JPH0619982B2 - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH0619982B2
JPH0619982B2 JP61099564A JP9956486A JPH0619982B2 JP H0619982 B2 JPH0619982 B2 JP H0619982B2 JP 61099564 A JP61099564 A JP 61099564A JP 9956486 A JP9956486 A JP 9956486A JP H0619982 B2 JPH0619982 B2 JP H0619982B2
Authority
JP
Japan
Prior art keywords
electrode
battery
foam
polymer
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61099564A
Other languages
Japanese (ja)
Other versions
JPS62256362A (en
Inventor
修弘 古川
晃治 西尾
宣之 好永
哲身 鈴木
和美 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Sanyo Denki Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Sanyo Denki Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP61099564A priority Critical patent/JPH0619982B2/en
Priority to CA000520107A priority patent/CA1306904C/en
Priority to US06/917,051 priority patent/US4731311A/en
Priority to EP86113998A priority patent/EP0219063B1/en
Priority to DE3689759T priority patent/DE3689759T2/en
Publication of JPS62256362A publication Critical patent/JPS62256362A/en
Publication of JPH0619982B2 publication Critical patent/JPH0619982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、導電性ポリマーを特定の基材上に有してな
る導電材料を電極材料として用いた二次電池に関するも
のである。
TECHNICAL FIELD The present invention relates to a secondary battery using as an electrode material a conductive material having a conductive polymer on a specific base material.

<従来の技術> 近年、各種有機材料からなる導電性ポリマーを電極材料
とした二次電池が提案されている。
<Prior Art> In recent years, a secondary battery using a conductive polymer made of various organic materials as an electrode material has been proposed.

この種の二次電池の電極材料となる導電性ポリマーは、
通常は導電性はわずかであるが、各種アニオンやカチオ
ンの如きドーパントをドーピング並びにアンドーピング
処理することが可能であり、ドーピング処理により導電
性が飛躍的に上昇する。そして、アニオンがドーピング
される導電性ポリマーを正極材料として、またカチオン
がドーピングされる導電性ポリマーを負極材料として各
々使用すると共に上記ドーパントを含有する溶液を電解
液として用い、ドーピング及びアンドーピングを電気化
学的に可逆的に行なうことにより充放電可能な電池が構
成される。
The conductive polymer used as the electrode material of this type of secondary battery is
Usually, the conductivity is low, but it is possible to dope and undope the dopants such as various anions and cations, and the dope treatment dramatically increases the conductivity. Then, a conductive polymer doped with anions is used as a positive electrode material, and a conductive polymer doped with cations is used as a negative electrode material, and a solution containing the above dopant is used as an electrolytic solution. A battery that can be charged and discharged is constructed by performing the chemical reversible process.

このような導電性ポリマーとしては従来よりポリアセチ
レン,ポリパラフェニレン,ポリチェニレン,ポリピロ
ール,ポリアニリン,ポリパラフェニレンビニレンなど
のような主鎖に共役二重結合を有する重合体が知られて
おり、ポリアセチレンを例に採れば、ポリアセチレンを
正極または負極の少なくとも一方の電極材料として用
い、BF 、ClO 、SbF 、PF 等の
アニオン、またはLi、Na、R−N(Rはア
ルキル基を表わす)等のカチオンを電気化学的に可逆的
にドーピング,アンドーピングする構成が採られてい
る。
Polymers having a conjugated double bond in the main chain such as polyacetylene, polyparaphenylene, polyphenylene, polypyrrole, polyaniline, and polyparaphenylene vinylene are known as such conductive polymers, and polyacetylene is an example. In this case, polyacetylene is used as an electrode material for at least one of the positive electrode and the negative electrode, and anions such as BF 4 , ClO 4 , SbF 6 , PF 6 , or Li + , Na + , R 4 −N + ( R represents an alkyl group) and the like is electrochemically reversibly doped and undoped.

ところで、このような導電性ポリマーは粉状,粒状,塊
状あるいはフィルム状で得られるが、粉状,粒状あるい
は塊状の導電性ポリマーの場合には、これらを電極材料
として用いて非水電解液二次電池あるいは固体電解質二
次電池を構成する場合、それら単独、あるいはそれらに
導電性向上のための適宜な導電材、及び/または電極の
機械的強度を高めるための熱可塑性樹脂を加えた後、電
極形状に加圧成形して電極とする等の手間を要する。そ
の点、導電性ポリマーフィルムの場合には、それらを電
極寸法に打ち抜くのみで電極とすることができて電極作
製が比較的容易である等の特長がある。
By the way, such a conductive polymer is obtained in the form of powder, granules, lumps, or films, but in the case of powdered, granular, or lump-shaped conductive polymers, these are used as electrode materials for the non-aqueous electrolyte solution. In the case of constituting a secondary battery or a solid electrolyte secondary battery, by themselves, or after adding a suitable conductive material for improving the conductivity, and / or a thermoplastic resin for increasing the mechanical strength of the electrode to them, It takes time and effort to form an electrode by pressure forming into an electrode shape. In that respect, the conductive polymer film has a feature that it can be made into an electrode only by punching them out into the electrode size, and the electrode is relatively easy to produce.

上記のような導電性ポリマーフィルムとしては、現在の
ところ、 重合触媒をガラス壁に塗布し、その上にアセチレンガ
スを吹込みポリアセチレンフィルムを形成し、その後こ
のフィルムを剥離して得たポリアセチレンフィルム、 電気化学的な酸化重合反応(電解酸化重合)により電
解電極上にポリチェニレンやポリピロール等のフィルム
状物質を形成し、その後電極からフィルムを剥離して得
たポリチエニレンフィルムやポリピロールフィルム、 等が知られている。
As the conductive polymer film as described above, at present, a polyacetylene film obtained by applying a polymerization catalyst to a glass wall, blowing acetylene gas on it to form a polyacetylene film, and then peeling this film, Known are polythienylene film and polypyrrole film, etc. obtained by forming a film-like substance such as polyphenylene or polypyrrole on the electrolytic electrode by an electrochemical oxidative polymerization reaction (electrolytic oxidative polymerization), and then peeling the film from the electrode. Has been.

<発明が解決しようとする問題点> しかしながら、上記従来の導電性ポリマーフィルムを電
池の電極材料に使用して二次電池を構成した場合、ポリ
アセチレンフィルムでは電池内の微量の酸素,水分の存
在でポリマーが劣化するので、電極としての性能が低下
し、またサイクル中に充電電圧の急上昇や充放電効率の
低下などが起こってサイクル寿命の減少が著しいという
欠点があり、また作業雰囲気中の酸素により酸化され易
いために電極作製作業が困難で煩雑になる等という問題
があった。
<Problems to be Solved by the Invention> However, when a secondary battery is constructed by using the above-mentioned conventional conductive polymer film as an electrode material of a battery, a polyacetylene film is present due to the presence of a trace amount of oxygen and moisture in the battery. Since the polymer deteriorates, the performance as an electrode deteriorates, and there is a drawback that the cycle life is significantly reduced due to a sudden increase in charging voltage and a decrease in charge / discharge efficiency during the cycle. There is a problem that the electrode manufacturing work is difficult and complicated because it is easily oxidized.

また電気化学的酸化重合反応により作製したポリチェニ
レンフィルムやポリピロールフィルムでは、フィルムの
大きさが電解電極の大きさに規制されるとともに、その
製造法が煩雑であるので電池コスト高を招く原因とな
る。更に、膜厚の厚い均一な膜が得にくいので、この膜
を電池電極として用いた場合には集電体との接触が充放
電サイクル中に悪化したり、電池反応が電極の一部に集
中して生じるので電池性能劣化を招くという問題があっ
た。
Further, in the polyphenylene film or polypyrrole film produced by the electrochemical oxidative polymerization reaction, the size of the film is regulated by the size of the electrolytic electrode, and the manufacturing method is complicated, which causes a high battery cost. Become. Furthermore, since it is difficult to obtain a thick and uniform film, when this film is used as a battery electrode, contact with the current collector deteriorates during charge / discharge cycles, and battery reaction concentrates on a part of the electrode. Therefore, there is a problem that the battery performance is deteriorated.

<問題点を解決するための手段> 本発明者等は特定の基材上の導電性ポリマーを形成し、
安定で製造容易であり、任意の部位を任意の方向に導電
化することが可能な導電材料を得てその応用を図ってい
たが、それを二次電池の電極として用いることによって
上記問題点を解決した。
<Means for Solving Problems> The present inventors have formed a conductive polymer on a specific substrate,
I tried to obtain a conductive material that is stable and easy to manufacture and can make any part of it conductive in any direction, but by using it as an electrode of a secondary battery, Settled.

すなわち、本発明の要旨は、正極,負極および電解液か
らなる二次電池であって、酸化剤の存在下、該酸化剤を
保持しうる空間を有した金属発泡体上で導電性ポリマー
を気相雰囲気で重合させ、該金属発泡体の空間に該導電
性ポリマーを形成してなる導電材料を少なくとも一方の
電極材料として用い、該金属発泡体の多孔度が70〜9
8%であることを特徴とする二次電池に存する。
That is, the gist of the present invention is a secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution, wherein a conductive polymer is vaporized on a metal foam having a space capable of holding the oxidant in the presence of the oxidant. A conductive material obtained by polymerizing in a phase atmosphere and forming the conductive polymer in the space of the metal foam is used as at least one electrode material, and the porosity of the metal foam is 70 to 9
The secondary battery is 8%.

本発明で導電性ポリマーを保持させる基材として用いる
上記金属多孔体の材料としては、金,白金,銀,銅,ニ
ッケル,ステンレススチール、あるいはニッケル−アル
ミニウム合金,ニッケル−クロム合金,銅−ニッケル合
金,ニッケル−クロム−アルミニウム合金などが使用さ
れる。そして、例えば金,白金,銀,ステンレススチー
ル,ニッケル−クロム−アルミニウム合金などからなる
金属発泡体を用いた場合、その金属発泡体を集電体とし
て兼用することができる。そして、これによって導電性
ポリマーと集電体との密着性が向上し、電池のサイクル
寿命が延び、また電極基材である金属発泡体が多孔体で
あるので、電極自体の含液性が向上して電池の充放電効
率が良好になる。
Examples of the material of the metal porous body used as the base material for holding the conductive polymer in the present invention include gold, platinum, silver, copper, nickel, stainless steel, or nickel-aluminum alloy, nickel-chromium alloy, copper-nickel alloy. , Nickel-chromium-aluminum alloy, etc. are used. When a metal foam made of gold, platinum, silver, stainless steel, nickel-chromium-aluminum alloy or the like is used, the metal foam can also be used as a current collector. This improves the adhesion between the conductive polymer and the current collector, extends the cycle life of the battery, and improves the liquid content of the electrode itself because the metal foam that is the electrode base material is a porous body. As a result, the charge / discharge efficiency of the battery is improved.

また、この金属発泡体の多孔度を上記のように70〜9
8%の範囲とすることで良好な電池特性を得ることがで
きる。これは次の理由によると考えられる。即ち、多孔
度が70%未満の金属発泡体ではその比表面積(金属発
泡体の体積に対する表面積の割合)が小さくなりすぎる
ために導電性ポリマーが金属発泡体と接触している部分
が少なくなり、また含液率も小さくなるために導電性ポ
リマーの利用率が低減する。多孔度を70〜98%とし
た金属発泡体では、このような弊害はなくて良好な特性
の二次電池を得ることができるのである。尚、多孔度が
98%を超えると電極として必要な強度が得られなくな
る。
Also, the porosity of this metal foam should be 70-9 as described above.
Good battery characteristics can be obtained by setting the range to 8%. This is considered due to the following reasons. That is, in a metal foam having a porosity of less than 70%, the specific surface area (ratio of the surface area to the volume of the metal foam) becomes too small, so that the conductive polymer is in a small portion in contact with the metal foam. Further, since the liquid content also decreases, the utilization rate of the conductive polymer decreases. With a metal foam having a porosity of 70 to 98%, it is possible to obtain a secondary battery having good characteristics without such an adverse effect. If the porosity exceeds 98%, the strength required for the electrode cannot be obtained.

更に、本発明で使用する酸化剤は、導電性ポリマーを重
合するためのモノマー化合物に対して重合性を有する化
合物であり、単独または2種類以上組合せて使用され
る。通常、強酸残基やハロゲン,シアンを有する金属
塩,過酸化物,窒素酸化物等が使用され、具体的には、 Fe(ClO,Fe(BF, Fe(SiF,Cu(ClO, Cu(BF,CuSiF,FeCl, CuCl,K〔Fe(CN)〕, RuCl,MoCl,WCl, (NH,K, Na,NaBO,H, NOBF,NOBF,NOPF, NOClO,NOAsF,NOPFなどである。
Further, the oxidizing agent used in the present invention is a compound having polymerizability with a monomer compound for polymerizing a conductive polymer, and is used alone or in combination of two or more kinds. Usually, a metal salt having a strong acid residue, halogen, or cyan, a peroxide, a nitrogen oxide, or the like is used. Specifically, Fe (ClO 4 ) 3 , Fe (BF 4 ) 3 , Fe 2 (SiF 6 ) 3 , Cu (ClO 4 ) 2 , Cu (BF 4 ) 2 , CuSiF 6 , FeCl 3 , CuCl 2 , K 3 [Fe (CN) 6 ], RuCl 3 , MoCl 5 , WCl 6 , (NH 4 ) 2 S 2 O 8, K 2 S 2 O 8, Na 2 S 2 O 8, NaBO 3, H 2 O 2, NOBF 4, NO 2 BF 4, NO 2 PF 6, NOClO 4, NOAsF 6, NOPF 6 , etc. is there.

本発明で使用する導電性ポリマーを重合するためのモノ
マー化合物はピロール系,チオフェン系化合物が単独ま
たは混合して使用される。好ましくは、ピロールまたは
チオフェンの環骨格構造の2,5位置に置換基をもたない
ピロール系化合物またはチオフェン系化合物が使用され
る。
As the monomer compound for polymerizing the conductive polymer used in the present invention, a pyrrole-based compound or a thiophene-based compound is used alone or in combination. Preferably, a pyrrole-based compound or a thiophene-based compound having no substituent at the 2,5 position of the pyrrole- or thiophene ring skeleton structure is used.

ピロール系化合物として具体的には、ピロール,N−メ
チルピロール,N−エチルピロール,N−n−プロピル
ピロール,N−n−ブチルピロール,N−フェニルピロ
ール,N−トルイルピロール,N−ナフチルピロール,
3−メチルピロール,3,5−ジメチルピロール,3−エ
チルピロール,3−n−プロピルピロール,3−n−ブ
チルピロール,3−フェニルピロール,3−トルイルピ
ロール,3−ナフチルピロール,3−メトキシピロー
ル,3,5−ジメトキシピロール,3−エトキシピロー
ル,3−n−プロポキシピロール,3−フェノキシピロ
ール,3−メチル−N−メチルピロール,3−メトキシ
N−メトキシピロール,3−クロルピロール,3−ブロ
ムピロール,3−メチルチオピロール,3−メチルチオ
N−メチルピロールなどが挙げられる。
Specific examples of the pyrrole compound include pyrrole, N-methylpyrrole, N-ethylpyrrole, Nn-propylpyrrole, Nn-butylpyrrole, N-phenylpyrrole, N-toluylpyrrole, N-naphthylpyrrole,
3-methylpyrrole, 3,5-dimethylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-n-butylpyrrole, 3-phenylpyrrole, 3-toluylpyrrole, 3-naphthylpyrrole, 3-methoxypyrrole , 3,5-dimethoxypyrrole, 3-ethoxypyrrole, 3-n-propoxypyrrole, 3-phenoxypyrrole, 3-methyl-N-methylpyrrole, 3-methoxyN-methoxypyrrole, 3-chloropyrrole, 3-bromo Pyrrole, 3-methylthiopyrrole, 3-methylthio N-methylpyrrole and the like can be mentioned.

また、チオフェン化合物として具体的には、2,2′−ビ
チオフェン,3−メチル−2,2′−ビチオフェン,3,3′
−ジメチル−2,2′−ビチオフェン,3,4−ジメチル−2,
2′−ビチオフェン,3,4−ジメチル−3′,4′−ジメチ
ル−2,2′−ビチオフェン,3−メトキシ−2,2′−ビチ
オフェン,3,3′−ジメトキシ−2,2′−ビチオフェン,
2,2′,5′,2″−ターチオフェン,3−メチル−2,2′,
5′,2″−ターチオフェン,3,3′−ジメチル−2,2′,
5′,2″−ターチオフェンなどである。
Further, as the thiophene compound, specifically, 2,2'-bithiophene, 3-methyl-2,2'-bithiophene, 3,3 '
-Dimethyl-2,2'-bithiophene, 3,4-dimethyl-2,
2'-bithiophene, 3,4-dimethyl-3 ', 4'-dimethyl-2,2'-bithiophene, 3-methoxy-2,2'-bithiophene, 3,3'-dimethoxy-2,2'-bithiophene ,
2,2 ', 5', 2 "-terthiophene, 3-methyl-2,2 ',
5 ', 2 "-terthiophene, 3,3'-dimethyl-2,2',
For example, 5 ', 2 "-terthiophene.

該基材上に該酸化剤を保持する方法は、酸化剤をそのま
ま、もしくは適当な媒体に分散又は溶解し、その分散液
又は溶液を基材と接触させて保持する。酸化剤が基材上
に保持しやすいように、予め基材を洗浄、脱ガス処理、
親水化あるいは親油化などの前処理を適宜に行なうこと
も可能である。該酸化剤は基材上のすべての部分に保持
することもできるが必要に応じて所定の部分にのみ保持
させることもできる。
The method of retaining the oxidizing agent on the substrate is to retain the oxidizing agent as it is, or by dispersing or dissolving it in an appropriate medium and bringing the dispersion or solution into contact with the substrate. In order to easily retain the oxidizer on the base material, the base material is previously cleaned, degassed,
It is also possible to appropriately perform a pretreatment such as hydrophilization or lipophilicity. The oxidant may be held on all parts of the substrate, but may be held only on predetermined parts if necessary.

該モノマー化合物に対する該酸化剤の割合は該重合体の
生成量と関連するが、通常0.001〜10,000モル倍であ
り、好ましくは0.005〜5,000モル倍である。
Although the ratio of the oxidizing agent to the monomer compound is related to the amount of the polymer produced, it is usually 0.001 to 10,000 mol times, and preferably 0.005 to 5,000 mol times.

該基材上に該モノマー化合物の重合体を形成させるのは
気相雰囲気下で行なわれる。即ち、該モノマー化合物の
みの蒸気、又は窒素,アルゴン,空気,その他のガス又
は混合ガスとの存在下で、気相雰囲気下で行なわれる。
全体の系は加圧,常圧,減圧下いずれの圧力下でも行な
うことができるが、通常、常圧下で行なうのが好まし
い。
The polymer of the monomer compound is formed on the substrate in a gas phase atmosphere. That is, it is carried out in a gas phase atmosphere in the presence of vapor of only the monomer compound, or nitrogen, argon, air, other gas or mixed gas.
The whole system can be operated under pressure, atmospheric pressure or reduced pressure, but it is usually preferable to operate under atmospheric pressure.

反応温度は該モノマー化合物が重合し得る温度なら規定
されるものではないが、通常−20〜100℃、好ましく
は0〜80℃で行なわれる。
The reaction temperature is not specified as long as the monomer compound can be polymerized, but is usually -20 to 100 ° C, preferably 0 to 80 ° C.

反応時間は反応温度、該酸化剤の量、該モノマー化合物
の量とも関連するが、通常0.01〜200時間であり、好ま
しくは0.02〜100時間である。
The reaction time is usually 0.01 to 200 hours, preferably 0.02 to 100 hours, though it depends on the reaction temperature, the amount of the oxidizing agent, and the amount of the monomer compound.

重合反応後、該基材上の該酸化剤を保持した部分に暗褐
色〜黒色の均質な該重合体が生成する。
After the polymerization reaction, a dark brown to black homogeneous polymer is formed on the portion of the substrate holding the oxidizing agent.

一旦生成した該重合体の上に該酸化剤を保持し、同一又
は別種の該モノマー化合物を接触して重合反応を継続
し、該重合体生成量の増加又は二種類以上の重合体の生
成を行なうことができる。
The oxidant is retained on the polymer once formed, and the same or different kind of the monomer compound is contacted to continue the polymerization reaction, thereby increasing the production amount of the polymer or forming two or more kinds of polymers. Can be done.

重合反応後、該基材上に残存する該モノマー化合物及び
該酸化剤を除去する。通常、水,アルコール又は有機系
溶剤中に該基材を浸漬,洗浄することにより除去するこ
とができる。その後、通常の乾燥方法で基材を乾燥する
ことにより本発明の二次電池に使用する導電材料を得る
ことができる。
After the polymerization reaction, the monomer compound and the oxidizing agent remaining on the substrate are removed. Usually, it can be removed by immersing and washing the substrate in water, alcohol or an organic solvent. After that, the conductive material used in the secondary battery of the present invention can be obtained by drying the base material by a usual drying method.

<作 用> 上記のように金属発泡体の空間に上記気相重合によって
導電性ポリマー形成させる構成としたので、容量増加の
ためにポリマーの重合量を増加させた場合でも発泡体空
間内にポリマーが多量に保持できて電極の膜厚の均一性
が容易に保たれる。また、発泡体の細孔内部までポリマ
ーが生成し保持されているので、ショックなどによって
電極内のポリマーが基材である金属発泡体から剥がれ落
ちることがなく、例えば従来の電解重合によって生成し
たポリマーフィルムを電解電極から剥離後集電体に圧着
したものを用いた場合に較べて、電極の機械的強度が著
しく向上する。また、上記金属発泡体に電極の集電体を
兼ねさせることで、導電性ポリマーと集電体との密着性
が格段に向上し、両者の接触状態が充放電サイクル中に
悪化する度合が非常に小さくなる。
<Operation> Since the conductive polymer is formed in the space of the metal foam by the vapor phase polymerization as described above, even if the polymerization amount of the polymer is increased to increase the capacity, the polymer is kept in the foam space. Can be maintained in a large amount, and the uniformity of the electrode film thickness can be easily maintained. In addition, since the polymer is generated and retained inside the pores of the foam, the polymer in the electrode does not peel off from the metal foam that is the base material due to shock, etc. The mechanical strength of the electrode is remarkably improved as compared with the case where the film is peeled from the electrolytic electrode and pressure-bonded to the current collector. Further, by using the metal foam also as the collector of the electrode, the adhesion between the conductive polymer and the collector is remarkably improved, and the contact state between the two is extremely deteriorated during the charge / discharge cycle. Becomes smaller.

更に、電極基材である金属発泡体が多孔体なので、電極
自体の含液性(含電解液性)が向上し、電極内の導電性
ポリマーが電池反応に関与する割合が大きくなって電池
の充放電効率が良好となる。特に、金属発泡の多孔率を
70〜98%としたので、基材である金属発泡体の体積
に対する表面積の割合(比表面積)が大きくなり、電極
容量増加のためにポリマーの生成量を多くした場合でも
電解液と直接接触する電極中のポリマー量が差程減少す
ることがない。このため、厳しい充放電条件下でも導電
性ポリマーの利用率が大きく低減することなく、この条
件下でも充放電効率が高くてサイクル寿命の良好な二次
電池を得ることができる。
Furthermore, since the metal foam, which is the electrode base material, is a porous body, the liquid content (electrolyte solution property) of the electrode itself is improved, and the ratio of the conductive polymer in the electrode involved in the battery reaction is increased, so Charge and discharge efficiency becomes good. In particular, since the porosity of the metal foam is set to 70 to 98%, the ratio of the surface area to the volume of the metal foam as the base material (specific surface area) is increased, and the amount of polymer produced is increased to increase the electrode capacity. Even in this case, the amount of polymer in the electrode that is in direct contact with the electrolytic solution is not significantly reduced. Therefore, the utilization rate of the conductive polymer is not significantly reduced even under severe charge / discharge conditions, and a secondary battery having high charge / discharge efficiency and good cycle life can be obtained even under these conditions.

また、本発明で電極材料に用いた上記導電材料は製造容
易で耐酸化性も優れており、ポリアセチレンフィルムを
用いた場合のような空気中の電池内の酸素や水分による
劣化もなく、電極作製が容易で電極の保存性がよい。
Further, the conductive material used as the electrode material in the present invention is easy to manufacture and has excellent oxidation resistance, and there is no deterioration due to oxygen or water in the battery in the air as in the case of using a polyacetylene film, and the electrode is manufactured. Is easy and the storage stability of the electrode is good.

<実施例> 多孔度70%のステンレススチールの発泡体の片面をF
eCl・6HO−メタノール飽和溶液に室温下30
分間浸漬した後、風乾し、一部分発泡体表面上に液滴と
して残存しているFeCl・6HO−メタノール液
滴を濾紙で吸着除去し、発泡体の片面に均一にFeCl
成分を担持した。次いで、ピロール4mlをガラス製容
器(奥行10cm、横25cm、高さ15cm)の底部にお
き、上記の処理で得た発泡体をガラス製容器の上部より
吊るし、上記をガラス板で密閉し、発泡体をピロール蒸
気に接触させた。この接触により発泡体の片面は暗緑
色、更に黒色に急速に変色し、発泡体の片面にポリピロ
ールが生成した。
<Example> One side of a 70% porosity stainless steel foam was subjected to F
at room temperature to eCl 3 · 6H 2 O- methanol saturated solution 30
After soaking minutes, air dried, and FeCl 3 · 6H 2 O-methanol droplets remaining as droplets on a portion foam surface removed by adsorption with filter paper, homogeneously FeCl on one surface of the foam
3 components were supported. Next, 4 ml of pyrrole was placed on the bottom of a glass container (10 cm in depth, 25 cm in width, 15 cm in height), and the foam obtained by the above treatment was hung from the top of the glass container, and the above was sealed with a glass plate to foam. The body was exposed to pyrrole vapor. By this contact, one side of the foam rapidly changed to dark green and then black, and polypyrrole was formed on one side of the foam.

40時間の接触のうち、発泡体を取出し、メタノール中
に30分間浸漬し、未反応ピロール及びFeCl成分
を抽出除去した。この操作を3回継続し、風乾した後に
所定の寸法で打ち抜いたものを正極として、またリチウ
ムを所定の寸法に打ち抜いたものを負極として第1図に
示したような本発明に係る二次電池(本発明電池A)を
作製した。尚、本実施例では電解質溶媒としてプロピレ
ンカーボネート、電解質としてテトラフルオロホウ酸リ
チウム(LiBF)を用い、またポリプロピレン不織
布からなるセパレータを用いた。電解質溶媒としてはこ
のプロピレンカーボネートの他に、エチレンカーボネー
ト,アセトニトリル,プロピオニトリル,ブチロニトリ
ル,ベンゾニトリル,ジオキソラン,1,4−ジオキサ
ン,テトラヒドロフラン,1,2−ジメトキシエタン,1,2
−ジクロロエタン,ニトロメタン,N,N−ジメチルホ
ルムアミド,ジメチルスルホキシド,スルホラン,リン
酸メチル,リン酸エチル,γ−ブチロラクトン等の溶媒
が挙げられ、これらの溶媒を単体、または二種以上混合
して用いてもよい。また、電解質としてはテトラフルオ
ロホウ酸リチウム(LiBF)の他に、過塩素酸リチ
ウム(LiClO)、ヘキサフルオロリン酸リチウム
(LiPF)、テトラクロロアルミン酸リチウム(L
iAlCl)、テトラフルオロホウ酸テトラエチルア
ンモニウム((CNBF)、過塩素酸テト
ラエチルアンモニウム((CNClO)、
トリフルオロメタンスルホン酸リチウム(LiCF
)、臭化リチウム(LiBr)、ヨウ化リチウム
(LiI)等を用いてもよい。
After contacting for 40 hours, the foam was taken out and immersed in methanol for 30 minutes to extract and remove unreacted pyrrole and FeCl 3 components. This operation was continued three times, and after air-drying, punched out in a predetermined size was used as a positive electrode, and lithium punched out in a predetermined size was used as a negative electrode, and the secondary battery according to the present invention as shown in FIG. (Invention Battery A) was produced. In this example, propylene carbonate was used as the electrolyte solvent, lithium tetrafluoroborate (LiBF 4 ) was used as the electrolyte, and a separator made of polypropylene nonwoven fabric was used. As the electrolyte solvent, in addition to propylene carbonate, ethylene carbonate, acetonitrile, propionitrile, butyronitrile, benzonitrile, dioxolane, 1,4-dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2
-Dichloroethane, nitromethane, N, N-dimethylformamide, dimethylsulfoxide, sulfolane, methyl phosphate, ethyl phosphate, γ-butyrolactone and the like are mentioned as solvents. These solvents may be used alone or in combination of two or more. Good. Further, as the electrolyte, in addition to lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrachloroaluminate (L
iAlCl 4), tetraethylammonium tetrafluoroborate ((C 2 H 5) 4 NBF 4), tetraethylammonium perchlorate ((C 2 H 5) 4 NClO 4),
Lithium trifluoromethanesulfonate (LiCF 3 S
O 3 ), lithium bromide (LiBr), lithium iodide (LiI), or the like may be used.

更に、多孔度80%,98%のステンレススチールの発
泡体を用いた以外は本発明電池Aと同じ構成の電池(本
発明電池B,C)を作製した。
Further, batteries (invention batteries B and C) having the same structure as the battery A of the present invention were prepared except that a foam of stainless steel having a porosity of 80% and 98% was used.

また、比較のために多孔度60%,40%のステンレス
スチールの発泡体を用いた以外は本発明電池Aと同じ構
成の二次電池(比較電池D,E)を作製した。更に従来
の電解重合法によって作製したポリピロールフィルムを
集電体を介して正極缶にプレスし圧着したものを正極と
した以外は本発明電池Aと同様の構成の比較電池Fを作
製した。
Further, for comparison, secondary batteries (comparative batteries D and E) having the same structure as the battery A of the present invention except that a foam of stainless steel having a porosity of 60% and 40% were used were produced. Further, a comparative battery F having the same structure as the battery A of the present invention was prepared, except that a polypyrrole film prepared by a conventional electrolytic polymerization method was pressed to a positive electrode can via a current collector and pressed to form a positive electrode.

以上の6つの電池について、0.5mAの電流で1時間充
電した後、0.5mAの電流で電池電圧が2.5Vになる
まで放電するという充放電サイクルを繰り返した。
The above six batteries were charged and discharged at a current of 0.5 mA for 1 hour and then discharged at a current of 0.5 mA until the battery voltage reached 2.5 V, which was repeated.

第2図に本発明電池A〜Cと比較電池D〜Fの第20サ
イクル目の充放電における電圧の経時変化を示した。同
図において実線は充電時の、また点線は放電時の電圧変
化である。第2図から明らかなように、本発明電池A〜
Cは比較電池D〜Fに較べ充電電圧が低くて放電電圧が
高く、また充放電率も良好で、本発明電池A〜Cの充放
電効率も良好で、本発明電池A〜Cの充放電効率はそれ
ぞれ92%,93%,93%であるのに対して、比較電
池D〜Fの場合は夫々89%,87%,81%である。
このように本発明電池A〜Cの充放電効率が高いのは、
本発明電池A〜Cの場合多孔度が70〜98%と大きい
ステンレススチール発泡体を電極基材として使用してい
るので、電極の含液性が非常に良好で且つステンレスス
チール発泡体と導電性ポリマーとが接触している部分が
多いため、導電性ポリマーが電解液と直接接触している
部分が多くなってポリマーの利用率が向上するためと思
われる。一方、比較電池D,Eでは、ステンレススチー
ル発泡体を電極基材として使用しているので比較電池F
に較べれば含液性が良好で導電性ポリマーの利用率も高
くなって比較電池Fより充放電効率は高くなる。しか
し、比較電池D,Eで用いたステンレススチール発泡体
の多孔度は夫々60%,40%と小さく、その分、正極
の比表面積が小さくなって正極の含液率が低減し、本実
験でのポリマー重合体量ではステンレススチール発泡体
とポリピロールが接触している部分が減少し、また電解
液と直接接触するポリピロール量も減少するため、ポリ
ピロールの利用率が本発明電池A〜Cに較べて低くな
り、この結果充放電効率が本発明電池A〜Cよりも低く
なっていると考えられる。
FIG. 2 shows changes with time in voltage during charge / discharge at the 20th cycle of the inventive batteries A to C and the comparative batteries D to F. In the figure, the solid line shows the voltage change during charging, and the dotted line shows the voltage change during discharging. As is apparent from FIG. 2, the present invention batteries A to
C has a lower charging voltage and a higher discharging voltage than the comparative batteries D to F, and has a good charge and discharge rate, and the charging and discharging efficiency of the batteries A to C of the present invention is good. The efficiencies are 92%, 93%, and 93%, respectively, while the comparative batteries D to F have 89%, 87%, and 81%, respectively.
As described above, the batteries A to C of the present invention have high charge and discharge efficiency.
In the case of the batteries A to C of the present invention, since the stainless steel foam having a large porosity of 70 to 98% is used as the electrode base material, the liquid content of the electrode is very good, and the conductivity with the stainless steel foam is high. It is considered that this is because the conductive polymer has many portions in direct contact with the electrolytic solution, and the utilization rate of the polymer is improved because many portions are in contact with the polymer. On the other hand, in Comparative batteries D and E, the comparative battery F is used because the stainless steel foam is used as the electrode base material.
As compared with Comparative example F, the liquid content is good, the utilization rate of the conductive polymer is high, and the charge / discharge efficiency is higher than that of Comparative battery F. However, the porosities of the stainless steel foams used in the comparative batteries D and E were as low as 60% and 40%, respectively, and the specific surface area of the positive electrode was reduced accordingly, and the liquid content of the positive electrode was reduced. In the polymer polymer amount of, the area where the stainless steel foam and polypyrrole are in contact is reduced, and the amount of polypyrrole in direct contact with the electrolytic solution is also reduced. Therefore, the utilization rate of polypyrrole is lower than that of the present batteries A to C. It is considered that as a result, the charging / discharging efficiency is lower than that of the batteries A to C of the present invention.

また、第3図に、本発明電池A〜Cと比較電池D〜Fの
充放電効率(%)のサイクル変化を示した。同図から明
らかなように、本発明電池A〜Cはサイクル数140で充
放電効率がそれぞれ93%,94%,93%と高く、サ
イクル寿命が良好である。これに対して比較電池Fの場
合は30サイクル目当りから充放電効率が大きく劣化し
ている。比較電池Fのサイクル特性がこのように悪いの
は、充放電サイクルの途中で正極のポリピロールフィル
ムが集電体から剥がれていき、このために正極と集電体
との密着性が悪くなっていって正極において局部的に電
流が集中して流れるようになる結果、正極中のポリピロ
ールの利用率が著しく低減して電池の充放電率が大きく
低下するためと考えられる。また、比較電池D,Eの場
合、100サイクル目当りまで比較的高い充放電効率を維
持している。これは比較品Fと比較した場合、正極基材
兼集電体としてステンレススチール発泡体を使用してお
り、ステンレススチール発泡体とポリピロールフィルム
ポリマーの密着性が良好で且つ正極の含液性も良好であ
るためである。しかし本発明電池A〜Cと比較した場
合、上記ステンレススチール発泡体の多孔度が比較電池
D,Eの場合はずっと小さく、その分、上述のようにポ
リピロールの利用率が本発明電池A〜Cに較べて低くな
り、本実験の厳しい充放電条件では100サイクルを越え
る当りから正極局部に電流が集中しはじめ、ポリピロー
ル自体の劣化による充電電圧の立ち上りに起因する電解
質の分解や溶媒の分解,重合が生じるためと考えられ
る。
In addition, FIG. 3 shows the cycle change of the charge / discharge efficiency (%) of the batteries A to C of the present invention and the comparative batteries D to F. As is clear from the figure, the batteries A to C of the present invention have a high cycle charge of 140% and high charge / discharge efficiencies of 93%, 94%, and 93%, respectively, and have good cycle life. On the other hand, in the case of the comparative battery F, the charging / discharging efficiency is greatly deteriorated after about the 30th cycle. The reason why the cycle characteristic of the comparative battery F is such bad is that the polypyrrole film of the positive electrode is peeled off from the current collector during the charge / discharge cycle, and thus the adhesion between the positive electrode and the current collector is deteriorated. It is considered that, as a result of locally concentrating the current in the positive electrode, the utilization rate of polypyrrole in the positive electrode is significantly reduced, and the charge / discharge rate of the battery is significantly reduced. Further, in the case of the comparative batteries D and E, a relatively high charge / discharge efficiency was maintained up to the 100th cycle. Compared with the comparative product F, this uses a stainless steel foam as a positive electrode base material and current collector, and the adhesion between the stainless steel foam and the polypyrrole film polymer is good, and the liquid content of the positive electrode is also good. This is because. However, when compared with the batteries A to C of the present invention, the porosity of the above-mentioned stainless steel foam was much smaller in the comparative batteries D and E, and accordingly, as described above, the utilization rate of polypyrrole was higher than that of the batteries A to C of the present invention. Under the severe charge and discharge conditions of this experiment, current began to concentrate at the positive electrode local area after 100 cycles, and the electrolyte and solvent were decomposed and polymerized due to the rise of the charging voltage due to the deterioration of polypyrrole itself. It is thought that this is due to

本発明電池A〜Cでは正極基材兼集電体としてステンレ
ススチール発泡体でその多孔度が70〜98%という範
囲のものを用いているためにポリピロールの利用率が向
上し、このように優れたサイクル特性をもつものであ
る。
In the batteries A to C of the present invention, since the positive electrode base material and the current collector are made of stainless steel foam having a porosity in the range of 70 to 98%, the utilization rate of polypyrrole is improved. It has excellent cycle characteristics.

第4図に第140サイクル目の充放電における本発明電池
A〜C、並びに比較電池D,Eの電池電圧の経時変化を
示した。同図から明らかなように、本発明電池A〜Cは
第140サイクル目においても充電電圧の立ち上りもな
く、比較電池D,Eに較べて、放電電圧曲線も平坦であ
り、長いサイクルに亘って良好なサイクル特性を維持し
ていることがわかる。
FIG. 4 shows changes with time in the battery voltages of the batteries A to C of the present invention and the comparative batteries D and E in the 140th cycle of charging and discharging. As is clear from the figure, in the batteries A to C of the present invention, the charging voltage did not rise even in the 140th cycle, the discharge voltage curve was flat as compared with the comparative batteries D and E, and the battery was used over a long cycle. It can be seen that good cycle characteristics are maintained.

尚、以上は正極にのみ導電材料を用いたものについて説
明したが、負極、あるいは正負極に本発明の導電材料を
用いた場合も同様の効果が得られることは明らかであ
る。
In the above description, the conductive material is used only for the positive electrode, but it is clear that the same effect can be obtained when the conductive material of the present invention is used for the negative electrode or the positive and negative electrodes.

<発明の効果> 以上のように構成されるこの発明の二次電池によれば、
電極の膜厚を厚くした場合でもその膜厚の均一性を保つ
ことができること、電極基材である金属発泡体の細孔内
部にポリマーが保持されるのでショックなどで電極内の
ポリマーが剥がれることがなくて電極の機械的強度が著
しく向上すること、この金属発泡体に電極集電体を兼ね
させることでポリマーと集電体との密着性が向上するこ
と等によって、充放電サイクルなどにおいてポリマーと
集電体との接触が悪化したり電池反応が一部に集中して
生じることも非常に少なくて電池のサイクル寿命を大幅
に改善することができる。また、電極基材として多孔度
が70〜98%の金属発泡体を用いたので、ポリマーの
生成量を多くした場合や厳しい充放電条件の場合でも、
電極の含液性の増大により導電性ポリマーの利用率を高
めて充放電効率を向上することができ、この結果、優れ
たサイクル特性を得ることができる。更に、本発明で電
極材料として用いた導電材料は製造容易で耐酸化性も優
れており、電極作製が容易で電極の保存性がよい。
<Effects of the Invention> According to the secondary battery of the present invention configured as described above,
Even if the thickness of the electrode is increased, the uniformity of the film thickness can be maintained, and the polymer is retained inside the pores of the metal foam that is the electrode base material, so the polymer in the electrode can peel off due to shock or the like. There is no need to improve the mechanical strength of the electrode, and the metal foam also serves as an electrode current collector to improve the adhesion between the polymer and the current collector. It is possible to significantly improve the cycle life of the battery because contact with the current collector and the battery reaction are not concentrated in a part. In addition, since a metal foam having a porosity of 70 to 98% is used as the electrode base material, even when the amount of polymer produced is increased or even under severe charge and discharge conditions,
By increasing the liquid content of the electrode, the utilization rate of the conductive polymer can be increased and the charge / discharge efficiency can be improved. As a result, excellent cycle characteristics can be obtained. Furthermore, the conductive material used as the electrode material in the present invention is easy to manufacture and has excellent oxidation resistance, so that the electrode can be easily manufactured and the storage stability of the electrode is good.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の電池の構造を示した断面図、
第2図は第20サイクル目の充電時における本発明電池
及び比較電池の電池電圧の経時変化を示したグラフ、第
3図は本発明電池及び比較電池のサイクル特性を示した
グラフ、第4図は第140サイクル目の充放電時における
本発明電池及び比較電池の電池電圧の経時変化を示した
グラフである。 1……正極、2……負極、5……正極缶、6……負極
缶、7……集電体、8……発泡体。
FIG. 1 is a sectional view showing the structure of a battery according to an embodiment of the present invention,
FIG. 2 is a graph showing changes over time in battery voltage of the present invention battery and comparative battery during charging in the 20th cycle, FIG. 3 is a graph showing cycle characteristics of the present invention battery and comparative battery, and FIG. FIG. 6 is a graph showing changes with time in battery voltage of the battery of the present invention and the comparative battery during charge and discharge at the 140th cycle. 1 ... Positive electrode, 2 ... Negative electrode, 5 ... Positive electrode can, 6 ... Negative electrode can, 7 ... Current collector, 8 ... Foam.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 好永 宣之 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 鈴木 哲身 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成工業株式会社総合研究所内 (72)発明者 長谷川 和美 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成工業株式会社総合研究所内 (56)参考文献 特開 昭59−18578(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuyuki Yoshinaga 2-18, Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Tetsumi Suzuki, 1000-1, Kamoshida-cho, Midori-ku, Yokohama (72) Inventor Kazumi Hasegawa, 1000, Kamoshida-cho, Midori-ku, Yokohama-shi, Kanagawa San Ryoshi Kasei Co., Ltd. (56) Reference JP-A-59-18578 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極,負極および電解液からなる二次電池
であって、酸化剤の存在下、該酸化剤を保持しうる空間
を有した金属発泡体上で導電性ポリマーを気相雰囲気で
重合させ、該金属発泡体の空間に該導電性ポリマーを形
成してなる導電材料を少なくとも一方の電極材料として
用い、該金属発泡体の多孔度が70〜98%であること
を特徴とする二次電池。
1. A secondary battery comprising a positive electrode, a negative electrode and an electrolytic solution, in the presence of an oxidizing agent, a conductive polymer in a gas phase atmosphere on a metal foam having a space capable of holding the oxidizing agent. A conductive material obtained by polymerizing and forming the conductive polymer in the space of the metal foam is used as at least one electrode material, and the porosity of the metal foam is 70 to 98%. Next battery.
JP61099564A 1985-10-09 1986-04-30 Secondary battery Expired - Fee Related JPH0619982B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61099564A JPH0619982B2 (en) 1986-04-30 1986-04-30 Secondary battery
CA000520107A CA1306904C (en) 1985-10-09 1986-10-08 Electrically conductive material and secondary battery using the electrically conductive material
US06/917,051 US4731311A (en) 1985-10-09 1986-10-09 Electrically conductive material and secondary battery using the electrically conductive material
EP86113998A EP0219063B1 (en) 1985-10-09 1986-10-09 Process of manufacturing an electrically conductive material and a secondary battery using the electrically conductive material
DE3689759T DE3689759T2 (en) 1985-10-09 1986-10-09 Method for producing an electrically conductive material and a secondary battery using this electrically conductive material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099564A JPH0619982B2 (en) 1986-04-30 1986-04-30 Secondary battery

Publications (2)

Publication Number Publication Date
JPS62256362A JPS62256362A (en) 1987-11-09
JPH0619982B2 true JPH0619982B2 (en) 1994-03-16

Family

ID=14250632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099564A Expired - Fee Related JPH0619982B2 (en) 1985-10-09 1986-04-30 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0619982B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery

Also Published As

Publication number Publication date
JPS62256362A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
EP0219063B1 (en) Process of manufacturing an electrically conductive material and a secondary battery using the electrically conductive material
JP4259617B2 (en) Electrochemical storage battery comprising at least one electrode prepared from a fluorophenylthiophene polymer
JPWO2003067687A1 (en) Redox active reversible electrode and novel battery using the same
EP2306562A1 (en) Accumulator material and accumulator device
EP2308912B1 (en) Polymer, semiconductor film, electrode, electrode active material, electrochemical element and electricity storage device
JPH046072B2 (en)
EP0971426B1 (en) Polymer secondary battery and method of making same
JPS63314762A (en) Organic electrolyte cell using aluminum-lithium alloy as negative electrode
US6699621B2 (en) Method for electrochemical conditioning polymeric electrodes
JP4826699B2 (en) Power storage device
JP3144410B2 (en) Battery and capacitor using quinoxaline resin
JPH0568829B2 (en)
JPH0619982B2 (en) Secondary battery
JP2002025865A (en) Electric double-layer capacitor
JP2934452B2 (en) Rechargeable battery
JPH0636360B2 (en) Secondary battery
JPH043066B2 (en)
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
WO2020262440A1 (en) Electrochemical device
JPH0722025B2 (en) Secondary battery
JPH0636361B2 (en) Secondary battery
JP2501821B2 (en) Secondary battery
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JP2644765B2 (en) Positive electrode for storage battery
JPH0650637B2 (en) Secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees