JPH0619868Y2 - Flat belt - Google Patents

Flat belt

Info

Publication number
JPH0619868Y2
JPH0619868Y2 JP5418289U JP5418289U JPH0619868Y2 JP H0619868 Y2 JPH0619868 Y2 JP H0619868Y2 JP 5418289 U JP5418289 U JP 5418289U JP 5418289 U JP5418289 U JP 5418289U JP H0619868 Y2 JPH0619868 Y2 JP H0619868Y2
Authority
JP
Japan
Prior art keywords
layer
belt
rubber layer
flat belt
core wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5418289U
Other languages
Japanese (ja)
Other versions
JPH02143543U (en
Inventor
京太郎 柳
宏 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP5418289U priority Critical patent/JPH0619868Y2/en
Publication of JPH02143543U publication Critical patent/JPH02143543U/ja
Application granted granted Critical
Publication of JPH0619868Y2 publication Critical patent/JPH0619868Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、高負荷伝動用の平ベルトに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a flat belt for high load transmission.

(従来の技術) 従来、平ベルトは、ベルト基帯の外被全体若しくはプー
リ接触面に糊引きした帆布を張り合わせた構造又は心線
に単一ゴムを貼った構造で、軽負荷伝動用に用いられて
いる(例えば実公昭50−43634号公報参照)。
(Prior Art) Conventionally, a flat belt has a structure in which glued canvas is adhered to the entire outer cover of the belt base or the pulley contact surface, or a single rubber is attached to the core wire, and is used for light load transmission. (See, for example, Japanese Utility Model Publication No. 50-43634).

(考案が解決しようとする課題) そのため、高負荷条件下での使用では、心線が沈み込
み、また、剪断力に対する変形が大きく、高負荷伝動が
できないのが現状である。
(Problems to be solved by the invention) Therefore, when used under a high load condition, the core wire sinks and is largely deformed by a shearing force, so that a high load transmission is impossible.

即ち、心線層の下側に弾性が低いゴム層のみがある場合
には、高負荷伝動を行うと、第9図及び第10図に示す
ように、心線aとプーリbとの間に圧縮力が作用し、圧
縮ゴム層cが大きく変形し、心線aが大きく沈み込むこ
ととなり(第9図鎖線参照)、また、ベルト長手方向に
は、剪断応力τにより大きな剪断歪γを発生するため
に、伝動能力が低くなり、また、発熱が大きくなり、ベ
ルト寿命が低下する。
That is, when there is only a rubber layer having a low elasticity on the lower side of the core wire layer, when high load transmission is performed, as shown in FIGS. 9 and 10, between the core wire a and the pulley b. The compressive force acts, the compressed rubber layer c is largely deformed, and the core wire a is largely depressed (see the chain line in FIG. 9), and a large shear strain γ is generated in the belt longitudinal direction due to the shear stress τ. As a result, the power transmission capability is reduced, heat generation is increased, and the belt life is reduced.

また、心線aとプーリbとの間の圧縮力により圧縮ゴム
層cに発生する面圧Pがベルト幅方向で均一とならず、
各心線aごとに大きな面圧Pmaxが発生し、圧縮ゴム層
cとプーリbとの間のすべりで部分的に摩耗を早める。
Further, the surface pressure P generated in the compression rubber layer c due to the compression force between the core wire a and the pulley b is not uniform in the belt width direction,
A large surface pressure Pmax is generated for each core wire a, and slippage between the compression rubber layer c and the pulley b partially accelerates wear.

一方、圧縮ゴム層を、短繊維が混合された高弾性のゴム
で形成すると、摩擦係数が低いので、伝動能力が低くな
る。
On the other hand, when the compressed rubber layer is made of a highly elastic rubber mixed with short fibers, the friction coefficient is low, so that the power transmission capability becomes low.

本考案はかかる点に鑑みてなされたもので、高負荷伝動
を可能とした平ベルトを提供することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a flat belt capable of high-power transmission.

(課題を解決するための手段) 本考案は、ベルト基帯にエンドレスの心線が螺旋状に埋
設された心線層を有する平ベルトを前提とするもので、
上記ベルト基帯のプーリに接触する下面側に高摩擦係数
を有する表面ゴム層を、上面側にスダレコードがベルト
幅方向に配列されたスダレ帆布層をそれぞれ有し、上記
心線層と表面ゴム層との間に短繊維混合の高弾性ゴムか
らなる圧縮ゴム層が介設されている構成とする。
(Means for Solving the Problems) The present invention is premised on a flat belt having a cord layer in which endless cords are spirally embedded in a belt base band.
A surface rubber layer having a high coefficient of friction is provided on the lower surface side that contacts the pulley of the belt base belt, and a sloppy canvas layer in which sudare records are arranged in the belt width direction is provided on the upper surface side. A compression rubber layer made of high-elasticity rubber mixed with short fibers is interposed between the layer and the layer.

(作用) 心線からの圧縮力を受けても、その下側の圧縮ゴム層は
短繊維混合の高弾性ゴムからなるので、あまり変形せ
ず、心線は沈み込まず、また、プーリより表面ゴム層に
作用する圧縮力は、スダレ帆布層によって剛性が高めら
れると共に表面ゴム層が高摩擦係数を有することから、
ほぼ均一となり、剪断応力による変形が小さくなる。
(Operation) Even if a compressive force is applied from the core wire, the compression rubber layer below it is made of high elastic rubber mixed with short fibers, so it does not deform much, the core wire does not sink, and the surface from the pulley Since the compressive force acting on the rubber layer is increased in rigidity by the sloppy canvas layer and the surface rubber layer has a high friction coefficient,
Almost uniform and less deformed by shear stress.

(実施例) 以下、本考案の実施例を図面に沿って詳細に説明する。Embodiment An embodiment of the present invention will be described in detail below with reference to the drawings.

平ベルトの全体構成を示す第1図において、1は平ベル
トで、接着ゴム2内部に心線3が螺旋状に埋設されてな
る心線層4を有し、該心線層4の上面側にスダレコード
5がベルト幅方向に配列されたスダレ帆布層6が積層さ
れ、下面側に、短繊維混合の高弾性ゴムからなる圧縮ゴ
ム層7(E=430×10dyn/cm2、μ=0.5)及
び高摩擦係数を有する表面ゴム層8(E=310×10
dyn/cm2、μ=0.9)とが上側から順に積層されて
なる。
In FIG. 1 showing the overall structure of a flat belt, 1 is a flat belt, which has a cord layer 4 in which a cord 3 is embedded spirally inside an adhesive rubber 2, and the cord layer 4 has an upper surface side. On the lower surface side, a compression rubber layer 7 (E = 430 × 10 6 dyn / cm 2 , μ) made of high elastic rubber mixed with short fibers is laminated. = 0.5) and the surface rubber layer 8 having a high friction coefficient (E = 310 × 10)
6 dyn / cm 2 , μ = 0.9) are sequentially laminated from the upper side.

このように構成すれば、心線層4下側の圧縮ゴム層7
は、短繊維混合の高弾性ゴムからなるので、第2図及び
第3図に示すように、心線からの圧縮ゴム層力を受けて
も、あまり変形せず、心線3は沈み込まず、また、プー
リ9より表面ゴム層8に作用する圧縮力(面圧P)は、
スダレ帆布層6によって剛性が高められると共に表面ゴ
ム層8が高摩擦係数を有することから、ほぼ均一とな
り、剪断応力γによる変形が小さくなる。よって、高負
荷伝動が可能となる。
According to this structure, the compressed rubber layer 7 below the core layer 4
Is made of high-elasticity rubber mixed with short fibers, so as shown in FIG. 2 and FIG. 3, even if a compressed rubber layer force from the core wire is received, the core wire 3 does not deform so much and the core wire 3 does not sink. The compressive force (contact pressure P) acting on the surface rubber layer 8 from the pulley 9 is
Since the rigidity is increased by the sloppy canvas layer 6 and the surface rubber layer 8 has a high coefficient of friction, the surface rubber layer 8 becomes substantially uniform, and the deformation due to the shear stress γ is reduced. Therefore, high load transmission is possible.

ここで、心線層4の下側を全て高弾性ゴムからなる圧縮
ゴム層としていないのは、そのようにすると、心線から
圧縮力を受けても変形はないが、摩擦係数が低くなるた
め、早期にスベリ伝動能力がアップしないからである。
そのため、心線層4の下側に圧縮ゴム層7と表面ゴム層
8とを積層するようにしているのである。
Here, the reason why the lower side of the core wire layer 4 is not a compression rubber layer made of a high elastic rubber is that, if this is done, there is no deformation even if a compressive force is applied from the core wire, but the friction coefficient becomes low. , Because the sliding transmission ability does not improve early.
Therefore, the compression rubber layer 7 and the surface rubber layer 8 are laminated below the core layer 4.

続いて、上記平ベルト1について行った試験結果につい
て説明する。
Next, the test results of the flat belt 1 will be described.

(1)スリップ試験 〈試験ベルト〉 第1図に示す本考案例平ベルト1、心線層22の下
側の圧縮ゴム層23(E=250×10dyn/cm2、μ
=0.8)がゴムのみからなる比較例Aとしての平ベル
ト21(第4図参照)、心線層32の下側の圧縮ゴム
層33(E=430×10dyn/cm2、μ=0.5)が
短繊維混合ゴムからなる比較例Bとしての平ベルト31
(第5図参照)とについて行った。尚、ベルト寸法は、
全て、ベルト幅25.4mm、ベルト厚さ3.56mm、周
回凹溝の幅1mmである。
(1) Slip test <Test belt> The flat belt 1 of the present invention shown in FIG. 1, the compression rubber layer 23 below the core layer 22 (E = 250 × 10 6 dyn / cm 2 , μ)
= 0.8) made of only rubber as a flat belt 21 (see FIG. 4) as a comparative example A, a compressed rubber layer 33 (E = 430 × 10 6 dyn / cm 2 , μ below the core layer 32). = 0.5) is a short belt mixed rubber and is a flat belt 31 as Comparative Example B.
(See FIG. 5). The belt dimensions are
All have a belt width of 25.4 mm, a belt thickness of 3.56 mm, and a circumferential groove width of 1 mm.

〈試験装置〉 第6図に示すように、駆動側プーリ41(直径100m
m、OPS)と、従動側プーリ42(直径100mm、2
600rpm)とに試験ベルト43を巻回し、従動側プー
リ42にW=450kgfの軸荷重を加えつつ走行試験を
行い、伝動能力の変化によるスリップ率の変化を測定し
た。
<Testing device> As shown in FIG. 6, the driving side pulley 41 (diameter 100 m
m, OPS) and driven pulley 42 (diameter 100 mm, 2
(600 rpm), the test belt 43 was wound around the test belt 43, and a running test was performed while applying an axial load of W = 450 kgf to the driven pulley 42, and changes in the slip ratio due to changes in the transmission capacity were measured.

〈試験結果〉 試験結果は第7図に示す通りである。従って、本考案例
は、伝動能力を高めても、比較例A,B(平ベルト2
1,31)に比べで、スリップ率が小さく、高負荷伝動
に適していることが判る。
<Test Results> The test results are shown in FIG. Therefore, in the present invention example, even if the transmission capacity is increased, the comparative examples A and B (flat belt 2
It can be seen that the slip ratio is smaller than that of No. 1, 31) and that it is suitable for high load transmission.

(2)摩擦係数測定試験 〈試験ベルト〉 スリップ試験と同じである。(2) Friction coefficient measurement test <Test belt> Same as the slip test.

〈試験装置〉 第8図に示すように、試験ベルト51をプーリ52(直
径60mm、回転数45rpm)に巻回し、一端にロードセ
ル53を連結する一方、他端に荷重DWを加え、次の式
に基づき摩擦係数μを求めた。
<Testing device> As shown in FIG. 8, a test belt 51 is wound around a pulley 52 (diameter: 60 mm, rotation speed: 45 rpm), a load cell 53 is connected to one end, and a load DW is applied to the other end. The friction coefficient μ was calculated based on

μ=[2×Ln(ロードセル荷重/DW)]/π (考案の効果) 本考案は、上記のように、心線層の上側にスダレ帆布層
を、下側に高弾性の圧縮ゴム層及び高摩擦係数の表面ゴ
ム層を積層するようにしたから、心線からの圧縮力を受
けても、その下側の圧縮ゴム層はあまり変形せず、心線
は沈み込まず、また、プーリより表面ゴム層に作用する
圧縮力は、スダレ帆布層によって剛性が高められると共
に表面ゴム層が高摩擦係数を有することから、ほぼ均一
となり、剪断応力による変形が小さくなり、高負荷伝動
が可能となる。
μ = [2 × Ln (load cell load / DW)] / π (Effect of the device) As described above, the present invention has a sloppy canvas layer on the upper side of the cord layer and a highly elastic compressed rubber layer on the lower side. Since the surface rubber layer with a high friction coefficient is laminated, even if a compressive force from the core wire is received, the compression rubber layer below it does not deform much, the core wire does not sink, and The compressive force acting on the surface rubber layer is almost uniform because the rigidity is increased by the sloppy canvas layer and the surface rubber layer has a high friction coefficient, so that the deformation due to shear stress is small and high load transmission is possible. .

【図面の簡単な説明】[Brief description of drawings]

第1図〜第8図は本考案の実施例を示し、第1図は平ベ
ルトの断面図、第2図及び第3図は作用の説明図、第4
図及び第5図は比較例の試験ベルトの断面図、第6図は
試験装置の説明図、第7図は試験結果を示す図、第8図
は摩擦係数の測定方法の説明図である。 第9図及び第10図は従来の平ベルトの作用の説明図で
ある。 1,61,71……平ベルト、2……接着ゴム、3……
心線、4……心線層、5……スダレコード、6……スダ
レ帆布層、7……圧縮ゴム層、8……表面ゴム層
1 to 8 show an embodiment of the present invention, FIG. 1 is a sectional view of a flat belt, FIGS. 2 and 3 are explanatory views of the action, and FIG.
FIG. 5 and FIG. 5 are cross-sectional views of a test belt of a comparative example, FIG. 6 is an explanatory diagram of a test apparatus, FIG. 7 is a diagram showing test results, and FIG. 8 is an explanatory diagram of a friction coefficient measuring method. 9 and 10 are explanatory views of the operation of the conventional flat belt. 1, 61, 71 Flat belt, 2 Adhesive rubber, 3
Core wire, 4 ... Core wire layer, 5 ... Sudari record, 6 ... Sudare canvas layer, 7 ... Compressed rubber layer, 8 ... Surface rubber layer

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ベルト基帯にエンドレスの心線が螺旋状に
埋設された心線層を有する平ベルトにおいて、 上記ベルト基帯のプーリに接触する下面側に高摩擦係数
を有する表面ゴム層を、上面側にスダレコードがベルト
幅方向に配列されたスダレ帆布層をそれぞれ有し、上記
心線層と表面ゴム層との間に短繊維混合の高弾性ゴムか
らなる圧縮ゴム層が介設されていることを特徴とする平
ベルト。
1. A flat belt having a cord layer in which endless cords are spirally embedded in a belt base band, wherein a surface rubber layer having a high friction coefficient is provided on a lower surface side of the belt base band which is in contact with a pulley. The upper surface side has a Sudare canvas layer in which Suda Records are arranged in the belt width direction, and a compression rubber layer made of a high elastic rubber mixed with short fibers is interposed between the core layer and the surface rubber layer. A flat belt that is characterized by
JP5418289U 1989-05-10 1989-05-10 Flat belt Expired - Lifetime JPH0619868Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5418289U JPH0619868Y2 (en) 1989-05-10 1989-05-10 Flat belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5418289U JPH0619868Y2 (en) 1989-05-10 1989-05-10 Flat belt

Publications (2)

Publication Number Publication Date
JPH02143543U JPH02143543U (en) 1990-12-05
JPH0619868Y2 true JPH0619868Y2 (en) 1994-05-25

Family

ID=31576019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5418289U Expired - Lifetime JPH0619868Y2 (en) 1989-05-10 1989-05-10 Flat belt

Country Status (1)

Country Link
JP (1) JPH0619868Y2 (en)

Also Published As

Publication number Publication date
JPH02143543U (en) 1990-12-05

Similar Documents

Publication Publication Date Title
JPH0619868Y2 (en) Flat belt
US3995506A (en) Power transmission belt
JPH0612267Y2 (en) Flat belt
JP2857727B2 (en) Power transmission device using V-ribbed belt
JPH0454353Y2 (en)
CN2126346U (en) Fully floating automatic centrifugal wedging wet fruction clutch
JP2001311456A (en) Vibration analysis method and design aid method for transmission belt driving system
JPH0518514Y2 (en)
JPS585149Y2 (en) Tensioner for toothed belts
JP3145478U (en) V-ribbed belt friction coefficient measuring device
CN214367520U (en) Multi-wedge belt
JPS6115329Y2 (en)
JPH0710101Y2 (en) Friction transmission mechanism
JPH07293641A (en) Ribbed belt
JPS6315629Y2 (en)
CN114459989A (en) Simulation test device and method for friction slippage inside and outside elevator steel belt
KR970048010A (en) Clutch Plate Torsion Measuring Device
JPS631946A (en) Double cylinder tester
JP2000337448A (en) Transmission belt and manufacture thereof
JPH0452511Y2 (en)
JPH0552402U (en) Power transmission belt and drive device thereof
JP2908250B2 (en) V-ribbed belt
JPS62163355U (en)
JPH0781609B2 (en) Transmission belt
JPS6228862Y2 (en)