japanese Patent Application No. 4-102564. It has been found that there is an alloy composition region that achieves both low thermal expansion coefficient and.

【0011】すなわち、本発明のうちの第1発明は、重
量%で、C0.06〜0.50%、Si1.0%以下、
Mn2.0%以下、Ni22.8〜29.2%、Co
9.3〜20%で、NiとCoの関係が58−(5/
3)Ni<Co≦86.25−(5/2)Niであり、
残部は不純物を除きFeからなる組成で、少なくともオ
ーステナイト相と加工誘起変態によって生じるマルテン
サイト相との2相を有する組織としたことを特徴とする
高強度低熱膨張合金であり、第2発明は、重量%で、C
0.06〜0.50%、Si1.0%以下、Mn2.0
%以下、Ni22.8〜29.2%、Co9.3〜20
%で、NiとCoの関係が58−(5/3)Ni<Co
≦86.25−(5/2)Niであり、さらにCr2.
5%以下、Mo3.5%以下およびW5%以下の1種ま
たは2種以上をCr+0.54Mo+0.28W≦2.
5の範囲で含み、残部は不純物を除きFeからなる組成
で、少なくともオーステナイト相と加工誘起変態によっ
て生じるマルテンサイト相との2相を有する組織とした
ことを特徴とする高強度低熱膨張合金である。
That is, the first aspect of the present invention is, in% by weight, C0.06 to 0.50%, Si 1.0% or less,
Mn 2.0% or less, Ni 22.8 to 29.2%, Co
In the case of 9.3 to 20%, the relationship between Ni and Co is 58- (5 /
3) Ni <Co ≦ 86.25− (5/2) Ni,
The balance is a high-strength, low-thermal-expansion alloy characterized by having a composition of Fe excluding impurities, and having a structure having at least two phases of an austenite phase and a martensite phase generated by work-induced transformation. % By weight, C
0.06-0.50%, Si1.0% or less, Mn2.0
% Or less, Ni 22.8 to 29.2%, Co 9.3 to 20
%, The relationship between Ni and Co is 58− (5/3) Ni <Co
≦ 86.25− (5/2) Ni, and further Cr2.
5% or less, Mo 3.5% or less and W 5% or less 1 type or 2 types or more Cr + 0.54Mo + 0.28W ≦ 2.
It is a high-strength low-thermal expansion alloy characterized by having a composition containing Fe in the range of 5 with the balance being Fe, and having at least two phases of an austenite phase and a martensite phase generated by work-induced transformation. .

【0012】上記の第1、第2発明の合金には、必要に
応じて重量%で、B0.02%以下、Mg0.02%以
下およびCa0.02%以下の1種または2種以上を添
加することができる。さらに、必要に応じて重量%で、
V,Ti,Nb,Ta,HfおよびZrの1種または2
種以上を合計で1%以下を含有することもできる。さら
に重量%で、Al0.2%以下とREM0.2%以下の
1種または2種を添加することもできる。さらに、これ
らの組成の高強度低熱膨張合金のオーステナイト相は、
冷間加工後に相全体の少なくとも65%以上である組織
とするのが低熱膨張特性を得るために望ましい。
If necessary, one or more of B0.02% or less, Mg0.02% or less and Ca0.02% or less are added to the alloys of the first and second inventions. can do. In addition, if necessary by weight,
One or two of V, Ti, Nb, Ta, Hf and Zr
It is also possible to contain a total of 1% or less of seeds or more. Further, it is possible to add one or two of Al 0.2% or less and REM 0.2% or less in weight%. Furthermore, the austenite phase of the high strength low thermal expansion alloys of these compositions is
A structure having at least 65% or more of the entire phase after cold working is desirable for obtaining low thermal expansion characteristics.

【0013】[0013]

【作用】以下、本発明の高強度低熱膨張合金の化学組成
範囲について、成分の限定理由を述べる。Cは、本発明
合金において、冷間加工時のオーステナイト相の加工硬
化と加工誘起マルテンサイトの強度向上にもっとも寄与
する元素である。また、オーステナイト安定化元素とし
てNiやCoの一部を置換することもできる。このよう
な効果を得るために、Cは、最低0.06%を必要とす
るが、逆に0.50%を越えるCは、オーステナイト相
を過度に安定化させて、マルテンサイト変態を起こしに
くくするとともに、熱膨張係数の増加を招く。したがっ
て、C量は、0.06〜0.50%に限定する。より望
ましいCの範囲は0.10〜0.30%である。
The reasons for limiting the components of the chemical composition range of the high strength and low thermal expansion alloy of the present invention will be described below. In the alloy of the present invention, C is an element that contributes most to work hardening of the austenite phase during cold working and improvement of the strength of work-induced martensite. Further, Ni or Co may be partially substituted as the austenite stabilizing element. In order to obtain such an effect, C needs to be at least 0.06%, but on the contrary, C exceeding 0.50% excessively stabilizes the austenite phase and hardly causes martensitic transformation. In addition, the thermal expansion coefficient is increased. Therefore, the C content is limited to 0.06 to 0.50%. A more desirable range of C is 0.10 to 0.30%.

【0014】SiとMnは脱酸元素として本発明合金に
含まれる。だだし、過度のSi,Mnは熱膨張係数の増
加を招くため、それぞれ1.0%以下および2.0%以
下の添加にとどめる。NiとCoは、本発明合金におい
て、残部を構成するFeとともに合金にインバー特性を
与えるのに不可欠な元素である。NiとCoの成分範囲
は、図1の本発明領域内における相互の関係を満たす範
囲内においてのみ、常温から300℃程度の広い温度領
域で、良好な低熱膨張特性と高い引張強度の両立が可能
である。本発明領域よりも右上あるいはNi量が29.
2%を超える領域Aの合金組成になると、オーステナイ
ト相が強度の冷間加工を加えても安定になり、引張強さ
がせいぜい140kgf/mm2程度でこれ以上の加工硬化が
望めない。一方本発明領域よりも左下およびNi量が2
9.2%以下の領域Bでは、本発明合金と同様、加工誘
起マルテンサイト変態によって高強度が得られる。
Si and Mn are included in the alloy of the present invention as deoxidizing elements. However, excessive Si and Mn lead to an increase in the coefficient of thermal expansion, so the addition is limited to 1.0% or less and 2.0% or less, respectively. In the alloy of the present invention, Ni and Co are essential elements for imparting Invar characteristics to the alloy together with Fe constituting the balance. The composition range of Ni and Co is such that good low thermal expansion characteristics and high tensile strength can be achieved in a wide temperature range from room temperature to about 300 ° C. only within a range satisfying the mutual relationship in the present invention range of FIG. Is. The upper right or the amount of Ni is 29.
When the alloy composition in the region A exceeds 2%, the austenite phase becomes stable even when subjected to strong cold working, and the tensile strength is at most about 140 kgf / mm 2 , and further work hardening cannot be expected. On the other hand, the lower left side and the Ni content of 2 are larger than those of the present invention region
In the region B of 9.2% or less, high strength is obtained by the work-induced martensitic transformation, as in the alloy of the present invention.

【0015】しかし、領域Bの合金は、変移点が低いた
めに、200℃程度までは低い熱膨張係数が得られる
が、200℃〜300℃間の熱膨張係数が急激に高くな
るために、本発明合金に比べて熱膨張特性が劣る。さら
にCoが20%を超え、領域Aと領域Bに挟まれる領域
Cでは、領域Bおよび本発明合金と同様、加工誘起マル
テンサイト変態によって高強度が得られ、変移点も高い
が、変移点までの熱膨張係数が高くなりすぎるために常
温から300℃までのいずれの温度でも熱膨張係数が高
くなってしまう。したがって、本発明合金のNi、Co
量は、図1に示すごとく、22.8〜29.2%のNi
と、9.3〜20%のCoとを含み、かつ以下のNiと
Coの関係を満たす範囲内に限定する。 58−(5/3)Ni<Co≦86.25−(5/2)Ni ・・・(1) 強度、熱膨張係数、合金価格の観点から、特に望ましい
NiとCoの範囲は、25.0〜29.2%のNiと1
1〜15%のCoを含み、かつ(1)式を満足する領域で
ある。
However, since the alloy in the region B has a low transition point, a low coefficient of thermal expansion can be obtained up to about 200 ° C., but the coefficient of thermal expansion between 200 ° C. and 300 ° C. rapidly increases. The thermal expansion characteristics are inferior to those of the alloy of the present invention. Further, in the region C where Co exceeds 20% and is sandwiched between the region A and the region B, high strength is obtained by the work-induced martensite transformation, and the transition point is high, as in the region B and the alloy of the present invention. Since the coefficient of thermal expansion becomes too high, the coefficient of thermal expansion becomes high at any temperature from room temperature to 300 ° C. Therefore, Ni, Co of the alloy of the present invention
As shown in FIG. 1, the amount of Ni is 22.8 to 29.2%.
And 9.3 to 20% of Co and are limited to the range satisfying the following relationship between Ni and Co. 58- (5/3) Ni <Co ≦ 86.25- (5/2) Ni (1) From the viewpoint of strength, thermal expansion coefficient, and alloy price, a particularly desirable range of Ni and Co is 25. 0-29.2% Ni and 1
It is a region containing 1 to 15% of Co and satisfying the expression (1).

【0016】Cr、MoおよびWは同属の元素で、とも
に基地であるオーステナイト相を安定化させるととも
に、固溶強化元素および一部は炭化物の析出強化元素と
して基地の加工硬化能を高めるので、必要に応じて単独
または複合で添加することができる。また、これらの元
素は低弛度耐熱送電線の使用最高温度である300℃付
近の高温強度を高める作用をもつ。しかし、これらの元
素はともに変移点を大きく低下させる元素であるため、
Crの場合は2.5%、Moの場合は3.5%およびW
の場合は5%を超えると変移点が過度に低下して、20
0℃〜300℃間の熱膨張係数が急激に高くなってしま
うため、Crの上限を2.5%、Moの上限を3.5
%、およびWの上限を5%にそれぞれ限定する。また、
これらの元素は固溶強化ならびに析出強化元素として原
子比で同様の働きをするため、Cr+0.54Mo+
0.28Wの和についても上限を2.5%とする。特に
望ましいCr,Mo,Wの範囲は、それぞれ1.5%以
下、2.5%以下、3.5%以下で、かつ、Cr+0.
54Mo+0.28W≦2.0の範囲内である。
Cr, Mo and W are elements belonging to the same group, and both stabilize the austenite phase which is the base, and at the same time, they improve the work hardening ability of the base as solid solution strengthening elements and partly as carbide precipitation strengthening elements. It can be added alone or in combination depending on the requirement. Further, these elements have the effect of increasing the high temperature strength around 300 ° C. which is the maximum operating temperature of the low sag heat resistant transmission line. However, since both of these elements greatly reduce the transition point,
2.5% for Cr, 3.5% for Mo and W
In the case of, the transition point drops excessively if it exceeds 5%, and
Since the thermal expansion coefficient between 0 ° C. and 300 ° C. suddenly increases, the upper limit of Cr is 2.5% and the upper limit of Mo is 3.5%.
% And W are limited to 5%. Also,
Since these elements act similarly as solid solution strengthening and precipitation strengthening elements in the atomic ratio, Cr + 0.54Mo +
The upper limit for the sum of 0.28 W is 2.5%. Particularly desirable ranges of Cr, Mo, and W are 1.5% or less, 2.5% or less, and 3.5% or less, respectively, and Cr + 0.
It is within the range of 54Mo + 0.28W ≦ 2.0.

【0017】Bはオーステナイト結晶粒界に偏析して粒
界を強化し、本発明合金の熱間加工性の改善や常温の延
性改善に効果がある。また、MgやCaは、Sと結びつ
いて粒状の硫化物をつくり、Bと同様、熱間加工性の改
善や常温の延性改善に効果がある。このような効果のた
めに、B、MgおよびCaは1種または2種以上を添加
することができるが、いずれも0.02%を超える過度
の添加は、合金の融点を下げて、逆に熱間加工性を低下
させるのでB、MgおよびCaはいずれも0.02%以
下に限定する。なお、Fe−Ni−Co系合金を強化す
る元素としては、C、Cr、Moの他に、固溶強化また
は微細なMC型炭化物の析出強化の点で同一作用を有す
るV,Ti,Nb,Ta,Hf,Zr等の元素を添加で
きる。V,Ti,Nb,Ta,HfおよびZrはCと結
合して微細な一次炭化物を形成し、オーステナイト相を
析出強化するとともに、一部が基地に固溶して、冷間加
工時の加工硬化能を高める。これらの効果のためにV,
Ti,Nb,Ta,HfおよびZrは、1種または2種
以上を必要に応じて添加することができる。その効果は
少量の添加から発揮される。
B segregates at the austenite grain boundaries to strengthen the grain boundaries, and is effective in improving the hot workability of the alloy of the present invention and improving the ductility at room temperature. Further, Mg and Ca combine with S to form granular sulfides, and like B, are effective in improving hot workability and improving ductility at room temperature. For these effects, B, Mg, and Ca can be added alone or in combination of two or more, but excessive addition exceeding 0.02% lowers the melting point of the alloy, and conversely B, Mg and Ca are all limited to 0.02% or less because they deteriorate hot workability. As elements for strengthening the Fe-Ni-Co alloy, V, Ti, Nb, which have the same action in terms of solid solution strengthening or precipitation strengthening of fine MC-type carbides, in addition to C, Cr, and Mo, Elements such as Ta, Hf and Zr can be added. V, Ti, Nb, Ta, Hf, and Zr combine with C to form fine primary carbides, strengthen the austenite phase by precipitation strengthening, and partly dissolve in the matrix to form a work solution, which causes work hardening during cold working. Enhance the ability. Because of these effects V,
Ti, Nb, Ta, Hf, and Zr may be added alone or in combination of two or more, if necessary. The effect is exerted from the addition of a small amount.

【0018】しかし、これらの合金元素の重量%の和
が、合計で1%を越えるようになると、粗大な一次炭化
物が析出して、冷間引抜の際に炭化物周辺にボイドが発
生しやすくなり、捻回特性のばらつきの原因となり、ま
た強度の上昇効果以上に熱膨張係数が高くなるようにな
る。よって、V,Ti,Nb,Ta,HfおよびZrの
添加は、1種または2種以上で合計1%以下の添加とす
る。また、AlとREMは脱酸や脱硫を目的として添加
することができる。それぞれ少量の添加から効果が表れ
るが、過度の添加は大気溶解を困難にするので、Al,
REMの添加はそれぞれ、上限を0.2%以下とする。
また、O、N等のガス成分は合金中で介在物を生成し、
同じく捻回値のばらつきの原因となるので、本発明合金
線においてはそれぞれ、0.01%以下が望ましい。本
発明にかかる合金は、上述した合金元素と残部Feから
構成される高強度低熱膨張合金である。
However, when the sum of the weight percentages of these alloy elements exceeds 1% in total, coarse primary carbides are precipitated and voids are easily generated around the carbides during cold drawing. This causes variations in the twisting characteristics, and the thermal expansion coefficient becomes higher than the strength increasing effect. Therefore, the addition of V, Ti, Nb, Ta, Hf, and Zr is 1 type or 2 types or more and 1% or less in total. Further, Al and REM can be added for the purpose of deoxidation and desulfurization. Although the effect appears from the addition of a small amount of each, since excessive addition makes it difficult to dissolve in the atmosphere, Al,
The upper limit of each addition of REM is 0.2% or less.
Also, gas components such as O and N form inclusions in the alloy,
Similarly, in the alloy wire of the present invention, 0.01% or less is desirable because it also causes variations in twist value. The alloy according to the present invention is a high strength and low thermal expansion alloy composed of the above-mentioned alloy elements and the balance Fe.

【0019】次に、本願の発明合金においては、オース
テナイト量は65%以上とするのが望ましい。加工誘起
マルテンサイトの変態量が増え過ぎてオーステナイト量
が65%未満になると、熱膨張係数が高くなりすぎて、
本発明が意図する低熱膨張特性が得られなくなる恐れが
あるからである。
Next, in the invention alloy of the present application, the austenite amount is preferably 65% or more. If the amount of transformation of work-induced martensite increases too much and the amount of austenite falls below 65%, the coefficient of thermal expansion becomes too high,
This is because the low thermal expansion characteristics intended by the present invention may not be obtained.

【0020】上記の組成の本発明合金は、熱間加工後あ
るいは固溶化熱処理後に急冷して常温に戻しても、常温
ではほぼオーステナイト相が安定である。しかし、十分
に冷間加工を加えることで、加工誘起変態によって、マ
ルテンサイト変態を生じる。冷間加工による加工硬化
は、C添加によるオーステナイト基地の加工硬化能向上
に加え、マルテンサイト変態による効果が大きい。ま
た、本発明合金は線材に加工すると、特に冷間引抜の中
間工程で焼鈍処理を行なわなくても、20回以上の安定
した捻回値が得られる。このレベルの捻回値は従来のピ
アノ線の捻回値のレベルと同等のものであり、これは、
冷間加工によってすでに存在する加工誘起マルテンサイ
ト相あるいは捻回中におきるオーステナイト相からマル
テンサイト相への変態による応力の緩和による効果が大
きいものと推察される。
In the alloy of the present invention having the above composition, the austenite phase is almost stable at room temperature even after being rapidly cooled to normal temperature after hot working or solution heat treatment. However, by sufficiently cold working, martensitic transformation is caused by the transformation induced transformation. Work hardening by cold working has a large effect by martensitic transformation in addition to work hardening ability improvement of austenite base by addition of C. Further, when the alloy of the present invention is processed into a wire rod, a stable twist value of 20 times or more can be obtained without performing annealing treatment in the intermediate step of cold drawing. The twist value at this level is equivalent to that of a conventional piano wire, which is
It is speculated that the effect of stress relaxation due to the transformation of the existing martensitic phase existing during cold working or the transformation from the austenite phase to the martensitic phase during twisting is large.

【0021】インバー合金に強度の冷間加工を加えて
も、基地のオーステナイト相が安定な場合は、熱膨張係
数は低いが引張強さが不十分であったり、線材に冷間加
工した際、単純な冷間引抜の工程では、捻回特性が不十
分になったりする。逆に、オーステナイト相が不安定に
なりすぎると、熱間加工後あるいは、固溶化処理後の冷
却過程で、マルテンサイト変態が生じて、もはやインバ
ー特性を得ることができなくなる。以上述べた理由によ
り、本発明合金が高い強度と低い熱膨張係数および高い
捻回値を同時に得るためには、オーステナイト相と加工
誘起変態によって生じるマルテンサイト相の2相を主相
とする必要がある。
When the base austenite phase is stable even when the Invar alloy is subjected to strong cold working, the coefficient of thermal expansion is low, but the tensile strength is insufficient, or when the wire is cold worked, In a simple cold drawing process, the twisting characteristics may become insufficient. On the contrary, if the austenite phase becomes too unstable, martensite transformation occurs during the cooling process after hot working or after solution treatment, and the Invar property can no longer be obtained. For the reasons described above, in order for the alloy of the present invention to simultaneously obtain high strength, low thermal expansion coefficient and high twist value, it is necessary to use two phases, an austenite phase and a martensite phase generated by work-induced transformation, as main phases. is there.

【0022】このような加工誘起マルテンサイトのオー
ステナイトへの逆変態温度は550℃以上の温度であ
り、送電線として使用される最高温度である300℃前
後の連続的な使用は本発明合金において特性上、なんら
問題はない。また、加工誘起マルテンサイトは、送電線
として使用される際の中間および仕上げ製造工程におけ
るAl被覆処理やZnメッキ処理のような400〜500
℃の加熱で一部が炭化物とフェライトに分解することも
あるが、本発明合金において、少量のフェライトの存在
は、特性上なんら問題はない。また、炭化物相も少量存
在するが、特性上なんら問題はない。
The reverse transformation temperature of such work-induced martensite to austenite is 550 ° C. or higher, and continuous use around 300 ° C. which is the maximum temperature used as a transmission line is characteristic of the alloy of the present invention. Above, there is no problem. Further, the processing-induced martensite is 400 to 500 such as Al coating treatment and Zn plating treatment in the intermediate and finish manufacturing processes when used as a power transmission line.
Although a part may decompose into carbide and ferrite by heating at ℃, the presence of a small amount of ferrite in the alloy of the present invention has no problem in characteristics. Also, although there is a small amount of carbide phase, there is no problem in terms of characteristics.

【0023】[0023]

【実施例】表1に示す組成のFe−Co−Ni−(Cr
+Mo+W)系合金を溶製し、熱間鍛造によって直径1
3.0mmの丸棒に仕上げた。その後、850℃から98
0℃の温度で30分保持後水冷の固溶化処理と表面の皮
剥を行ない、直径12.3mmとした。さらにこの試料を
用いて、熱膨張係数を測定するとともに、冷間引抜によ
り加工率84〜93.5%の範囲で、直径4.9〜3.
1mmのコイルを作製した。冷間引抜は、ごく一般的なア
プローチ角12゜のWC製のダイスを使用し、1パスあ
たり、20%前後の減面率で伸線した。
EXAMPLES Fe-Co-Ni- (Cr having the composition shown in Table 1
+ Mo + W) alloy is melted and hot forged to a diameter of 1
Finished into a 3.0 mm round bar. Then 850 ° C to 98
After being kept at a temperature of 0 ° C. for 30 minutes, water-cooled solid solution treatment and surface peeling were performed to obtain a diameter of 12.3 mm. Further, using this sample, the coefficient of thermal expansion was measured, and the diameter was 4.9 to 3% in the range of the processing rate of 84 to 93.5% by cold drawing.
A 1 mm coil was made. For cold drawing, a die made of WC having a very general approach angle of 12 ° was used, and wire drawing was performed at a surface reduction rate of about 20% per pass.

【0024】その際の伸線速度は、通常の鋼線の伸線速
度と同程度の速度で行なった。これらの線材を用いて最
終加工ままの状態で熱膨張試験、引張試験、捻回試験、
巻付・巻戻し試験および合金中のオーステナイト量の測
定を実施した。この結果を表2に示す。本発明合金につ
いては、160kgf/mm2以上の引張強さと310℃まで
の低い熱膨張係数を両立する最適な加工率の線径の試験
結果について、また、比較合金No.31についても16
0kgf/mm2以上の引張強さが得られた線径の試験結果に
ついて、さらに比較合金No.32〜34と従来合金No.4
1については、加工率93.5%、直径3.1mmまで、
引抜いた時点での試験結果を記載した。
The wire drawing speed at that time was the same as that of a normal steel wire. Thermal expansion test, tensile test, twist test, etc.
A winding / rewinding test and an amount of austenite in the alloy were measured. The results are shown in Table 2. Regarding the alloy of the present invention, the test results of the wire diameter of the optimum working rate that achieves both the tensile strength of 160 kgf / mm 2 or more and the low thermal expansion coefficient up to 310 ° C., and the comparative alloy No. 31 were also 16
Regarding the test results of the wire diameter that obtained the tensile strength of 0 kgf / mm 2 or more, further, the comparative alloy Nos. 32 to 34 and the conventional alloy No. 4
For No. 1, processing rate 93.5%, diameter up to 3.1 mm,
The test results at the time of pulling out are described.

【0025】熱膨張測定は示差熱膨張計により、30℃
から230℃および30℃から310℃までの平均熱膨
張係数を測定した。引張試験の伸びは標点間250mmで
測定し、引張強さと絞りについていずれも5本の平均値
を求めた。また捻回試験は、掴み間を自己径の100倍
とし、回転数60rpmで破断までの捻回値をそれぞれ
10本測定して、平均値を求めた。巻付・巻戻し試験に
ついては、自己径の1.5倍の芯線に各8回巻付・巻戻
しした際に試験片が破断するか否かを調査し、割れの無
い場合は合格として○印を、割れが発生した場合は不合
格として×印を表2に記載した。さらに、試料横断面の
X線回折を行ない、以下の式によりオーステナイト量と
マルテンサイト量の相比を求めた。 オーステナイト相(%)={Iγ/(Iγ+Iα)}×
100 Iγ=Iγ(111)+Iγ(200)+Iγ(220)+Iγ(311) Iγ(111)等はオーステナイトのX線回折強度 Iα=Iα(110)+Iα(200)+Iα(220)+Iα(211) Iα(110)等はマルテンサイトのX線回折強度
The thermal expansion was measured at 30 ° C. with a differential thermal expansion meter.
To 230 ° C. and 30 ° C. to 310 ° C. average thermal expansion coefficients were measured. The elongation in the tensile test was measured at a gauge length of 250 mm, and the average value of 5 pieces was obtained for both tensile strength and drawing. Further, in the twisting test, the gripping distance was set to 100 times the self-diameter, and 10 twisting values until breakage were measured at a rotation speed of 60 rpm to obtain an average value. Regarding the wrapping / rewinding test, it was investigated whether or not the test piece broke when the core wire having 1.5 times the self-diameter was wound / rewound 8 times each, and if there was no crack, it was judged as pass. When the mark was generated, the mark was rejected, and the mark x is shown in Table 2. Further, the cross section of the sample was subjected to X-ray diffraction, and the phase ratio between the amount of austenite and the amount of martensite was calculated by the following formula. Austenite phase (%) = {Iγ / (Iγ + Iα)} ×
100 Iγ = Iγ (111) + Iγ (200) + Iγ (220) + Iγ (311) Iγ (111) is the X-ray diffraction intensity of austenite Iα = Iα (110) + Iα (200) + Iα (220) + Iα (211) Iα (110) is the X-ray diffraction intensity of martensite

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示す合金のうち、No.1〜22は本
発明合金、No.31〜34は比較合金およびNo.41は、
特開平3−115543号に開示される高強度低熱膨張
合金である。また、本発明合金と比較合金については、
NiとCoの関係を図1に示している。表2より、本発
明合金は84〜93.5%の冷間加工後に160〜18
0kgf/mm2の引張強さと30℃から310℃間の平均熱
膨張係数で5.5×10マイナス6乗/℃以下の熱膨張
係数を併せもち、従来のピアノ線と同等あるいはそれに
近い引張強さとピアノ線の1/2以下の熱膨張係数が得
られることがわかる(ピアノ線の熱膨張係数α30-310
℃:11.5〜13×10マイナス6乗/℃)。
Among the alloys shown in Table 1, Nos. 1 to 22 are alloys of the present invention, Nos. 31 to 34 are comparative alloys, and No. 41 is
It is a high strength and low thermal expansion alloy disclosed in JP-A-3-115543. Further, for the alloy of the present invention and the comparative alloy,
The relationship between Ni and Co is shown in FIG. From Table 2, the alloy of the present invention is 160 to 18 after cold working of 84 to 93.5%.
It has a tensile strength of 0 kgf / mm 2 and an average coefficient of thermal expansion between 30 ° C and 310 ° C of 5.5 × 10 -6 powers / ° C or less, and a tensile strength equal to or close to that of conventional piano wire. It can be seen that a coefficient of thermal expansion less than 1/2 of that of a piano wire can be obtained (coefficient of thermal expansion of a piano wire α30-310
C: 11.5 to 13 x 10 minus 6 / C).

【0028】これらの特性は従来のFe−Ni系の高強
度低熱膨張合金、たとえば、従来合金No.31と比べる
と、熱膨張係数はやや劣るが、引張強度には格段の差が
見られる。既存鉄塔の建て替えなしに、送電線を張り替
えるためには、ピアノ線と同等の強度を持つことが絶対
条件となるので、弛度の点では、従来のFe−Ni系の
高強度低熱膨張合金線に同等あるいはやや劣る程度であ
るが、強度面では、はるかに従来のFe−Ni系の高強
度低熱膨張合金線を上回ることがわかる。
These characteristics are slightly inferior in thermal expansion coefficient to conventional Fe--Ni based high strength low thermal expansion alloys, for example, conventional alloy No. 31, but marked differences in tensile strength are observed. In order to replace the transmission line without rebuilding the existing steel tower, it is absolutely necessary to have the same strength as the piano wire, so in terms of sag, the conventional Fe-Ni-based high strength low thermal expansion alloy Although it is equivalent to or slightly inferior to the wire, it can be seen that the strength is far higher than that of the conventional Fe-Ni-based high strength and low thermal expansion alloy wire.

【0029】[0029]

【表2】 [Table 2]

【0030】また、表2より、本発明合金は高い捻回値
と優れた巻付・巻戻し特性を有することがわかる。この
ような効果は、冷間加工時に存在する加工誘起マルテン
サイトおよびこれらの各種試験の塑性変形中に生じるオ
ーステナイト相から、マルテンサイト相への変態によっ
てもたらされる。表2より本発明合金は、オーステナイ
ト相とマルテンサイト相の相比において、75〜90%
のオーステナイト相と約10〜25%のマルテンサイト
相からなっていることがわかる(実際には、少量の炭化
物が第3相として存在する)。通常、オーステナイト安
定型のインバー合金は、冷間加工によって熱膨張係数が
低下するが、本発明合金は冷間加工前よりも、冷間加工
後の状態の方が30℃から310℃間の平均熱膨張係数
がいずれも高くなることから、すべて冷間加工によって
加工誘起変態が生じていることはあきらかである。
Further, it can be seen from Table 2 that the alloy of the present invention has a high twist value and excellent winding / unwinding characteristics. Such effects are brought about by the transformation of the work-induced martensite present during cold working and the austenite phase that occurs during plastic deformation of these various tests to the martensite phase. From Table 2, the alloy of the present invention has an austenite phase and martensite phase ratio of 75 to 90%.
It can be seen that it is composed of an austenite phase of about 10 to 25% and a martensite phase of about 10 to 25% (actually, a small amount of carbide is present as a third phase). Usually, the austenite stable Invar alloy has a lower coefficient of thermal expansion due to cold working, but the alloy of the present invention has an average temperature between 30 ° C. and 310 ° C. after cold working than before cold working. Since all of the thermal expansion coefficients are high, it is clear that cold-working causes work-induced transformation.

【0031】一方、比較合金No.31のように本発明合
金に比べて、図1の領域Bに属するようなNiとCoの
組成では本発明合金と同じく、加工誘起変態によって高
い引張強さが得られるが、NiとCo量の関係が最適化
されていないために、変移点が低く、230℃までの熱
膨張係数では本発明合金並みの低い値が得られるものの
310℃までとなると本発明合金に比べてあきらかに熱
膨張係数が高くなる。また、比較合金No.32や34の
ようにNiとCoが、図1の領域Bに属するような場
合、また、No.33のように、Cr+0.54Mo+
0.28Wが本発明合金範囲よりも高くなる場合には、
いずれもオーステナイト相が安定になりすぎて、93.
5%という強度の冷間加工を加えても加工誘起変態は生
じず、本発明合金に比べてあきらかに引張強さが劣って
しまう(No.32〜34はいずれも100%オーステナ
イト相)。また、比較合金No.32〜34および従来合
金No.41は、皮剥後に単純に冷間加工を行なうだけで
は、捻回値が10回以下の低い値となり、送電線の芯線
の用途に対しては適さなくなる。
On the other hand, as compared with the alloy of the present invention such as Comparative Alloy No. 31, the composition of Ni and Co belonging to the region B of FIG. 1 has a higher tensile strength due to the work-induced transformation like the alloy of the present invention. However, since the relationship between the amount of Ni and Co is not optimized, the transition point is low, and although the coefficient of thermal expansion up to 230 ° C. is as low as that of the alloy of the present invention, it reaches 310 ° C. The coefficient of thermal expansion is clearly higher than that of the alloy. Moreover, when Ni and Co belong to the region B of FIG. 1 like the comparative alloy Nos. 32 and 34, and Cr + 0.54Mo + like the No. 33.
If 0.28 W is higher than the alloy range of the present invention,
In both cases, the austenite phase became too stable, and 93.
Even if cold working with a strength of 5% is applied, no work-induced transformation occurs, and the tensile strength is clearly inferior to that of the alloy of the present invention (Nos. 32 to 34 are all 100% austenite phase). Further, the comparative alloy Nos. 32 to 34 and the conventional alloy No. 41 have a low twisting value of 10 times or less when simply cold-worked after peeling, which makes them suitable for use in the core wire of a transmission line. Becomes unsuitable.

【0032】[0032]

【発明の効果】以上述べたように本発明の合金は、従来
の低熱膨張合金より、ワンランク上、つまりピアノ線と
同等あるいはそれに近い引張強さと、簡便な製造工程で
もピアノ線並みの安定して高い捻回値が得られ、常温か
ら300℃程度の広い温度域にわたってピアノ線の1/
2以下の低い熱膨張係数を有するものである。本発明合
金により、信頼性に優れ、従来のピアノ線を芯線に用い
た送電線よりも送電容量が高い低弛度送電線の製造が可
能となり、したがって、比較的容易に送電線の送電容量
を増大させることが可能となる。
As described above, the alloy of the present invention is one rank higher than the conventional low thermal expansion alloy, that is, has a tensile strength equal to or close to that of a piano wire, and is stable as a piano wire even in a simple manufacturing process. A high twist value is obtained, and it is 1 / 100th of a piano wire over a wide temperature range from room temperature to 300 ° C.
It has a low coefficient of thermal expansion of 2 or less. INDUSTRIAL APPLICABILITY The alloy of the present invention enables production of a low sag transmission line which is excellent in reliability and has a higher transmission capacity than a transmission line using a conventional piano wire as a core wire. Therefore, the transmission capacity of the transmission line can be relatively easily obtained. It is possible to increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金および比較合金のNiとCoの関係
をプロットした図である。
FIG. 1 is a diagram in which the relationship between Ni and Co of the alloy of the present invention and the comparative alloy is plotted.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C0.06〜0.50%、S
i1.0%以下、Mn2.0%以下、Ni22.8〜2
9.2%、Co9.3〜20%で、NiとCoの関係が
58−(5/3)Ni<Co≦86.25−(5/2)
Niであり、残部は不純物を除きFeからなる組成で、
少なくともオーステナイト相と加工誘起変態によって生
じるマルテンサイト相との2相を有する組織としたこと
を特徴とする高強度低熱膨張合金。
1. C0.06-0.50%, S by weight%
i 1.0% or less, Mn 2.0% or less, Ni 22.8 to 2
9.2% and Co 9.3 to 20%, the relationship between Ni and Co is 58- (5/3) Ni <Co≤86.25- (5/2).
The composition is Ni, and the balance is Fe except impurities.
A high-strength, low-thermal-expansion alloy having a structure having at least two phases, an austenite phase and a martensite phase generated by work-induced transformation.
【請求項2】 重量%で、C0.06〜0.50%、S
i1.0%以下、Mn2.0%以下、Ni22.8〜2
9.2%、Co9.3〜20%で、NiとCoの関係が
58−(5/3)Ni<Co≦86.25−(5/2)
Niであり、さらにCr2.5%以下、Mo3.5%以
下およびW5%以下の1種または2種以上をCr+0.
54Mo+0.28W≦2.5の範囲で含み、残部は不
純物を除きFeからなる組成で、少なくともオーステナ
イト相と加工誘起変態によって生じるマルテンサイト相
との2相を有する組織としたことを特徴とする高強度低
熱膨張合金。
2. C0.06-0.50%, S by weight%
i 1.0% or less, Mn 2.0% or less, Ni 22.8 to 2
9.2% and Co 9.3 to 20%, the relationship between Ni and Co is 58- (5/3) Ni <Co≤86.25- (5/2).
Ni, and one or more of Cr 2.5% or less, Mo 3.5% or less, and W 5% or less is Cr + 0.
54Mo + 0.28W ≦ 2.5, with the balance being a composition consisting of Fe excluding impurities, and having a structure having at least two phases of an austenite phase and a martensite phase generated by work-induced transformation. High strength low thermal expansion alloy.
【請求項3】 合金組成が請求項1、2のいずれかに記
載の組成に、さらに重量%で、B0.02%以下、Mg
0.02%以下およびCa0.02%以下の1種または
2種以上を含み、少なくともオーステナイト相と加工誘
起変態によって生じるマルテンサイト相との2相を有す
る組織としたことを特徴とする高強度低熱膨張合金。
3. The alloy composition according to any one of claims 1 and 2, further comprising B0.02% or less by weight% and Mg.
High-strength, low heat containing at least two phases of an austenite phase and a martensite phase generated by work-induced transformation, containing one or more kinds of 0.02% or less and Ca0.02% or less Expansion alloy.
【請求項4】 合金組成が請求項1〜3のいずれかに記
載の上に、さらに重量%で、V,Ti,Nb,Ta,H
fおよびZrの1種または2種以上を合計で1%以下を
含有し、少なくともオーステナイト相と加工誘起変態に
よって生じるマルテンサイト相との2相を有する組織と
したことを特徴とする高強度低熱膨張合金。
4. The alloy composition according to claim 1, further comprising V, Ti, Nb, Ta and H in a weight percentage.
High-strength, low thermal expansion characterized by having a structure containing one or more of f and Zr in a total amount of 1% or less and having at least two phases of an austenite phase and a martensite phase generated by work-induced transformation alloy.
【請求項5】 合金組成が請求項1〜4のいずれかに記
載の上に、さらに重量%で、Al0.2%以下とREM
0.2%以下の1種または2種を含み、少なくともオー
ステナイト相と加工誘起変態によって生じるマルテンサ
イト相との2相を有する組織としたことを特徴とする高
強度低熱膨張合金。
5. The alloy composition according to any one of claims 1 to 4, further having a weight percentage of Al 0.2% or less and REM.
A high-strength, low-thermal-expansion alloy containing 0.2% or less of one type or two types and having a structure having at least two phases of an austenite phase and a martensite phase generated by work-induced transformation.
【請求項6】 オーステナイト相が全体の少なくとも6
5%以上である組織としたことを特徴とする請求項1〜
5のいずれかに記載の高強度低熱膨張合金。
6. The austenite phase is at least 6 of the total.
The structure is set to be 5% or more.
The high-strength low-thermal expansion alloy according to any one of 5 above.
JP5144627A 1992-11-16 1993-06-16 High strength low thermal expansion alloy Expired - Fee Related JP3061977B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5144627A JP3061977B2 (en) 1992-11-16 1993-06-16 High strength low thermal expansion alloy
US08/151,808 US6221183B1 (en) 1992-11-16 1993-11-15 High-strength and low-thermal-expansion alloy, wire of the alloy and method of manufacturing the alloy wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30518692 1992-11-16
JP4-305186 1992-11-16
JP5144627A JP3061977B2 (en) 1992-11-16 1993-06-16 High strength low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JPH06200352A true JPH06200352A (en) 1994-07-19
JP3061977B2 JP3061977B2 (en) 2000-07-10

Family

ID=26475983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5144627A Expired - Fee Related JP3061977B2 (en) 1992-11-16 1993-06-16 High strength low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP3061977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132823A (en) * 2015-09-15 2015-12-09 重庆材料研究院有限公司 High-intensity controlled-expansion alloy containing Cr
CN106574343A (en) * 2014-08-08 2017-04-19 新日铁住金株式会社 High carbon steel wire having excellent drawability
CN115233041B (en) * 2021-12-20 2023-06-16 北京科技大学 Low-expansion alloy with tensile plasticity and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574343A (en) * 2014-08-08 2017-04-19 新日铁住金株式会社 High carbon steel wire having excellent drawability
US10487379B2 (en) 2014-08-08 2019-11-26 Nippon Steel Corporation High-carbon steel wire rod with excellent wire drawability
CN105132823A (en) * 2015-09-15 2015-12-09 重庆材料研究院有限公司 High-intensity controlled-expansion alloy containing Cr
CN115233041B (en) * 2021-12-20 2023-06-16 北京科技大学 Low-expansion alloy with tensile plasticity and preparation method thereof

Also Published As

Publication number Publication date
JP3061977B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
KR101600251B1 (en) High-strength dual phase structure stainless steel wire material, high-strength dual phase structure stainless steel wire, and method for production the same and spring part
EP2832876B1 (en) High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same
JP4212553B2 (en) High-strength stainless steel wire with excellent twist value and rigidity and manufacturing method thereof
US6478897B1 (en) Heat-resistant alloy wire
KR102509847B1 (en) High strength low thermal expansion alloy wire
WO1995026422A1 (en) High-strength steel wire material of excellent fatigue characteristics and high-strength steel wire
KR20200124751A (en) Wire rod for stainless steel wire, stainless steel wire and its manufacturing method, and spring parts
JP3842053B2 (en) High strength low thermal expansion alloy with excellent twisting characteristics and its alloy wire
JP4797305B2 (en) Invar alloy wire with excellent strength and twisting characteristics and manufacturing method thereof
JP5154122B2 (en) High strength stainless steel and high strength stainless steel wire using the same
US6048416A (en) Steel, steel wire, and process for forming drawn wire of steel
WO2020158684A1 (en) Cu-al-mn-based shape-memory alloy molded article and method for producing same
JP3011596B2 (en) Low thermal expansion high strength core wire for transmission line and low sag wire using the same
JP3061977B2 (en) High strength low thermal expansion alloy
US6221183B1 (en) High-strength and low-thermal-expansion alloy, wire of the alloy and method of manufacturing the alloy wire
JPH07228947A (en) Alloy with high strength and low thermal expansion
JPH073399A (en) High strength low thermal expansion alloy
JPH06279945A (en) Wire with high strength and low thermal expansion and its production
KR20010086358A (en) Highly cleaned steel
JP3216824B2 (en) High strength low thermal expansion alloy
JP2022138809A (en) Invar alloy and Invar alloy wire
JPS6363617B2 (en)
JPH06346193A (en) Alloy with high strength and low thermal expansion
JPH0570894A (en) Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production
JP4667961B2 (en) Manufacturing method of non-tempered high strength bolt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees