JPH06198215A - Air purifying method and apparatus - Google Patents

Air purifying method and apparatus

Info

Publication number
JPH06198215A
JPH06198215A JP20317092A JP20317092A JPH06198215A JP H06198215 A JPH06198215 A JP H06198215A JP 20317092 A JP20317092 A JP 20317092A JP 20317092 A JP20317092 A JP 20317092A JP H06198215 A JPH06198215 A JP H06198215A
Authority
JP
Japan
Prior art keywords
gas
fine particles
harmful
wafer
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20317092A
Other languages
Japanese (ja)
Other versions
JP2722297B2 (en
Inventor
Toshiaki Fujii
敏昭 藤井
Hidetomo Suzuki
英友 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP20317092A priority Critical patent/JP2722297B2/en
Publication of JPH06198215A publication Critical patent/JPH06198215A/en
Application granted granted Critical
Publication of JP2722297B2 publication Critical patent/JP2722297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To impart effect preventing the increase of a contact angle and to obtain air from which dust is removed. CONSTITUTION:In an apparatus for purifying air containing a harmful component 10 and fine particles 11, a harmful component removing part A using at least one kind of an adsorbent for removing a harmful component in air selected from a silica gel 2, synthetic zeolite, a glass material 3 and fluoroplastic and a fine particle removing part B having an ultraviolet source 4 and/or a radiation source, a photoelectron discharge material 6 discharging photoelectrons 12 by the irradiation with rays, an electrode 7 for an electric field and a charged fine particle collecting material 7 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体の清浄化に係り、
特に、接触角の増加防止に効果があり、かつ除塵された
気体を得る方法及び装置に関する。本発明が適用できる
分野の例を次に示す。 (1)半導体工場におけるウエハの接触角増加防止。 (2)液晶工場におけるガラス基盤の接触角増加防止。 (3)精密機械工場における基盤の接触角増加防止。 具体的には例えば、エアーナイフ用空気、乾燥工程にお
ける空気、各種生産ラインへの供給空気、貴重品の保管
庫(ストッカ)、ウエハ保管庫、液晶保管庫、貴重品の
キャリヤ(搬送)、貴重品の搬送空間、クリーンベン
チ、クリーンブース、クリーンボックス、安全キャビネ
ット、無菌室、などのクリーンな空間における空気や窒
素ガスその他の気体の処理等に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cleaning gas,
In particular, the present invention relates to a method and an apparatus which are effective in preventing an increase in contact angle and obtain dust-free gas. The following are examples of fields to which the present invention can be applied. (1) Prevention of increase in wafer contact angle in semiconductor factories. (2) Prevent increase of contact angle of glass substrate in LCD factory. (3) Preventing the increase of the contact angle of the board in the precision machinery factory. Specifically, for example, air for air knives, air in the drying process, supply air to various production lines, valuables storage (stocker), wafer storage, liquid crystal storage, valuables carrier (transport), valuables. It can be used for treating air, nitrogen gas and other gases in clean spaces such as product transfer spaces, clean benches, clean booths, clean boxes, safety cabinets and aseptic chambers.

【0002】[0002]

【従来の技術】従来の技術に関して、半導体工場のクリ
ーンルームにおける空気清浄を例に説明する。従来のク
リーンルームにおける空気清浄方法あるいはその装置を
大別すると、 (1)機械的ろ過方式(例えばHEPAフィルター) (2)静電的に微粒子の捕集を行う高電圧による荷電及
び導電性フィルターによるろ過方式(例えばHESAフ
ィルター) (3)光電子により微粒子を荷電させ、該微粒子を捕集
・除去する方式(特開昭61−178050号公報、特
願平2−295422号)がある。
2. Description of the Related Art A conventional technique will be described by taking air cleaning in a clean room of a semiconductor factory as an example. The air cleaning methods in the conventional clean room or the apparatus therefor are roughly classified into (1) a mechanical filtration method (for example, a HEPA filter) (2) filtration by a high voltage charging and conductive filter that electrostatically collects fine particles. Method (for example, HESA filter) (3) There is a method of charging fine particles by photoelectrons and collecting / removing the fine particles (Japanese Patent Application Laid-Open No. 61-178050, Japanese Patent Application No. 2-295422).

【0003】これらの方式は、いずれも微粒子(粒子状
物質)除去を目的としており、炭化水素(H.C.),
SOx,NOx,HCl,NH3 のような接触角を増加
させる。ガス状の汚染物(有害ガス)の除去には効果が
ない欠点があった。ガス状の汚染物(有害成分)である
H.C.の除去法としては、燃焼分解法、触媒分解法、
3 分解法などが知られている。しかし、これらの方法
はクリーンルームへの導入空気に含有する極低濃度H.
C.除去には効果がない。
All of these methods are aimed at removing fine particles (particulate matter), and are based on hydrocarbons (HC),
Increase the contact angle such as SOx, NOx, HCl, NH 3 . It has a drawback that it is ineffective in removing gaseous pollutants (toxic gases). H.V., which is a gaseous pollutant (hazardous ingredient). C. The removal methods include combustion decomposition method, catalytic decomposition method,
O 3 decomposition method and the like are known. However, these methods have a very low H.V. concentration in the air introduced into the clean room.
C. It has no effect on removal.

【0004】また、H.C.以外の有害成分としては、
SOx,NOx,HCl,NH3 などがあり、これらの
除去法としては適宜のアルカリ性物質や酸性物質を用い
た中和反応や酸化反応に基づく方法などが知られてい
る。しかし、これらの方法は、成分濃度がクリーンルー
ムへの導入空気に含有するような極低濃度の場合には効
果が少ない。クリーンルームにおいては、自動車排ガス
に起因するような導入空気中の低濃度のH.C.も汚染
質として問題となる。また、クリーンルームにおける作
業で生じた各種の溶剤(例えば、アルコール、ケトン類
等)も汚染質として問題となる。
In addition, H. C. As harmful ingredients other than
There are SOx, NOx, HCl, NH 3 and the like, and as a method for removing these, a method based on a neutralization reaction or an oxidation reaction using an appropriate alkaline substance or acidic substance is known. However, these methods are less effective when the component concentration is an extremely low concentration such as contained in the air introduced into the clean room. In a clean room, H.O. C. Also poses a problem as a pollutant. Further, various solvents (for example, alcohols, ketones, etc.) generated in the work in the clean room also pose a problem as contaminants.

【0005】また、微粒子とガス状汚染物(有害成分)
の中間体であるミストやクラスターのような物質も従来
のフィルタでは除去できなかった。クリーンルームにお
ける汚染物(粒子状物質及び接触角を増加させるガス状
有害成分は、半導体製品の生産性(歩留り)を低下させ
る原因、すなわち、ウエハ、半製品、製品の基盤表面へ
の汚染物の沈着による破損となるため、これらの除去が
必要となってきている。
Further, fine particles and gaseous pollutants (hazardous components)
Substances such as mist and clusters, which are intermediates of, could not be removed by conventional filters. Pollutants in the clean room (particulate matter and gaseous harmful components that increase the contact angle are factors that reduce the productivity (yield) of semiconductor products, that is, the deposition of contaminants on the surface of wafers, semi-finished products, and substrate of products. It is necessary to remove these because they will be damaged by.

【0006】[0006]

【発明が解決しようとする課題】基板のウエハ、半製
品、製品に接触角を増加させる有害成分が付着したり、
微粒子が付着すると製品の生産性が低下する。接触角と
は、表面の汚染の程度を表わす指標であり、「表面のぬ
れ性を表わす角度」で表現され、接触角が高いと汚染さ
れており、逆に低いと汚染されていない。例えば、通常
のクリーンルームの空気にウエハが接触すると、該空気
中のH.C.がウエハ上に付着して汚染する。この場
合、ウエハの接触角は高くなる。
Problems such as adhesion of harmful components that increase the contact angle to wafers, semi-finished products and products of substrates,
If the fine particles adhere, the productivity of the product will decrease. The contact angle is an index showing the degree of contamination of the surface, and is represented by "an angle showing the wettability of the surface". When the contact angle is high, it is contaminated, and conversely, it is not contaminated. For example, when the wafer comes into contact with the air in a normal clean room, the H.V. C. Adheres to and contaminates the wafer. In this case, the contact angle of the wafer is high.

【0007】製品の生産性向上のためには、接触角で表
現される基板上への有害成分の付着及び基板への微粒子
の付着の両方をなくする必要がある。すなわち、半導体
製品の生産性向上のためには、接触角の増加防止に効果
があり、かつ除塵された気体が必要であり、そのための
方法及び装置が必要である。そこで、本発明は、上記要
望に答え、接触角の増加防止に効果がある除塵気体を得
る方法及び装置を提供することを課題とする。
In order to improve the productivity of products, it is necessary to eliminate both the adhesion of harmful components on the substrate and the adhesion of fine particles to the substrate expressed by the contact angle. That is, in order to improve the productivity of semiconductor products, a gas that is effective in preventing an increase in contact angle and that is dust-free is required, and a method and apparatus therefor are required. Therefore, it is an object of the present invention to provide a method and an apparatus for obtaining a dust-free gas that is effective in preventing an increase in contact angle, in response to the above-mentioned demand.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、有害成分及び微粒子を含有する気体の
清浄方法において、少なくとも接触角を増加する気体中
の有害成分を除去する工程と、光電子により気体中の微
粒子を除去する工程とに前記気体を通すこととしたもの
である。また、本発明では、有害成分及び微粒子を含有
する気体の清浄装置において、該気体中の有害成分を除
去するための、シリカゲル、合成ゼオライト、高分子化
合物、ガラス材又はフッ素樹脂から選ばれた少なくとも
1種類の吸着材を用いた有害ガス除去部と、該気体中の
微粒子を除去するための、紫外線源及び/又は放射線源
と該線源からの照射により光電子を放出する光電子放出
材と電場用電極及び荷電微粒子捕集材を有する微粒子除
去部とを備えたこととしたものである。
In order to solve the above-mentioned problems, in the present invention, in a method for cleaning a gas containing harmful components and fine particles, at least a step of removing harmful components in a gas which increases a contact angle, The step of removing the fine particles in the gas by photoelectrons is to pass the gas. Further, in the present invention, in a device for cleaning a gas containing harmful components and fine particles, at least one selected from silica gel, synthetic zeolite, polymer compound, glass material or fluororesin for removing harmful components in the gas. A harmful gas removing part using one kind of adsorbent, a photoelectron emitting material for removing fine particles in the gas, and a photoelectron emitting material for emitting photoelectrons upon irradiation from the radiation source and the radiation source, and for an electric field And a fine particle removing section having an electrode and a charged fine particle collecting material.

【0009】本発明の夫々の構成を詳細に説明する。接
触角を増加させるガス状有害成分(ガス及び/又はミス
ト状物質)の除去を行う有害成分除去部には、次に述べ
る吸着材及び/又は吸収材が充填されている。該吸着材
又は吸収材は、接触角を増加させるガス状又はミスト状
有害成分を吸着及び/又は吸収できる吸着材又は吸収材
であれば何れでも良い。通常の使用(用途)では、特
に、H.C.を吸着、吸収するものが良い。このうち、
吸着材としては、低濃度H.C.を吸着・捕集できるも
のであれば、何れでも使用できる。一般には活性炭、シ
リカゲル、合成ゼオライト、モレキュラシーブ、高分子
化合物(例、スチレン系重合体、スチレン−ジビニルベ
ンゼン共重合体)、ガラス材、フッ素樹脂、イオン交換
体(例、イオン交換繊維)がある。
Each structure of the present invention will be described in detail. The adsorbent and / or the absorbent described below is filled in the harmful component removing unit that removes the gaseous harmful component (gas and / or mist-like substance) that increases the contact angle. The adsorbent or absorbent may be any adsorbent or absorbent capable of adsorbing and / or absorbing gaseous or mist-like harmful components that increase the contact angle. In normal use (use), especially H.264. C. It is better to adsorb and absorb. this house,
As the adsorbent, a low concentration H. C. Any material can be used as long as it can adsorb and collect. Generally, there are activated carbon, silica gel, synthetic zeolite, molecular sieve, high molecular compound (eg, styrene polymer, styrene-divinylbenzene copolymer), glass material, fluororesin, ion exchanger (eg, ion exchange fiber).

【0010】次に、H.C.吸収材(H.C.との反応
剤)について説明する。H.C.吸収材は、低濃度H.
C.と反応し、固定化できるものであれば、何でも使用
できる。一般には、H2 SO4 共存でCr6+との反応、
2 2 7 共存でのI2 5 との反応を用いることが
できる。前者は低分子量のH.C.、後者は高分子量
H.C.に有効で適宜に用いることができる。用いる方
法としては、ガラスビースやアルミナ表面にこれらの試
薬剤を含浸させて反応させることができる。なお、吸収
とは化学反応により反応吸収することを示す。このう
ち、シリカゲル、合成ゼオライト、高分子化合物、ガラ
ス材、フッ素樹脂が性能の面から好ましい。これらの吸
着材の使用においては、被処理空気を脱水して使用する
と、吸着性能が向上し、また寿命が延長できるので好ま
しい。
Next, H. C. The absorbent (reactant with HC) will be described. H. C. The absorbent has a low H.
C. Any substance that reacts with and can be immobilized can be used. In general, reaction with Cr 6+ in the coexistence of H 2 SO 4 ,
A reaction with I 2 O 5 in the coexistence of H 2 S 2 O 7 can be used. The former is a low molecular weight H. C. , The latter has a high molecular weight H.V. C. And can be used appropriately. As a method of use, it is possible to impregnate the surface of glass beads or alumina with these reagent agents and react them. The term "absorption" means that the reaction is absorbed by a chemical reaction. Of these, silica gel, synthetic zeolite, polymer compounds, glass materials, and fluororesins are preferable from the viewpoint of performance. In the use of these adsorbents, it is preferable to dehydrate the air to be treated, since the adsorbing performance can be improved and the life can be extended.

【0011】この内、ガラス材やフッ素樹脂は、繊維状
フィルタにすると、除塵性も有するので、適用分野によ
っては好ましい。この例として、フッ素樹脂バインダの
ガラス繊維フィルタがある。これら吸着材及び/又は吸
収材の使用条件として、空間速度(SV)は、100〜
20,000(h-1)、好ましくは100〜5,000
(h-1)である。吸着材の使用は、本例のような使い方
の他に、PSA(圧力スウィング吸着)、やTSA(熱
スウィング吸着)により再生を同時に行いながら実施す
ることもできる。上記では、接触角を増加させる主たる
ガス状有害成分がH.C.の場合を説明した。
Of these, glass materials and fluororesins are preferable in some fields of application because they are dust-removing when they are made into a fibrous filter. An example of this is a glass fiber filter with a fluororesin binder. As a usage condition of these adsorbents and / or absorbents, the space velocity (SV) is 100 to
20,000 (h -1 ), preferably 100 to 5,000
(H -1 ). The adsorbent can be used while performing regeneration by PSA (pressure swing adsorption) or TSA (thermal swing adsorption) at the same time, in addition to the use as in this example. In the above, the main gaseous toxic components that increase the contact angle are H. C. The case was explained.

【0012】有害ガス(ガス及び/又はミスト状)によ
る接触角の増加原因は、(1)SOx,NOx,HC
l,NH3 のような無機性ガス、(2)H.C.のよう
な有機性ガスに大別できるが、本発明者の検討の結果、
通常の空気(通常のクリーンルームにおける環境大気)
中の濃度に対する影響ではH.C.が大きい。一般に、
通常の基材や基盤に対してはSOx,NOx,HCl,
NH3 は通常の空気中の濃度レベルでは、接触角の増加
に対し影響は少ない。従って、通常は後述の例のように
H.C.除去を行えば効果がある。しかし、SOx,N
Ox,HCl,NH3 の濃度が高い場合や、基材や基盤
が敏感な場合や特殊な場合(例えば、基材表面に特殊な
薄膜を被覆した場合)、通常では影響しない有害成分や
濃度でも影響を受ける場合がある。例えば、クリーンル
ーム又はその周辺で、前記のSOx,NOx,HCl,
NH3 のような有害ガスの発生があり、これら成分の空
気中の濃度が高い場合、あるいは基材や基盤が特殊な処
理をされ敏感な状態で取扱う場合は、本発明がすでに提
案した紫外線及び/又は放射線を有害ガスに照射して、
有害ガスを微粒子化し、該微粒子を捕集する方法(装
置)(特願平3−22,686号)を適宜に組合せて用
いることができる。
The causes of increase in contact angle due to harmful gas (gas and / or mist) are (1) SOx, NOx, HC
1, an inorganic gas such as NH 3 , (2) H. C. Can be roughly divided into organic gases such as, but as a result of the study by the present inventor,
Normal air (environmental air in a normal clean room)
The effect on the concentration in H. C. Is big. In general,
SOx, NOx, HCl,
At normal airborne concentration levels, NH 3 has little effect on increasing the contact angle. Therefore, the H.264 standard is usually used as in the example described later. C. Effective if removed. However, SOx, N
If the concentration of Ox, HCl, NH 3 is high, or if the base material or substrate is sensitive or special (for example, when a special thin film is coated on the surface of the base material), even harmful components or concentrations that normally do not affect May be affected. For example, in a clean room or its vicinity, the above SOx, NOx, HCl,
When harmful gas such as NH 3 is generated and the concentration of these components in the air is high, or when the base material or the substrate is subjected to special treatment and handled in a sensitive state, the ultraviolet rays and / Or irradiating harmful gas with radiation,
A method (apparatus) for converting harmful gas into fine particles and collecting the fine particles (Japanese Patent Application No. 3-22,686) can be appropriately combined and used.

【0013】また、このような場合は別の周知の有害ガ
ス除去材例えば活性炭、イオン交換繊維などを適宜組合
せて用いることができる。活性炭は、酸やアルカリなど
を添着したり、適宜の周知の方法により改質したものを
用いることができる。H.C.の除去においては、本発
明者がすでに提案した紫外線照射及び/又は放射線照射
によりH.C.を微粒子化して捕集する方法(特願平3
−105,092号)を併せて用いることができる。使
用する吸着材及び/又は吸収材の種類や使用条件は適宜
に決めることができる。すなわち、これらは利用するク
リーンルームの汚染物(ガス状及び/又はミスト状有害
成分)の濃度、種類、適用装置の種類、構造、規模、要
求性能・効率、経済性などで適宜に予備試験を行い決め
ることができる。
In such a case, another well-known harmful gas removing material such as activated carbon or ion exchange fiber can be appropriately combined and used. The activated carbon may be one which is impregnated with an acid or an alkali or which is modified by an appropriate known method. H. C. In the removal of H. C. Method to make fine particles and collect them (Japanese Patent Application No. 3
No. -105,092) can be used together. The type of adsorbent and / or absorbent used and the conditions of use can be appropriately determined. That is, these are appropriately preliminarily tested in terms of concentration, type, applicable equipment type, structure, scale, required performance / efficiency, economical efficiency, etc. of clean room contaminants (gaseous and / or mist-like harmful components). I can decide.

【0014】次に、微粒子除去部を説明する。微粒子除
去部は、主に本発明の特徴である光電子の放出を行う光
電子放出材、紫外線源及び/又は放射線源、電場用電極
材、荷電微粒子捕集材からなる。夫々の構成を詳細に説
明する。光電子放出材は、紫外線又は放射線の照射によ
り光電子を放出するものであれば何れでも良く、光電的
な仕事関数が小さなもの程好ましい。効果や経済性の面
から、Ba,Sr,Ca,Y,Gd,La,Ce,N
d,Th,Pr,Be,Zr,Fe,Ni,Zn,C
u,Ag,Pt,Cd,Pb,Al,C,Mg,Au,
In,Bi,Nb,Si,Ti,Ta,U,B,Eu,
Sn,P,Wのいずれか又はこれらの化合物又は合金又
は混合物が好ましく、これらは単独で又は二種以上を複
合して用いられる。複合材としては、アマルガムの如く
物理的な複合材も用いうる。
Next, the fine particle removing section will be described. The fine particle removing unit mainly includes a photoelectron emitting material that emits photoelectrons, which is a feature of the present invention, an ultraviolet ray source and / or a radiation source, an electrode material for electric field, and a charged fine particle collecting material. Each configuration will be described in detail. The photoelectron emitting material may be any material as long as it emits photoelectrons by irradiation with ultraviolet rays or radiation, and a material having a smaller photoelectric work function is preferable. From the aspects of effect and economy, Ba, Sr, Ca, Y, Gd, La, Ce, N
d, Th, Pr, Be, Zr, Fe, Ni, Zn, C
u, Ag, Pt, Cd, Pb, Al, C, Mg, Au,
In, Bi, Nb, Si, Ti, Ta, U, B, Eu,
Any one of Sn, P, W or a compound, alloy or mixture thereof is preferable, and these are used alone or in combination of two or more kinds. As the composite material, a physical composite material such as amalgam can also be used.

【0015】例えば、化合物としては酸化物、ほう化
物、炭化物があり、酸化物にはBaO,SrO,Ca
O,Y2 5 ,Gd2 3 ,Nd2 3 ,ThO2 ,Z
rO2 ,Fe2 3 ,ZnO,CuO,Ag2 O,La
2 3 ,PtO,PbO,Al23 ,MgO,In2
3 ,BiO,NbO,BeOなどがあり、またほう化
物にはYB6 ,GdB6 ,LaB5 ,NdB6 ,CeB
6 ,BuB6 ,PrB6 ,ZrB2 などがあり、さらに
炭化物としてはUC,ZrC,TaC,TiC,Nb
C,WCなどがある。また、合金としては黄銅、青銅、
りん青銅、AgとMgとの合金(Mgが2〜20wt
%)、CuとBeとの合金(Beが1〜10wt%)及
びBaとAlとの合金を用いることができ、上記Agと
Mgとの合金、CuとBeとの合金及びBaとAlとの
合金が好ましい。酸化物は金属表面のみを空気中で加熱
したり、或いは薬品で酸化することによっても得ること
ができる。
For example, the compounds include oxides, borides, and carbides, and the oxides include BaO, SrO, and Ca.
O, Y 2 O 5 , Gd 2 O 3 , Nd 2 O 3 , ThO 2 , Z
rO 2 , Fe 2 O 3 , ZnO, CuO, Ag 2 O, La
2 O 3 , PtO, PbO, Al 2 O 3 , MgO, In 2
There are O 3 , BiO, NbO, BeO, etc., and boride includes YB 6 , GdB 6 , LaB 5 , NdB 6 , CeB.
6 , BuB 6 , PrB 6 , ZrB 2 and the like, and as carbides, UC, ZrC, TaC, TiC, Nb.
C, WC, etc. In addition, as the alloy, brass, bronze,
Phosphor bronze, an alloy of Ag and Mg (Mg is 2 to 20 wt.
%), An alloy of Cu and Be (Be is 1 to 10 wt%) and an alloy of Ba and Al can be used. The alloy of Ag and Mg, the alloy of Cu and Be and the alloy of Ba and Al can be used. Alloys are preferred. The oxide can also be obtained by heating only the metal surface in air, or by oxidizing with a chemical.

【0016】さらに他の方法としては使用前に加熱し、
表面に酸化層を形成して長期にわたって安定な酸化層を
得ることもできる。この例としてはMgとAgとの合金
を水蒸気中で300〜400℃で温度の条件下でその表
面に酸化膜を形成させることができ、この酸化膜は長期
間にわたって安定なものである。また、本発明者が、す
でに提案したように光電子放出材を多重構造としたもの
も好適に使用できる(特願平1−155857号)。ま
た、適宜の母材上に、薄膜状に光電子を放出し得る物質
を付加し、使用することもできる(特願平2−2781
23号)。この例として、紫外線透過性物質(母材)と
しての石英ガラス上に光電子を放出し得る物質として、
Auを薄膜状に付加したものがある(特願平2−295
423号)。
Still another method is to heat before use,
An oxide layer can be formed on the surface to obtain a stable oxide layer for a long period of time. As an example of this, an alloy of Mg and Ag can be formed into an oxide film on its surface under the temperature condition of 300 to 400 ° C. in water vapor, and this oxide film is stable for a long period of time. Further, as the present inventor has already proposed, a photoelectron emitting material having a multiple structure can also be suitably used (Japanese Patent Application No. 1-155857). Also, a substance capable of emitting photoelectrons in a thin film form may be added to an appropriate base material and used (Japanese Patent Application No. 2-2781).
No. 23). As an example of this, as a substance capable of emitting photoelectrons on quartz glass as an ultraviolet transparent substance (base material),
There is a thin film of Au added (Japanese Patent Application No. 2-295).
423).

【0017】これらの材料の使用形状は、棒状、綿状、
格子状、板状、プリーツ状、曲面状、金網状等何れの形
状でもよいが、紫外線の照射面積及び処理空気との接触
面積の大きな形状のものがよく、装置によっては被処理
空間部(後述)に存在する微粒子が光電子放出部に迅速
に移動できるものが好ましい。光電子放出材からの光電
子放出のための照射源は、照射による光電子を放出する
ものであればいずれでも良い。本例で述べた紫外線の他
に電磁波、レーザ、放射線が適宜に適用分野、装置規
模、形状、効果等で選択し、使用できる。この内効果、
操作性の面で、紫外線又は放射線が通常好ましい。
The shapes of these materials used are rod-shaped, cotton-shaped,
It may have any shape such as a lattice shape, a plate shape, a pleated shape, a curved surface shape, and a wire mesh shape, but a shape having a large irradiation area of ultraviolet rays and a large contact area with the processing air is preferable, and depending on the apparatus, a space to be processed (see It is preferable that the fine particles present in (1) can be rapidly moved to the photoelectron emitting portion. The irradiation source for emitting photoelectrons from the photoelectron emitting material may be any one as long as it emits photoelectrons by irradiation. In addition to the ultraviolet rays described in this example, electromagnetic waves, lasers, and radiations can be appropriately selected and used according to application fields, device scales, shapes, effects, and the like. This internal effect,
From the viewpoint of operability, ultraviolet rays or radiation is usually preferable.

【0018】紫外線の種類は、その照射により光電子放
出材が光電子を放出しうるものであれば何れでも良く、
適用分野によっては、殺菌(滅菌)作用を併せもつもの
が好ましい。紫外線の種類は、適用分野、作業内容、用
途、経済性などにより適宜決めることができる。例え
ば、バイオロジカル分野においては、殺菌作用、効率の
面から遠紫外線を併用するのが好ましい。該紫外線源と
しては、紫外線を発するものであれば何れも使用でき、
適用分野、装置の形状、構造、効果、経済性等により適
宜選択し用いることができる。例えば、水銀灯、水素放
電管、キセノン放電管、ライマン放電管などを適宜使用
できる。バイオロジカル分野では、殺菌(滅菌)波長2
54nmを有する紫外線を用いると、殺菌(滅菌)効果
が併用でき好ましい。
Any type of ultraviolet light may be used as long as the photoelectron emitting material can emit photoelectrons by its irradiation.
Depending on the field of application, those having a sterilizing effect are preferable. The type of ultraviolet rays can be appropriately determined depending on the application field, work content, application, economic efficiency and the like. For example, in the biological field, it is preferable to use deep ultraviolet rays together from the viewpoint of bactericidal action and efficiency. As the ultraviolet ray source, any one can be used as long as it emits ultraviolet rays,
It can be appropriately selected and used depending on the application field, the shape of the device, the structure, the effect, the economical efficiency and the like. For example, a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, or the like can be used as appropriate. In the biological field, sterilization wavelength 2
It is preferable to use an ultraviolet ray having a wavelength of 54 nm because the sterilizing effect can be used together.

【0019】次に、光電子放出材及び電場用電極の位置
や形状について述べる。光電子放出材及び/又は電極
は、微粒子の存在する空間の適宜の位置の空間の1部分
に、電場と光電子放出材の間に電場が形成できるように
設置され、光電子放出材(−)と電極(+)間に電場
(電界)を形成する。該電場により光電子放出材から光
電子が効率よく放出される(光電子放出部)。電極又は
光電子放出材の位置や形状は、微粒子の存在する空間に
より適宜に選択でき、電場のための印加電圧が低くでき
て光電子放出材からの光電子が空間中で微粒子に荷電を
与えることができれば何れでもよく、利用分野、装置規
模、形状、効果、経済性等を考慮して、適宜予備試験等
により決めることができる。電極材の材質は、導体であ
れば何れも使用でき、周知の荷電装置における各種電極
材が好適に使用できる。
Next, the positions and shapes of the photoelectron emitting material and the electric field electrode will be described. The photoelectron emission material and / or the electrode is installed in a part of a space at an appropriate position in the space where the particles are present so that an electric field can be formed between the electric field and the photoelectron emission material, and the photoelectron emission material (-) and the electrode An electric field (electric field) is formed between (+). Due to the electric field, photoelectrons are efficiently emitted from the photoelectron emitting material (photoelectron emitting portion). The position or shape of the electrode or the photoelectron emitting material can be appropriately selected depending on the space in which the particles are present, and if the applied voltage for the electric field can be lowered and the photoelectrons from the photoelectron emitting material can charge the particles in the space. Any of them may be used, and can be appropriately determined by a preliminary test or the like in consideration of the field of use, device scale, shape, effect, economy, and the like. Any material can be used for the electrode material as long as it is a conductor, and various electrode materials in known charging devices can be preferably used.

【0020】また、電極と光電子放出材の設置位置と形
状は、本発明者がすでに提案した(特願平3−1316
40号)ように構成するのが好ましい。本発明に用いる
電場電圧は、0.1V/cm〜2kV/cmである。好
適な電場の強さは、利用分野、条件、装置形状、規模、
効果、経済性等で適宜予備試験や検討を行い決めること
が出来る。荷電微粒子の捕集材(集じん材)は、荷電微
粒子が捕集できるものであればいずれでも使用できる。
通常の荷電装置における集じん板、集じん電極等各種電
極材や静電フィルター方式が一般的であるが、スチール
ウールで電極、タングステンウール電極のような捕集部
自体が電極を構成するウール状構造のものも有効であ
る。エレクトレット材も好適に使用できる。
The inventor has already proposed the installation position and shape of the electrode and the photoelectron emitting material (Japanese Patent Application No. 3-1316).
No. 40) is preferable. The electric field voltage used in the present invention is 0.1 V / cm to 2 kV / cm. The suitable electric field strength depends on the field of application, conditions, device shape, scale,
Preliminary tests and examinations can be made to determine the effect and economy. As the collecting material (dust collecting material) for the charged fine particles, any material can be used as long as it can collect the charged fine particles.
Various electrode materials such as a dust collecting plate and a dust collecting electrode in an ordinary charging device and an electrostatic filter method are generally used, but a wool-like electrode in which the electrode itself is made of steel wool or a tungsten wool electrode constitutes the electrode. Structured ones are also effective. Electret materials can also be preferably used.

【0021】気体の流動が少ないかもしくは無視できる
密閉空間の清浄化への利用では電場用電極材が、荷電微
粒子捕集材と兼用又は一体化していると装置がコンパク
ト化でき好ましい。例えば、上述荷電微粒子捕集材の
内、集じん板や集じん電極あるいはスチールウール電
極、タングステンウール電極のようなウール状電極材等
の各種電極材は、電場用電極と、荷電微粒子の捕集を兼
ねてできるので好ましい。従来のフィルタ方式による微
粒子除去の場合、気体を流動化する必要があり、該流動
化により、微粒子による汚染が広がる問題があった。こ
れに対して、光電子による本荷電・捕集方は、気体を積
極的に流動化することなく、光電子により荷電を付与さ
れる粒子状物質全てが捕集・除去できるので、効果的で
ある。
For use in cleaning a closed space where gas flow is small or negligible, it is preferable that the electric field electrode material also serves as or is integrated with the charged fine particle collecting material because the apparatus can be made compact. For example, among the above-mentioned charged particulate matter collecting materials, various electrode materials such as a dust collecting plate, a dust collecting electrode, or a wool-like electrode material such as a steel wool electrode and a tungsten wool electrode are used as an electric field electrode and a collection of charged particulate matter. It is preferable because it can be combined with the above. In the case of removing particulates by the conventional filter method, it is necessary to fluidize the gas, and there is a problem that the fluidization causes contamination by particulates to spread. On the other hand, the main charging / collecting method using photoelectrons is effective because all the particulate matter to which the charge is imparted by photoelectrons can be collected / removed without positively fluidizing the gas.

【0022】[0022]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 半導体工場のウエハ保管庫における空気清浄を、図1に
示した本発明の基本構成図を用いて説明する。ウエハ保
管庫1はクラス10,000のクリーンルームに設置さ
れている。密閉空間(気体が流動せず、静止状態とみな
せる空間)であるウエハ保管庫1の空気清浄は、ウエハ
保管庫1の片側に設置された接触角を増加させる有害ガ
スを吸着する吸着材のシリカゲル2とフッ素樹脂バイン
ダのガラス繊維フィルタ3との充填部から成る有害成分
除去部A及び紫外線ランプ4、紫外線の反射面5、光電
子放出材6、電場設置のための電極7、荷電微粒子の捕
集材7(本構成では、電極が捕集材を兼用)から成る微
粒子除去部Bにより実施される。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 Air cleaning in a wafer storage of a semiconductor factory will be described with reference to the basic configuration diagram of the present invention shown in FIG. The wafer storage 1 is installed in a class 10,000 clean room. Air cleaning of the wafer storage 1 which is a closed space (a space in which gas does not flow and can be regarded as a stationary state) is performed by silica gel as an adsorbent that is installed on one side of the wafer storage 1 and that adsorbs harmful gas that increases the contact angle. 2 and a harmful resin removing part A consisting of a part filled with a glass fiber filter 3 of a fluororesin binder, an ultraviolet lamp 4, an ultraviolet reflecting surface 5, a photoelectron emitting material 6, an electrode 7 for setting an electric field, and collection of charged fine particles. This is performed by the fine particle removing unit B made of the material 7 (in this configuration, the electrode also serves as the collecting material).

【0023】保管庫1は、保管庫の扉(図示せず)の開
閉によるウエハケース8の出し入れにより、保管庫の外
よりウエハ9の表面の接触角を増加させる有害ガス10
(ここでは主にH.C.と考えられる)及びウエハに付
着すると汚染をもたらす微粒子11が侵入する。ここで
の空気清浄を有害ガス除去部Aと微粒子除去部Bの作動
により述べる。保管庫内の微粒子11を含む空気を流動
化すると、該微粒子がウエハ9に付着するので、先
ず、微粒子除去部Bを作動させ、微粒子を捕集・除去
し、連続運転を行う。次いで、有害ガス除去部Aを作
動させ、微粒子フリーの有害成分を含む空気から有害ガ
スを捕集・除去し、運転を停止する(間欠運転)。
In the storage case 1, the harmful gas 10 which increases the contact angle of the surface of the wafer 9 from the outside of the storage case by opening and closing the wafer case 8 by opening and closing the door (not shown) of the storage case.
(Here, it is mainly considered to be H.C.) and the fine particles 11 that cause contamination when attached to the wafer enter. The air cleaning here will be described by operating the harmful gas removing unit A and the fine particle removing unit B. When the air containing the fine particles 11 in the storage is fluidized, the fine particles adhere to the wafer 9. Therefore, first, the fine particle removing section B is operated to collect and remove the fine particles, and the continuous operation is performed. Next, the harmful gas removing unit A is operated to collect and remove the harmful gas from the air containing the particulate-free harmful components, and the operation is stopped (intermittent operation).

【0024】すなわち、先ず保管庫1の開閉(ウエハケ
ースの出し入れ)に伴い保管庫に侵入した微粒子を微粒
子除去部Bの30分の荷電・捕集で被処理空間部Cがク
ラス1(1ft3 中の0.1μm以上の微粒子数)以下
にする。ここでは、空気の流動化を強制的に行うことな
く微粒子の捕集・除去が行われる。ウエハ保管庫1中の
微粒子(微粒子状物質)11は、紫外線ランプ4が照射
された光電子放出材6から放出される光電子12により
荷電され、荷電微粒子13となり、該荷電微粒子13は
荷電微粒子の捕集材7に捕集され、ウエハの存在する被
処理空間部(清浄化空間部、C)は高清浄化される。
That is, first, when the storage box 1 is opened and closed (wafer case is put in and out), the fine particles that have entered the storage box are charged and collected in the particle removal section B for 30 minutes, so that the space C to be processed is classified into class 1 (1 ft 3 The number of fine particles of 0.1 μm or more) or less. Here, the fine particles are collected and removed without forcibly fluidizing the air. The fine particles (particulate matter) 11 in the wafer storage 1 are charged by the photoelectrons 12 emitted from the photoelectron emitting material 6 irradiated by the ultraviolet lamp 4, and become charged fine particles 13. The charged fine particles 13 capture the charged fine particles. The space to be processed (cleaning space, C) where the wafer is collected and collected by the collecting material 7 is highly cleaned.

【0025】ここでは、遮光材14を被処理空間部Cと
微粒子除去部(光電子放出部)Bの間に設置している。
遮光材14は複数の板状の金属板を相互に組合せたもの
で、被処理空間部Cに存在する微粒子11が、光電子放
出部Bに移動できるように上部、中央部、下部に被処理
空間部Cと光電子放出部B間に同通個所を有している。
遮光材については、本発明者の別の発明がある(特願平
3−322417号)。ここでの光電子放出材6は、ガ
ラス材表面にAuを薄膜状に付加したものであり、この
ような構成の光電子放出材については、本発明者等の別
の発明がある(特願平2−295423号)。
Here, the light shielding material 14 is installed between the space C to be processed and the fine particle removing portion (photoelectron emitting portion) B.
The light-shielding material 14 is a combination of a plurality of plate-shaped metal plates, and the fine particles 11 existing in the space C to be processed can be moved to the photoelectron emission area B at the upper, central, and lower spaces. The same portion is provided between the portion C and the photoelectron emitting portion B.
There is another invention of the present inventors regarding the light-shielding material (Japanese Patent Application No. 3-322417). The photoelectron emission material 6 here is a thin film of Au added to the surface of the glass material, and there is another invention of the present inventors with respect to the photoelectron emission material having such a structure (Japanese Patent Application No. Hei 2). -295423).

【0026】このようにして、ウエハ保管庫1中の有害
ガス10及び微粒子(微粒子状物質)11は捕集・除去
され、ウエハ保管庫は清浄空気となる。上記において、
光電子放出材への紫外線の照射は、曲面状の反射面5を
用い、紫外線ランプ4から紫外線を板状の光電子放出材
6に効率よく照射している。電極7は、光電子放出材6
からの光電子放出を電場で行うために設置している。す
なわち、光電子放出材6と電極7の間に電場を形成して
いる(光電子放出部)。微粒子の荷電は、電場において
光電子放出材に紫外線照射することにより発生する光電
子7により効率よく実施される。ここでの電場の電圧
は、50V/cmである。
In this way, the harmful gas 10 and the fine particles (particulate matter) 11 in the wafer storage 1 are collected and removed, and the wafer storage becomes clean air. In the above,
To irradiate the photoelectron emitting material with ultraviolet rays, the curved reflecting surface 5 is used to efficiently irradiate the plate-shaped photoelectron emitting material 6 with ultraviolet rays from the ultraviolet lamp 4. The electrode 7 is a photoelectron emitting material 6.
It is installed to perform photoelectron emission from an electric field. That is, an electric field is formed between the photoelectron emitting material 6 and the electrode 7 (photoelectron emitting portion). The particles are efficiently charged by the photoelectrons 7 generated by irradiating the photoelectron emitting material with ultraviolet rays in an electric field. The voltage of the electric field here is 50 V / cm.

【0027】また、荷電粒子の捕集は、電極7を用いて
行っている。電極材は金網状のCu−Zn材を金メッキ
して用い、光電子放出材より1cmの位置(全長B+C
の距離1に対し0.03の位置)に設置している。本例
では、壁面を光電子放出材6とし、微粒子の存在する空
間部に電場用電極材7及び遮光材14を設置している
が、遮光材14に光電子放出(例えば、Cu−Zn材に
Auを被覆して、(−)極とする)の機能を持たせて使
用することもできる。この場合の光電子放出は、光電子
放出材6と遮光材14の両方となり微粒子の荷電が効果
的となる。
The electrodes 7 are used to collect the charged particles. The electrode material is a wire-mesh Cu-Zn material plated with gold and used at a position 1 cm (total length B + C) from the photoelectron emission material.
It is installed at a position of 0.03 with respect to the distance 1). In this example, the wall surface is used as the photoelectron emitting material 6, and the electric field electrode material 7 and the light shielding material 14 are installed in the space where the fine particles are present. It is also possible to use it by coating it with a (-) pole function. In this case, the photoelectron emission becomes both the photoelectron emitting material 6 and the light shielding material 14, and the charging of the fine particles becomes effective.

【0028】ここでの運転は、経時によるウエハケース
や保管庫の壁面などからの微粒子の放出(剥離)、又は
緊急時などに保管庫やウエハキャリアの振動などによる
微粒子の放出(振動部からの発生)の場合があっても被
処理空間部Cは高清浄を維持できるように連続運転を行
う。光電子による微粒子の除去は、本発明者らのすでに
提案した方法及び装置を適用分野、装置形状、規模等に
より、適宜用いることができる。例えば上述形態(構
成)の他に、荷電捕集ユニット装置を用いる方法(特願
平3−261289号)がある。
In this operation, the particles are discharged (peeled) from the wafer case or the wall surface of the storage cabinet with the passage of time, or the particles are discharged (vibrated from the vibrating section) by vibration of the storage cabinet or the wafer carrier in an emergency. Even in the case of (occurrence), the processed space C is continuously operated so as to maintain high cleanliness. For removal of fine particles by photoelectrons, the method and apparatus already proposed by the present inventors can be appropriately used depending on the application field, apparatus shape, scale, and the like. For example, in addition to the above-mentioned form (configuration), there is a method using a charge collection unit device (Japanese Patent Application No. 3-261289).

【0029】次に、保管庫の開閉により侵入した有害ガ
スの除去を行う有害ガス除去部Aについて述べる。上述
の微粒子除去部Bの作動により、微粒子11が除去され
た有害ガス10を含む空気をファン15によりシリカゲ
ル2及びフッ素樹脂バインダのガラス繊維フィルタ3の
吸着材に通すことにより有害ガスは捕集・除去される。
Next, the harmful gas removing section A for removing the harmful gas that has entered by opening and closing the storage will be described. By the operation of the fine particle removing unit B described above, the air containing the harmful gas 10 from which the fine particles 11 are removed is passed through the adsorbent of the silica gel 2 and the glass fiber filter 3 of the fluororesin binder by the fan 15 to collect the harmful gas. To be removed.

【0030】ここでは、上述微粒子除去部Bの運転開始
30分後(被処理空間部Cから、微粒子が除去される時
間後)に作動を始め(ファン15がONになる)、3時
間運転して作動が停止する(ファン15がOFFにな
る)。すなわち、空気の流動化は、上述のごとく汚染を
もたらす原因となるので必要最低限にするため、保管庫
内の有害成分の除去が終了すると、ここでの作動(吸着
材への空気の通過)は、停止する。16は、有害ガスが
捕集・除去された空気である。なお、フッ素樹脂バイン
ダのガラス繊維フィルタ3は、除塵性も有し、シリカゲ
ルから発塵があった場合でも後方に流出させない役目を
はたす。
Here, the operation is started 30 minutes after the start of the operation of the fine particle removing section B (after the time when the fine particles are removed from the processing space C) (the fan 15 is turned on) and the operation is continued for 3 hours. Operation is stopped (fan 15 is turned off). That is, since the fluidization of air causes contamination as described above, it is necessary to minimize it. Therefore, when the removal of harmful components in the storage is completed, the operation here (passage of air to the adsorbent) Will stop. Reference numeral 16 is air from which harmful gas has been collected and removed. It should be noted that the glass fiber filter 3 of the fluororesin binder also has a dust-removing property, and even if dust is generated from the silica gel, it does not flow backward.

【0031】被処理空間部Cの微粒子除去は、除塵性を
もたせた有害成分除去部Aと微粒子除去部Bの両方で同
時に行うことができる。一般的には、微粒子の除去は微
粒子を含む保管庫内空気を(長時間)流動化すると、微
粒子がウエハや壁面に付着するので、保管庫中の微粒子
は、空気を積極的に流動化しなくても捕集・除去できる
光電子による荷電・捕集(微粒子除去部B)を用い、
(有害ガス除去部を作動させる前に)予め行うことが好
ましい。
Fine particles in the space C to be treated can be removed simultaneously by both the harmful component removing portion A and the fine particle removing portion B which are provided with a dust removing property. Generally, when removing air from a storage room containing fine particles (for a long period of time), the particles adhere to the wafers and walls, so the particles in the storage room do not actively fluidize the air. Even by using photoelectron charging / collection (particulate removal part B) that can collect / remove
It is preferably performed in advance (before operating the harmful gas removing unit).

【0032】微粒子除去を本例のように予め行うか、あ
るいは除塵性をもたせた有害ガス除去部と両方で行う
か、また有害成分除去部、微粒子除去部の作動時間(運
転条件)は、本技術の適用分野、装置規模、形状、有害
成分除去部や微粒子除去部の構造や構成、経済性、効果
などにより予備検討を行い決めることができる。
Whether the fine particles are removed in advance as in this example, or both are performed with the harmful gas removing section provided with a dust removing property, and the operating time (operating condition) of the harmful component removing section and the fine particle removing section is It can be decided by preliminary examination depending on the application field of the technology, the scale and shape of the device, the structure and configuration of the harmful component removing portion and the fine particle removing portion, economical efficiency, effects, and the like.

【0033】実施例2 図1に示した構成のウエハ保管庫にクラス10,000
のクリーンルームの空気を入れ、次の様に保管庫を作動
させ、保管庫内の微粒子濃度、ウエハ表面の付着粒子数
及びウエハ表面の接触角を調べた。 作動;荷電・捕集による微粒子の除去は、連続運転。 (紫外線の点灯と電極への印加は連続運転)有害ガスの
除去は、ウエハを保管庫に入れ、上記荷電・捕集を30
分行った後に、2時間行い停止。
Example 2 A class 10,000 wafer was stored in the wafer storage having the structure shown in FIG.
The clean room was filled with air, and the storage was operated as follows, and the particle concentration in the storage, the number of adhered particles on the wafer surface, and the contact angle on the wafer surface were examined. Operation: Removal of fine particles by charging / collecting is continuous operation. (Continuous operation of turning on ultraviolet light and applying to the electrode) To remove harmful gas, put the wafer in a storage cabinet and carry out the above charging / collection 30 times.
After 2 minutes, stop for 2 hours.

【0034】保管庫大きさ;30リットル 光電子放出材;石英ガラスに薄膜状にAuを付加したも
の 電極材;金網状Cu−Znを光電子放出材から1cmの
位置(光電子放出材と対向する壁面までの全長距離1対
し0.03の位置)に設置 遮光材;板状ステンレスを図1のごとく電極材から1c
m、1.5cmの位置に交互に設置 荷電微粒子捕集材;電極材で兼用 紫外線ランプ;殺菌灯 電場電圧;50V/cm
Storage size: 30 liters Photoelectron emitting material; Quartz glass with Au added in thin film form Electrode material: Wire mesh Cu-Zn at a position 1 cm from the photoelectron emitting material (to the wall surface facing the photoelectron emitting material) Installed at the position of 0.03 to the total length distance of 1) Light-shielding material: Plate-shaped stainless steel 1c from the electrode material as shown in FIG.
Alternately installed at positions of m and 1.5 cm Charged particle collector; also used as electrode material UV lamp; Sterilization lamp Electric field voltage; 50 V / cm

【0035】有害ガス捕集材;シリカゲルとフッ素樹脂
バインダのガラス繊維フィルタ。SVは夫々1,00
0、6,000(H-1) ウエハ保管庫;ウエハケースにウエハを15枚入れて、
収納したもの。 微粒子濃度の測定;光散乱式パーティクルカウンタ ウエハ表面の粒子数の測定;光散乱式のウエハ表面粒子
計 接触角の測定;液滴式の接触角計
Harmful gas scavenger; glass fiber filter made of silica gel and fluororesin binder. SV is 100 for each
0, 6,000 (H -1 ) wafer storage; put 15 wafers in the wafer case,
What is stored. Particle concentration measurement; Light scattering type particle counter Measurement of the number of particles on the wafer surface; Light scattering type wafer surface particle meter Contact angle measurement; Drop type contact angle meter

【0036】結果 (1)保管庫内の微粒子濃度を、荷電捕集時間に対する
到達クリーン度(1ft3 中の0.1μm以上の微粒子
の個数)として図2に−〇−として示す。なお、図2中
↓印は、検出限界(クラス1)以下であることを示す。
−●−印は比較用に荷電・捕集なし(紫外線と電場印加
OFF)の場合を示す。 (2)ウエハ上の粒子数を測定した結果を図3に−〇−
として示す。なお、−●−印は比較用に荷電・捕集なし
の場合を示す。 (3)ウエハ表面の接触角を保管庫に収納した時間と接
触角の推移として図4に−〇−として示す。 なお、図↓は検出限界(4度)以下であることを示す。
−●−印は、比較用に有害ガス捕集・除去なし(ファン
の作動OFF)の場合を示す。
Results (1) The concentration of fine particles in the storage is shown as -O- in FIG. 2 as the ultimate cleanness (the number of fine particles of 0.1 μm or more in 1 ft 3 ) with respect to the charge collection time. Note that the ↓ mark in FIG. 2 indicates that the detection limit (class 1) or less.
-●-indicates the case of no charge / collection (UV and electric field application OFF) for comparison. (2) The result of measuring the number of particles on the wafer is shown in FIG.
Show as. In addition,-●-indicates a case without charge / collection for comparison. (3) The contact angle on the wafer surface is shown as-○-in FIG. In addition, the figure ↓ shows that it is below the detection limit (4 degrees).
-● -mark shows the case where no harmful gas is collected and removed (fan operation OFF) for comparison.

【0037】上記図2〜図4からも明らかなように、本
発明による清浄装置を設けた保管庫では、微粒子濃度は
検出限界以下に保持され、また、ウエハ上の粒子数も5
個以下とほぼ一定に保たれ、また、ウエハ表面の接触角
も検出限界以下に保持されている。尚、上記例では密閉
空間で気体の流動がないか、あっても少ない状態での気
体の清浄について述べたが密閉空間でなく、気体が流動
している場合引いては開放系においても同様に実施し得
る。
As is clear from FIGS. 2 to 4, in the storage provided with the cleaning apparatus according to the present invention, the particle concentration is kept below the detection limit and the number of particles on the wafer is 5 as well.
The contact angle on the wafer surface is kept below the detection limit. In the above example, there is no gas flow in the closed space, or even if there is a small amount of gas, the gas cleaning is described. However, if the gas is not in the closed space and the gas is flowing, the same applies to the open system. It can be carried out.

【0038】[0038]

【発明の効果】本発明の気体の清浄方法及び装置は、半
導体や液晶などの先端産業における原材料、半製品、製
品の基材や基板表面の汚染防止に用いることができる。
例えば、エアーナイフ用空気、乾燥工程における空気、
各種生産ラインへの供給空気、貴重品の保管庫(ストッ
カ)、ウエハ保管庫、液晶保管庫、貴重品のキャリヤ
(搬送)、貴重品の搬送空間、クリーンベンチ、クリー
ンブース、クリーンボックス、安全キャビネット、無菌
室などのクリーンな空間、特に密閉空間における気体の
処理に用いることができる。
INDUSTRIAL APPLICABILITY The gas cleaning method and apparatus of the present invention can be used to prevent contamination of raw materials, semi-finished products, base materials of products and substrate surfaces in advanced industries such as semiconductors and liquid crystals.
For example, air for air knife, air in the drying process,
Supply air to various production lines, valuables storage (stocker), wafer storage, liquid crystal storage, valuables carrier (transfer), valuables transfer space, clean bench, clean booth, clean box, safety cabinet It can be used for treating gas in a clean space such as a sterile room, especially in a closed space.

【0039】そして、本発明によれば次のような効果を
奏する。 (1)気体の清浄において、接触角を増加させる該気体
中の有害成分の除去部と、光電子による該気体中の微粒
子除去部とを備えたことにより 被清浄空間に物体を収納あるいは設置すると、有害
成分と微粒子による汚染がなくなった。例えば、該清浄
空間に、ウエハやガラス基板を収納すると、接触角の増
加防止効果及び微粒子付着の防止効果が生じた。
The present invention has the following effects. (1) When cleaning or cleaning a gas, an object is stored or installed in the space to be cleaned by providing a part for removing harmful components in the gas for increasing the contact angle and a part for removing fine particles in the gas by photoelectrons. Contamination by harmful components and fine particles is gone. For example, when a wafer or a glass substrate is housed in the clean space, the effect of increasing the contact angle and the effect of preventing the adhesion of fine particles are produced.

【0040】(2)(1)における作動を、先ず微粒子
除去部による微粒子除去により、大部分の微粒子除去を
行い、次いで有害ガス除去部による有害ガス除去を行う
ことにより微粒子除去は、気体の流動化がなくて(あっ
ても僅少)行われるので、被清浄空間に収納あるいは設
置された物体は、微粒子付着による汚染がなく清浄に保
持された。 (3)(1)における有害成分除去部に除塵性をもたせ
ることにより、微粒子除去は、有害成分除去部と微粒
子除去部の両方で実施されるので、微粒子除去性能が向
上した。
(2) In the operation in (1), first, most of the fine particles are removed by removing the fine particles by the fine particle removing unit, and then the harmful gas is removed by the harmful gas removing unit. Since it is carried out without any change (even if it is very small), the object stored or installed in the space to be cleaned was kept clean without being contaminated by adhesion of fine particles. (3) By providing the harmful component removing portion with the dust removing property in (1), fine particle removal is performed in both the harmful component removing portion and the fine particle removing portion, so that the fine particle removing performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明をウエハ保管庫に適用した基本構成図。FIG. 1 is a basic configuration diagram in which the present invention is applied to a wafer storage.

【図2】荷電・捕集時間に対する到達クリーン度を示す
グラフ。
FIG. 2 is a graph showing ultimate cleanliness with respect to charging / collecting time.

【図3】荷電・捕集時間におけるウエハ上の粒子数を示
すグラフ。
FIG. 3 is a graph showing the number of particles on a wafer during charging / collecting time.

【図3】収納時間におけるウエハ表面の接触角を示すグ
ラフ。
FIG. 3 is a graph showing a contact angle of a wafer surface during a storage time.

【符号の説明】[Explanation of symbols]

1:ウエハ保管庫、2:シリカゲル、3:ガラス繊維フ
ィルタ、4:紫外線ランプ、5:反射面、6:光電子放
出材、7:電極兼捕集材、8:ウエハケース、9:ウエ
ハ、10:有害ガス、11:微粒子、12:光電子、1
3:荷電微粒子、14:遮光材、15:ファン、16:
有害成分除去空気 A:有害成分除去部、B:微粒子除去部、C:被処理空
間部
1: Wafer storage, 2: Silica gel, 3: Glass fiber filter, 4: Ultraviolet lamp, 5: Reflecting surface, 6: Photoelectron emitting material, 7: Electrode / collecting material, 8: Wafer case, 9: Wafer, 10 : Hazardous gas, 11: Fine particles, 12: Photoelectrons, 1
3: charged fine particles, 14: light shielding material, 15: fan, 16:
Harmful component removing air A: Harmful component removing part, B: Fine particle removing part, C: Processed space part

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月6日[Submission date] December 6, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明をウエハ保管庫に適用した基本構成図。FIG. 1 is a basic configuration diagram in which the present invention is applied to a wafer storage.

【図2】荷電・捕集時間に対する到達クリーン度を示す
グラフ。
FIG. 2 is a graph showing ultimate cleanliness with respect to charging / collecting time.

【図3】荷電・捕集時間におけるウエハ上の粒子数を示
すグラフ。
FIG. 3 is a graph showing the number of particles on a wafer during charging / collecting time.

【図4】収納時間におけるウエハ表面の接触角を示すグ
ラフ。
FIG. 4 is a graph showing a contact angle on the wafer surface during storage time.

【符号の説明】 1:ウエハ保管庫、2:シリカゲル、3:ガラス繊維フ
ィルタ、4:紫外線ランプ、5:反射面、6:光電子放
出材、7:電極兼捕集材、8:ウエハケース、9:ウエ
ハ、10:有害ガス、11:微粒子、12:光電子、1
3:荷電微粒子、14:遮光材、15:ファン、16:
有害成分除去空気 A:有害成分除去部、B:微粒子除去部、C:被処理空
間部
[Explanation of reference numerals] 1: wafer storage, 2: silica gel, 3: glass fiber filter, 4: ultraviolet lamp, 5: reflective surface, 6: photoelectron emitting material, 7: electrode / collecting material, 8: wafer case, 9: Wafer, 10: Harmful gas, 11: Fine particles, 12: Photoelectron, 1
3: charged fine particles, 14: light shielding material, 15: fan, 16:
Harmful component removing air A: Harmful component removing part, B: Fine particle removing part, C: Processed space part

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/32 8014−4D Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B01D 53/32 8014-4D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有害成分及び微粒子を含有する気体の清
浄方法において、少なくとも接触角を増加する気体中の
有害成分を除去する工程と、光電子により気体中の微粒
子を除去する工程とに前記気体を通すことを特徴とする
気体の清浄方法。
1. A method for cleaning a gas containing harmful components and fine particles, wherein the gas is removed in at least a step of removing harmful components in the gas that increases a contact angle and a step of removing fine particles in the gas by photoelectrons. A method for cleaning a gas characterized by passing through.
【請求項2】 有害成分及び微粒子を含有する気体の清
浄装置において、該気体中の有害成分を除去するため
の、シリカゲル、合成ゼオライト、高分子化合物、ガラ
ス材又はフッ素樹脂から選ばれた少なくとも1種類の吸
着材を用いた有害ガス除去部と、該気体中の微粒子を除
去するための、紫外線源及び/又は放射線源と該線源か
らの照射により光電子を放出する光電子放出材と電場用
電極及び荷電微粒子捕集材を有する微粒子除去部とを備
えたことを特徴とする気体の清浄装置。
2. At least one selected from silica gel, synthetic zeolite, a polymer compound, a glass material or a fluororesin for removing a harmful component in the gas in a device for cleaning a gas containing a harmful component and fine particles. A harmful gas removing part using a kind of adsorbent, a photoelectron emitting material for removing fine particles in the gas, and a photoelectron emitting material which emits photoelectrons by irradiation from the ultraviolet source and / or the radiation source and the electrode for electric field And a fine particle removing unit having a charged fine particle collecting material.
JP20317092A 1992-07-08 1992-07-08 Gas cleaning method and apparatus Expired - Fee Related JP2722297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20317092A JP2722297B2 (en) 1992-07-08 1992-07-08 Gas cleaning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20317092A JP2722297B2 (en) 1992-07-08 1992-07-08 Gas cleaning method and apparatus

Publications (2)

Publication Number Publication Date
JPH06198215A true JPH06198215A (en) 1994-07-19
JP2722297B2 JP2722297B2 (en) 1998-03-04

Family

ID=16469617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20317092A Expired - Fee Related JP2722297B2 (en) 1992-07-08 1992-07-08 Gas cleaning method and apparatus

Country Status (1)

Country Link
JP (1) JP2722297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879435A (en) * 1997-01-06 1999-03-09 Carrier Corporation Electronic air cleaner with germicidal lamp
CN106091118A (en) * 2016-07-06 2016-11-09 苏州艾尔新净化科技有限公司 Secondary charged dust-collecting air cleaning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992838A (en) * 1973-01-08 1974-09-04
JPS6377557A (en) * 1986-09-22 1988-04-07 Ebara Res Co Ltd Method and apparatus for cleaning gas flow
JPH0596125A (en) * 1991-04-11 1993-04-20 Ebara Res Co Ltd Method for removing hydrocarbon and equipment therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992838A (en) * 1973-01-08 1974-09-04
JPS6377557A (en) * 1986-09-22 1988-04-07 Ebara Res Co Ltd Method and apparatus for cleaning gas flow
JPH0596125A (en) * 1991-04-11 1993-04-20 Ebara Res Co Ltd Method for removing hydrocarbon and equipment therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879435A (en) * 1997-01-06 1999-03-09 Carrier Corporation Electronic air cleaner with germicidal lamp
US6019815A (en) * 1997-01-06 2000-02-01 Carrier Corporation Method for preventing microbial growth in an electronic air cleaner
CN106091118A (en) * 2016-07-06 2016-11-09 苏州艾尔新净化科技有限公司 Secondary charged dust-collecting air cleaning system

Also Published As

Publication number Publication date
JP2722297B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JP3830533B2 (en) Method and apparatus for cleaning gases containing pollutants
US6620385B2 (en) Method and apparatus for purifying a gas containing contaminants
JP3693315B2 (en) Gas cleaning method and apparatus in clean room
JP2989031B2 (en) Method and apparatus for removing hydrocarbon
JP3429522B2 (en) Conveying device having gas cleaning means
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
JPH06198215A (en) Air purifying method and apparatus
US20030118476A1 (en) Method and device for preventing oxidation on substrate surface
JP2863419B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JP3695684B2 (en) Substrate surface cleaning method and apparatus
JPH11147051A (en) Method and device for cleaning storage space
JP3446985B2 (en) Gas cleaning method and apparatus
JP3303125B2 (en) Space cleaning material and space cleaning method using the same
JP3797845B2 (en) Photoelectron emitting material and negative ion generator
JP2005329406A (en) Sterilization and cleaning method for enclosed space including germs and enclosed space with sterilization and cleaning function
JP2000300936A (en) Method and apparatus for obtaining negative ion- containing clean air for removing static electricity
JP3981386B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JP3460465B2 (en) Gas cleaning method and equipment
JP2000167435A (en) Generating method of negative ion and device therefor
JP3770363B2 (en) Clean space and carrier box
JP3518784B2 (en) Method and apparatus for removing harmful components in gas
JPH0889746A (en) Method and device for cleaning gas
JP3346677B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface
JPH11285623A (en) Method and device for purifying gas
JP3635511B2 (en) Method and apparatus for preventing contamination of substrate or substrate surface

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees