JPH0619668B2 - Movable iron core type electromagnet actuator - Google Patents

Movable iron core type electromagnet actuator

Info

Publication number
JPH0619668B2
JPH0619668B2 JP60056025A JP5602585A JPH0619668B2 JP H0619668 B2 JPH0619668 B2 JP H0619668B2 JP 60056025 A JP60056025 A JP 60056025A JP 5602585 A JP5602585 A JP 5602585A JP H0619668 B2 JPH0619668 B2 JP H0619668B2
Authority
JP
Japan
Prior art keywords
iron core
electromagnet
actuating member
core type
movable iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60056025A
Other languages
Japanese (ja)
Other versions
JPS61216009A (en
Inventor
公平 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP60056025A priority Critical patent/JPH0619668B2/en
Publication of JPS61216009A publication Critical patent/JPS61216009A/en
Publication of JPH0619668B2 publication Critical patent/JPH0619668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、可動鉄心型電磁石アクチュエータに係り、特
に、作用力が大きく、安定で、しかも制御性に優れた可
動鉄心型電磁石アクチュエータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a movable iron core type electromagnet actuator, and more particularly to a movable iron core type electromagnet actuator having a large acting force, stability and excellent controllability. is there.

(従来の技術) 近年、制御技術の進歩に伴い、産業界における自動化の
進展に目ざましく、それを支える各種の自動制御機器が
開発されてきている。特に、産業用ロボットは、例え
ば、組立工場における加工物の移送・扛重、自動車の製
造ラインにおける溶接作業などに見られるように着々と
成果を挙げてきている。このような産業用ロボットのア
クチュエータとしてはDCサーボモータやACサーボモ
ータなどのロータを有するモータが広く用いられてい
る。
(Prior Art) In recent years, along with the progress of control technology, progress has been made in automation in the industrial world, and various automatic control devices that support it have been developed. In particular, industrial robots have been steadily achieving results, as can be seen in, for example, the transfer and weighting of workpieces in an assembly plant and the welding work in automobile manufacturing lines. Motors having rotors such as DC servo motors and AC servo motors are widely used as actuators for such industrial robots.

(発明が解決しようとする問題点) しかしながら、DCサーボモータに限らず一般のロータ
を有するモータは、フレミング左手の法則から明らかな
ように、磁束の向きが作用力の向きと直交しているため
その自重比、即ち単位重量当たりの作用力が小さいとい
う欠点を持っている。この点、磁石の向きと作用力の向
きが平行である電磁石アクチュエータを用いれば、その
自重比をDCサーボモータに比して100乃至200倍
に向上させることができる。
(Problems to be Solved by the Invention) However, not only the DC servo motor but also a motor having a general rotor has a direction of magnetic flux orthogonal to a direction of acting force, as is clear from Fleming's left-hand rule. It has a drawback that its own weight ratio, that is, the acting force per unit weight is small. In this respect, by using the electromagnet actuator in which the direction of the magnet and the direction of the acting force are parallel, the self-weight ratio can be improved to 100 to 200 times that of the DC servo motor.

しかし、従来のこの種の電磁石アクチュエータにおける
電磁石の吸引力はコイルに流れる電流の2乗に比例し、
ギャップ長の2乗に反比例するため、非線形でしかも不
安定となり制御性に難点があり、電磁弁、電磁リレーな
どの制御態様がシンプルなものに用いられているにすぎ
なかった。
However, the attractive force of the electromagnet in this type of conventional electromagnet actuator is proportional to the square of the current flowing in the coil,
Since it is inversely proportional to the square of the gap length, it is non-linear and unstable, and there is a problem in controllability, and it is merely used for simple control modes such as solenoid valves and solenoid relays.

本発明は、上記の問題点を除去し、単位重量当たり大き
い作用力を発生せしめると共に安定で、しかも制御性が
良好な可動鉄心型電磁石アクチュエータを提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned problems and to provide a movable iron core type electromagnetic actuator which is stable and has a good controllability while generating a large acting force per unit weight.

(問題点を解決するための手段) 本発明は、上記の問題点を解決するために、駆動源と、
該駆動源に連結され同期して駆動される一対の磁性板
と、それらの磁性板間に位置し、一対の電磁石を背中合
わせに設けると共に直線方向へ移動可能な作動部材と、
該作動部材の状態変位量を検出する検出器と、該検出さ
れた状態変位量を読み込み、前記作動部材の目標位置と
該作動部材の実際の位置間の偏差を得て、該偏差に基づ
き電圧指令を出力する電子制御装置と、該電圧指令に基
づき各電磁石の励磁電流の調整を行う電流制御装置とを
設け、前記磁性板と前記電磁石間に生じる電磁力によ
り、前記作動部材をダイレクトに駆動するようにしたも
のである。
(Means for Solving Problems) In order to solve the above problems, the present invention provides a drive source,
A pair of magnetic plates connected to the drive source and driven in synchronization, and an actuating member located between the magnetic plates and provided with a pair of electromagnets back to back and movable in a linear direction,
A detector for detecting the state displacement amount of the actuating member, and reading the detected state displacement amount to obtain a deviation between the target position of the actuating member and the actual position of the actuating member, and a voltage based on the deviation. An electronic control device that outputs a command and a current control device that adjusts the exciting current of each electromagnet based on the voltage command are provided, and the operating member is directly driven by the electromagnetic force generated between the magnetic plate and the electromagnet. It is something that is done.

(作用) 第1図は本発明の可動鉄心型電磁石アクチュエータの全
体構成図である。
(Operation) FIG. 1 is an overall configuration diagram of the movable iron core type electromagnet actuator of the present invention.

この図に示されるように、一対の電磁石1a,1bが背
中合わせに取り付けられた作動部材1を設け、この作動
部材1は直線方向に移動自在に配置する。更に、これら
の各電磁石1a,1bに対向して磁性板2a,2bを移
動自在に配置する。駆動源7からの動力は同期装置8を
介して磁性板2a,2bに伝達すると共に両者を同期に
とって駆動させる。
As shown in this figure, a pair of electromagnets 1a, 1b is provided with an operating member 1 attached back to back, and this operating member 1 is arranged so as to be movable in a linear direction. Further, the magnetic plates 2a and 2b are movably arranged so as to face the electromagnets 1a and 1b. The power from the drive source 7 is transmitted to the magnetic plates 2a and 2b through the synchronizer 8 and drives them in synchronization.

まず、作動部材1に目標位置への移動指令が与えられる
と、電子制御装置5から駆動源7に電圧指令Csが与え
られ駆動源7の動力が同期装置8を介して磁性板2a,
2bに伝達され、磁性板2a,2bは同期して直線方向
に移動する。これに対応して作動部材1が移動する。す
ると、この作動部材1の変位量は位置検出器3によって
検出され、電子制御装置5に読み込まれる。一方電磁石
1a,1bの励磁電流は電流検出器4a,4bで検出さ
れ電子制御装置5に読み込まれる。電子制御装置5にお
いては作動部材1の目標位置と実際の位置との偏差を得
て、この偏差に基づき電流制御装置6a,6bに電圧指
令C,Cを出力する。電流制御装置6a,6bにお
いては電圧指令C,Cに基づいて電磁石1a,1b
の励磁電流を調整し、可動部材1を目標位置へ制御す
る。
First, when a movement command to the target position is given to the actuating member 1, a voltage command Cs is given from the electronic control unit 5 to the drive source 7, and the power of the drive source 7 passes through the synchronizer 8 to the magnetic plates 2 a ,.
2b, the magnetic plates 2a and 2b move in a linear direction in synchronization. In response to this, the operating member 1 moves. Then, the displacement amount of the operating member 1 is detected by the position detector 3 and read by the electronic control unit 5. On the other hand, the exciting currents of the electromagnets 1a and 1b are detected by the current detectors 4a and 4b and read into the electronic control unit 5. The electronic control unit 5 obtains the deviation between the target position and the actual position of the operating member 1 and outputs the voltage commands C A and C B to the current control units 6a and 6b based on this deviation. In the current control devices 6a and 6b, the electromagnets 1a and 1b are based on the voltage commands C A and C B.
The exciting current is adjusted to control the movable member 1 to the target position.

この動作が、一対の電磁石1a,1b間で繰り返され
る。
This operation is repeated between the pair of electromagnets 1a and 1b.

(実施例) 以下、本発明の実施例を図面を参照しながら詳細に説明
する。なお、本発明の基本型となる「可動鉄片型電磁石
アクチュエータ」が本願と同じ発明者・出願人によって
すでに提案され、先行して出願されている。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. The "movable iron piece type electromagnet actuator", which is the basic type of the present invention, has already been proposed and previously filed by the same inventor / applicant as the present application.

第2図は本発明の可動鉄心型電磁石アクチュエータの一
実施例構成図である。
FIG. 2 is a configuration diagram of an embodiment of the movable iron core type electromagnet actuator of the present invention.

まず、この可動鉄心型電磁石アクチュエータの構成につ
いて説明する。図中、11は作動部材であり、直線方向
に移動可能に設置される。また、図示されないが、この
作動部材にはこれと一体的に駆動される作動子が設けら
れる。11a,11bはこの作動部材11に背中合わせ
に設けられる一対の電磁石である。12a,12bは電
磁石11a,11bにそれぞれ対向した位置に移動可能
に設けられる磁性板である。13は作動部材11の変位
量を検出する位置検出器、例えば、ポテンショメータ、
14a,14bは電磁石の励磁電流を検出するホール素
子から成る電流検出器、15は電子制御装置であり、中
央処理装置(CPU)15−1、I/Oポート15−
2、メモリ(MEM)15−3、比較器15−4、オブ
ザーバ15−5、マニュアルデータインプット装置(M
DI)15−6、ディスプレイ15−7などから成り、
作動部材11の変位量及び電磁石11a,11bの励磁
電流を読み込み、電圧指令C,C,Cを出力す
る。なお、比較器15−4やオブザーバ15−5は必ず
しもハードウェア構成にする必要はない。16a,16
bは電圧指令C,Cを受けて電磁石11a,11b
の励磁電流を調整する一対のDCチョッパである。この
DCチョッパは、図示しないが、例えば、トランジスタ
チョッパであり、つまり、ブリッジに組まれたトランジ
スタのベースに電圧指令C,Cによって調整される
PWM信号を与えて駆動するものを用いることができ
る。一方、17はサーボモータであり、18はサーボモ
ータからのエネルギーを受けて、このエネルギーを磁性
板12a,12bに伝達すると共に両者の同期をとるた
めの同期装置であり、例えば両者を同時に駆動するラッ
クギヤなどが用いられる。なお、各電磁石と磁性板間の
ギャップはほぼ等しくなるように予め電磁石の励磁電流
を流しておくようにする。
First, the configuration of the movable iron core type electromagnet actuator will be described. In the figure, 11 is an actuating member, which is installed so as to be movable in a linear direction. Although not shown, the actuating member is provided with an actuator that is integrally driven with the actuating member. Reference numerals 11a and 11b are a pair of electromagnets provided back to back on the operating member 11. Reference numerals 12a and 12b denote magnetic plates movably provided at positions facing the electromagnets 11a and 11b, respectively. Reference numeral 13 denotes a position detector that detects the amount of displacement of the operating member 11, for example, a potentiometer,
14a and 14b are current detectors composed of Hall elements that detect the exciting current of the electromagnets, and 15 is an electronic control unit, such as a central processing unit (CPU) 15-1 and an I / O port 15-.
2, memory (MEM) 15-3, comparator 15-4, observer 15-5, manual data input device (M
DI) 15-6, display 15-7, etc.,
The displacement amount of the operating member 11 and the exciting currents of the electromagnets 11a and 11b are read, and the voltage commands C A , C B , and C S are output. The comparator 15-4 and the observer 15-5 do not necessarily have to have a hardware configuration. 16a, 16
b receives the voltage commands C A and C B and receives electromagnets 11a and 11b.
2 is a pair of DC choppers that adjust the exciting current of the. Although not shown, the DC chopper is, for example, a transistor chopper, that is, a DC chopper that applies a PWM signal adjusted by the voltage commands C A and C B to the base of a transistor incorporated in a bridge to drive the base is used. it can. On the other hand, 17 is a servo motor, and 18 is a synchronizing device for receiving energy from the servo motor and transmitting this energy to the magnetic plates 12a and 12b and synchronizing them, for example, both are driven simultaneously. Rack gears are used. The exciting current of the electromagnets is made to flow in advance so that the gaps between the electromagnets and the magnetic plate are almost equal.

次に、この可動鉄心型電磁石アクチュエータの動作につ
いて説明する。
Next, the operation of the movable iron core type electromagnet actuator will be described.

上記したように、電磁石11a,11bが設けられた作
動部材11は直線方向に移動可能である。そこで、作動
部材11を目標位置に駆動させる指令を与えられる場
合、例えば、その指令は電子制御装置15からI/Oポ
ート15−2を介してサーボモータ17に電圧指令C
として与えられる。すると、サーボモータ17は駆動
し、このサーボモータ17からの動力は同期装置18を
介して磁性板12a,12bに伝達され、両者は同期し
て駆動される。すると、これらの磁性板12a,12b
の移動に対応して作動部材11も目標位置に向かって移
動をはじめる。なお、この場合のトルクは電磁石11a
と磁性板12a並びに電磁石11bと磁性板12bの吸
引力の差で与えられる。この作動部材11の変位量は位
置検出器13で検出して電子制御装置15に読み込む。
電子制御装置15においては予めMDI15−6より作
動部材11の目標位置がCOM15−4に基準値として
セットされているので、この基準値と実際の作動部材1
1との偏差を求め、この偏差に基づいて電圧指令C
を出力する。DCチョッパ16a,16bは各電圧
指令C,Cを受けて各電磁石の励磁電流を調整して
作動部材11を目標位置へ制御する。
As described above, the actuating member 11 provided with the electromagnets 11a and 11b is movable in the linear direction. Therefore, when a command to drive the operating member 11 to the target position is given, for example, the command is a voltage command C S from the electronic control unit 15 to the servo motor 17 via the I / O port 15-2.
Given as. Then, the servo motor 17 is driven, and the power from the servo motor 17 is transmitted to the magnetic plates 12a and 12b via the synchronizer 18, and both are driven in synchronization. Then, these magnetic plates 12a, 12b
The actuating member 11 also starts moving toward the target position in response to the movement. The torque in this case is the electromagnet 11a.
And the magnetic plate 12a and the attraction force between the electromagnet 11b and the magnetic plate 12b. The displacement amount of the operating member 11 is detected by the position detector 13 and read into the electronic control unit 15.
In the electronic control unit 15, the target position of the operating member 11 is set in advance in the COM 15-4 as a reference value by the MDI 15-6.
The deviation from 1 is obtained, and based on this deviation, the voltage command C A ,
Output C B. The DC choppers 16a and 16b receive the voltage commands C A and C B and adjust the exciting current of each electromagnet to control the operating member 11 to the target position.

この動作が、一対の磁性板12a,12b間で繰り返し
行われる。
This operation is repeated between the pair of magnetic plates 12a and 12b.

ここで、電磁作動部における電磁作用力とギャップ長の
関係について説明する。第3図は電磁石装置、つまり、
電磁石と磁性板の寸法を示すものであり、単位mmとし、
鉄心はZ方向60、磁性体はZ方向140のものを用
い、コイルのターン数は片側で1840、励磁電流は定
格電流4Aを流し、磁性体のギャップ長を等価的に小さ
くし、吸引力を大きくするために中央部を厚くしてい
る。なお、磁性板12a,12bと電磁石11a,11
bとの空隙は調整することにより、磁気バランスを良好
にし、電磁作動部のいずれか一方が固定される場合にお
ける空隙の広がりすぎによるアクチュエータの脱調を防
ぐことができ、復帰バネなどを不要にすることができ
る。また、電磁石と磁性板間のギャップが作動部材11
のオーバショート時などのバッファ機能を有することは
明らかである。
Here, the relationship between the electromagnetic action force and the gap length in the electromagnetic operating unit will be described. FIG. 3 shows an electromagnet device, that is,
The dimensions of the electromagnet and the magnetic plate are shown in units of mm.
The iron core is 60 in the Z direction and the magnetic body is 140 in the Z direction. The number of turns of the coil is 1840 on one side. The exciting current is the rated current 4A. The gap length of the magnetic body is equivalently reduced and the attractive force is increased. The central part is thickened to make it larger. The magnetic plates 12a, 12b and the electromagnets 11a, 11
By adjusting the air gap with b, it is possible to improve the magnetic balance and prevent step-out of the actuator due to too large air gap when either one of the electromagnetic actuating parts is fixed. can do. In addition, the gap between the electromagnet and the magnetic plate is the operating member 11
It is obvious that it has a buffer function when it is over-shorted.

第5図は、このアクチュエータの電磁作動部の一実施例
構成図であり、第5図(a)は作動部材21が最もB側
に位置する状態を示す図、第5図(b)は作動部材21
が最もA側に位置する状態を示す図である。この図にお
いて、21は作動部材、21a、21bはこの作動部材
21に背中合わせに設けられる一対の電磁石、22はベ
アリングであり、作動部材21を固定部に対して直線方
向に移動自在に支持する。23a,23bは回転軸であ
り、24a,24bはこの回転軸23a,23bを中心
にして半径が連続的に変化する偏心部材からなる磁性板
である。なお、各磁性板と電磁石間のギャップは略等し
くなるように予め電磁石に励磁電流を流しておくように
する。
FIG. 5 is a configuration diagram of an embodiment of an electromagnetic actuating portion of this actuator. FIG. 5 (a) is a diagram showing a state in which the actuating member 21 is located on the most B side, and FIG. 5 (b) is actuating. Member 21
It is a figure which shows the state located in the most A side. In this figure, 21 is an actuating member, 21a and 21b are a pair of electromagnets provided back to back on the actuating member 21, and 22 is a bearing, which movably supports the actuating member 21 in a linear direction with respect to a fixed portion. Reference numerals 23a and 23b are rotary shafts, and 24a and 24b are magnetic plates composed of eccentric members whose radii continuously change around the rotary shafts 23a and 23b. It should be noted that an exciting current is made to flow in the electromagnets in advance so that the gaps between the magnetic plates and the electromagnets become substantially equal.

次に、この電磁作動部の動作について説明する。第5図
(a)示されるように、磁性板24bは始点に位置して
いる。一方、磁性板24aは磁性板24bとは回転軸の
回転角が略90度遅れた位置に配置されている。そこ
で、回転軸23a,23bが同期して矢印方向に回転す
ることにより、これに対応して作動部材21も移動す
る。つまり、各電磁石と磁性板間には互いに吸引力が働
き、作動部材を所望の位置へ制御することができる。
Next, the operation of this electromagnetic operating unit will be described. As shown in FIG. 5 (a), the magnetic plate 24b is located at the starting point. On the other hand, the magnetic plate 24a is arranged at a position where the rotation angle of the rotating shaft is delayed by about 90 degrees from the magnetic plate 24b. Therefore, the rotating shafts 23a and 23b synchronously rotate in the direction of the arrow, and the operating member 21 also moves correspondingly. That is, the attraction force acts between each electromagnet and the magnetic plate, and the operating member can be controlled to a desired position.

第6図は、このアクチュエータの電磁作動部の他の実施
例構成図であり、第6図(a)は作動部材31が最も左
側に位置する状態を示す図、第6図(b)は作動部材3
1が最も右側に位置する状態を示す図である。この図に
おいて、31は作動部材、31a、31bは作動部材3
1に背中合わせに設けられる一対の電磁石、32はベア
リングであり、作動部材31を固定部に対して直線方向
に移動自在に支持する。33a,33bは電磁石31
a、31bにそれぞれ対向して配置される磁性板、34
a,34bはラックギヤが形成された駆動部材であり、
先端部に磁性板33a,33bが設けられる。35a,
35bは駆動ギヤ例えば、ピニオンギヤであり、サーボ
モータからの動力によりそれらの駆動ギヤは同期して同
じ方向に同じ速度で回転するように構成する。
FIG. 6 is a configuration diagram of another embodiment of the electromagnetic actuating portion of this actuator. FIG. 6 (a) is a diagram showing a state in which the actuating member 31 is located on the leftmost side, and FIG. 6 (b) is an actuating operation. Member 3
It is a figure showing the state where 1 is located in the rightmost side. In this figure, 31 is an operating member, 31a and 31b are operating members 3
1 is a pair of electromagnets provided back to back, and 32 is a bearing, which supports the actuating member 31 movably in a linear direction with respect to the fixed portion. 33a and 33b are electromagnets 31
a and 31b, which are magnetic plates disposed to face each other, 34
a and 34b are drive members in which rack gears are formed,
Magnetic plates 33a and 33b are provided at the tip portions. 35a,
Reference numeral 35b denotes a drive gear, for example, a pinion gear, which is configured to rotate in the same direction and at the same speed in synchronization with the power from the servomotor.

次に、このアクチュエータの作動部の動作について説明
すると、作動部材31の移動指令により、駆動ギヤ35
a,35bは駆動し、この駆動により磁性板33a,3
3bも移動し、これに伴って作動部材31も移動する。
この作動部材31はフィードバック制御されて目標位置
に移動されるが、この制御方法は上記の実施例と同様で
あるので説明を省略する。
Next, the operation of the actuating portion of the actuator will be described.
a, 35b are driven, and by this drive, the magnetic plates 33a, 3b
3b also moves, and the actuating member 31 also moves accordingly.
This actuating member 31 is feedback-controlled and moved to the target position, but this control method is the same as that of the above-mentioned embodiment, and therefore its explanation is omitted.

なお、本発明においては、電磁石と磁性板間のギャップ
は極力小さくなるようにして用いることができるため
に、第4図から明らかなように強力な作用力を得ること
ができる。従って、強力なパワーを要する動力源として
のアクチュエータを得ることができる。また、作動部材
の移動距離が短い場合には磁性板は駆動することなく、
作動部材のみを電磁石の励磁コイルで作動させるように
することもできる。また、電子制御装置のメモリに予め
プログラムを内蔵しておくことにより、作動部材のプロ
グラム制御を行えることは言うまでもない。
In addition, in the present invention, since the gap between the electromagnet and the magnetic plate can be used so as to be as small as possible, a strong acting force can be obtained as apparent from FIG. Therefore, it is possible to obtain an actuator as a power source that requires strong power. When the moving distance of the operating member is short, the magnetic plate does not drive,
It is also possible that only the actuating member is actuated by the exciting coil of the electromagnet. Needless to say, the program of the operating member can be controlled by preliminarily storing a program in the memory of the electronic control unit.

更に、本発明は上記実施例に限定されるものではなく種
々の変形が可能であり、これらを本発明の範囲から排除
するものではない。
Furthermore, the present invention is not limited to the above-described embodiments, and various modifications can be made, which are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように本発明によれば、対向した
電磁石と磁性板間の大きい吸引力を利用して、作動部材
を駆動すると共に、安定でしかも制御性の良好な可動鉄
心型電磁石アクチュエータを提供することができる。
(Effects of the Invention) As described in detail above, according to the present invention, the actuating member is driven by utilizing the large attractive force between the electromagnet and the magnetic plate that face each other, and the stable and good controllability is achieved. A movable iron core type electromagnetic actuator can be provided.

特に、本発明においては、各電磁石と磁性板間のギャッ
プをほぼ均等にした状態で移動できるようにしているた
めに、磁気バランスをとり易く、片方の電磁石と磁性板
間のギャップ広がりすぎることによる作動部材の制御不
能状態や制御応答の遅れを回避することができると共に
バネなどによる補助手段を設ける必要もない。また均衡
した吸引力が働いているため外乱に対しても強い。
In particular, in the present invention, since the gaps between the electromagnets and the magnetic plate can be moved in a state where the gaps between the electromagnets and the magnetic plates are substantially equal, it is easy to keep the magnetic balance and the gap between the one electromagnet and the magnetic plate is too wide. It is possible to avoid an uncontrollable state of the operating member and a delay in control response, and it is not necessary to provide auxiliary means such as a spring. In addition, since a balanced suction force is working, it is also strong against external disturbances.

このように、本発明は作用力の大きい、安定でしかも制
御性に優れた点を生かしてロボットのアクチュエータ、
振動加振機・防振機などに用いて好適である。
As described above, according to the present invention, the actuator of the robot can be utilized by taking advantage of the fact that the acting force is large, stable, and excellent in controllability.
It is suitable for use in vibration exciters and vibration isolator.

上記したように、本発明は種々の利点を有しており、こ
の発明によってもたらされる効果は顕著である。
As described above, the present invention has various advantages, and the effects brought by the present invention are remarkable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の可動鉄心型電磁石アクチュエータの全
体構成図、第2図は同アクチュエータの一実施例構成
図、第3図は電磁装置の寸法図、第4図は吸引力とギャ
ップ長との関係説明図、第5図は同アクチュエータの電
磁作動部の一実施例構成図、第6図は同アクチュエータ
の電磁作動部の他の実施例構成図である。 1,11……作動部材、1a,1b,11a,11b…
…電磁石、2a,2b,12a,12b……磁性板、
3,13……位置検出器、4a,4b,14a、14b
……電流検出器、5,15……電子制御装置、6a、6
b,16a,16b……電流制御装置、7……駆動源、
8,18……同期装置、17……サーボモータ。
FIG. 1 is an overall configuration diagram of a movable iron core type electromagnet actuator of the present invention, FIG. 2 is a configuration diagram of an embodiment of the actuator, FIG. 3 is a dimensional diagram of an electromagnetic device, and FIG. 4 is an attraction force and a gap length. 5 is a configuration diagram of an embodiment of an electromagnetic actuating portion of the actuator, and FIG. 6 is a configuration diagram of another embodiment of an electromagnetic actuating portion of the actuator. 1, 11 ... Actuating member, 1a, 1b, 11a, 11b ...
... electromagnets, 2a, 2b, 12a, 12b ... magnetic plates,
3, 13 ... Position detectors, 4a, 4b, 14a, 14b
...... Current detectors, 5, 15 ...... Electronic control devices, 6a, 6
b, 16a, 16b ... current control device, 7 ... drive source,
8, 18 ... Synchronizer, 17 ... Servo motor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)駆動源と、 (b)該駆動源に連結され同期して駆動される一対の磁性
板と、 (c)それらの磁性板間に位置し、一対の電磁石を背中合
わせに設けると共に直線方向へ移動可能な作動部材と、 (d)該作動部材の状態変位量を検出する検出器と、 (e)該検出された状態変位量を読み込み、前記作動部材
の目標位置と該作動部材の実際の位置間の偏差を得て、
該偏差に基づき電圧指令を出力する電子制御装置と、 (f)該電圧指令に基づき各電磁石の励磁電流の調整を行
う電流制御装置とを設け、 (g)前記磁性板と各電磁石間に生じる電磁力により、前
記作動部材をダイレクトに駆動することを特徴とする可
動鉄心型電磁石アクチュエータ。
1. A drive source; (b) a pair of magnetic plates connected to the drive source and driven in synchronization; (c) a pair of electromagnets located between the magnetic plates and back to back. And an actuating member that is movable in a linear direction and is provided in (d) a detector that detects the amount of state displacement of the actuating member, and (e) reads the detected amount of state displacement, and a target position of the actuating member. Obtaining the deviation between the actual positions of the actuating members,
An electronic control device that outputs a voltage command based on the deviation and (f) a current control device that adjusts the excitation current of each electromagnet based on the voltage command are provided, and (g) occurs between the magnetic plate and each electromagnet. A movable iron core type electromagnetic actuator characterized in that the actuating member is directly driven by an electromagnetic force.
【請求項2】前記一対の磁性板は枢支される軸を有し、
該軸からの半径が連続的に変化する偏心部材であること
を特徴とする特許請求の範囲第1項記載の可動鉄心型電
磁石アクチュエータ。
2. The pair of magnetic plates have shafts pivotally supported,
The movable iron core type electromagnet actuator according to claim 1, characterized in that it is an eccentric member whose radius from the axis changes continuously.
【請求項3】前記一対の磁性板は、直線方向へ移動可能
に配置されるようにしたことを特徴とする特許請求の範
囲第1項記載の可動鉄心型電磁石アクチュエータ。
3. The movable iron core type electromagnet actuator according to claim 1, wherein the pair of magnetic plates are arranged so as to be movable in a linear direction.
JP60056025A 1985-03-22 1985-03-22 Movable iron core type electromagnet actuator Expired - Lifetime JPH0619668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60056025A JPH0619668B2 (en) 1985-03-22 1985-03-22 Movable iron core type electromagnet actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60056025A JPH0619668B2 (en) 1985-03-22 1985-03-22 Movable iron core type electromagnet actuator

Publications (2)

Publication Number Publication Date
JPS61216009A JPS61216009A (en) 1986-09-25
JPH0619668B2 true JPH0619668B2 (en) 1994-03-16

Family

ID=13015518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60056025A Expired - Lifetime JPH0619668B2 (en) 1985-03-22 1985-03-22 Movable iron core type electromagnet actuator

Country Status (1)

Country Link
JP (1) JPH0619668B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150619A (en) * 1986-12-15 1988-06-23 Honda Motor Co Ltd Run path display device
FR2684251B1 (en) * 1991-11-26 1995-07-28 Hutchinson LINEAR MOTOR WITH VARIABLE RELUCTANCE.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916689U (en) * 1972-05-22 1974-02-12
JPS5933047Y2 (en) * 1979-09-29 1984-09-14 株式会社島津製作所 electric positioner
JPS5940612Y2 (en) * 1979-10-26 1984-11-19 三明電機株式会社 Solenoid proportional control valve
JPS5727322A (en) * 1980-07-25 1982-02-13 Hitachi Ltd Input and output controlling system of computer
JPS59132765A (en) * 1983-01-20 1984-07-30 Nippon Telegr & Teleph Corp <Ntt> Oblique drive controller

Also Published As

Publication number Publication date
JPS61216009A (en) 1986-09-25

Similar Documents

Publication Publication Date Title
EP0130357B1 (en) Electro-magnetic alignment assemblies
JPH0235549B2 (en)
CN108494202B (en) Robot joint motor capable of realizing magnetizable reconstruction
JP3712073B2 (en) Spiral linear motor
JP4717466B2 (en) Transfer device {TRANSFERAPPARATUS}
JP2014124742A (en) Arm-driving device
JP2001238427A (en) Linear motor drive device
CN109304694B (en) Three-degree-of-freedom positioning mechanism driven by electromagnetic stress and control method
JPH0619668B2 (en) Movable iron core type electromagnet actuator
CN107907992A (en) The fast steering mirror actuation mechanism and start method of direct stress electromagnetic drive
US11476742B1 (en) Multi-degree-of-freedom spherical motor
JPS61214942A (en) Driving means
JP2001069746A (en) Non-contacting type table
JPH03500112A (en) linear drive motor
Rybarczyk Concept and modelling of the electrohydraulic valve with DC and stepper motors
JPH0212707B2 (en)
JPH03296112A (en) 4-axis attitude controller
JP5569922B2 (en) Rotary actuator
KR20010044157A (en) Brushless, coil core type linear motor and linear motion apparatus having the same
JPH1052022A (en) Brushless linear driving control system
Nakashima et al. Position control for a linear slider with twin linear drives
JP3504637B2 (en) Linear drive
JPS61214011A (en) Mobile iron piece type electromagnet actuator
JP2001225285A (en) Moving body system
US4516062A (en) Actuator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250