JPH06194312A - Time-resolved fluorecent excitation spectrum measuring equipment - Google Patents

Time-resolved fluorecent excitation spectrum measuring equipment

Info

Publication number
JPH06194312A
JPH06194312A JP34473892A JP34473892A JPH06194312A JP H06194312 A JPH06194312 A JP H06194312A JP 34473892 A JP34473892 A JP 34473892A JP 34473892 A JP34473892 A JP 34473892A JP H06194312 A JPH06194312 A JP H06194312A
Authority
JP
Japan
Prior art keywords
light
time
excitation spectrum
optical
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34473892A
Other languages
Japanese (ja)
Other versions
JP2702047B2 (en
Inventor
Tomoshi Furuta
知史 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP34473892A priority Critical patent/JP2702047B2/en
Publication of JPH06194312A publication Critical patent/JPH06194312A/en
Application granted granted Critical
Publication of JP2702047B2 publication Critical patent/JP2702047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow measurement of time-resolved fluorescent excitation spectrum over a wide energy region by measuring the excitation spectrum of crossing correlation light of a fluorescent light emitted from a semiconductor material and an optical gate pulse. CONSTITUTION:Optical pulses from a quite short pulse light source 1 are branched by an optical element 5 into a sample excitation light and a gate pulse light. The sample excitation light is projected onto a point of a nonlinear optical crystal 3 of a sample 16 through an optical system 6. The gate pulse light is projected onto same point of the crystal 3 through an optical system 10. The crystal 3 is then rotated on a rotary stage 4 and a conversion light generated therefrom is introduced to a spectrometer 17 and measured by means of a signal analyzer 14. The sample 16 is then irradiated with the light from a continuous oscillation light source 2 and a conversion light component is extracted by the analyzer 14 thus measuring the fluorescent excitation spectrum at an arbitrary time lag. Measurement is performed while varying the difference of optical path length of an optical delay path 9 and the operation is repeated by a controller 15 thus measuring the time-resolved fluorescent excitation spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体材料から放出され
る蛍光励起スペクトルの時間分解測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a time-resolved measuring apparatus for fluorescence excitation spectra emitted from semiconductor materials.

【0002】[0002]

【従来の技術】従来の蛍光励起スペクトル測定は、少な
くとも測定試料のバンドギャップより高いエネルギーを
有する光を測定試料に照射し、そのとき発生した蛍光ス
ペクトルのある波長における強度を計測し、試料に照射
する光の波長を連続的にスキャンさせることで蛍光励起
スペクトルを測定するものである。しかし、本従来例は
定常測定に留まっており、時間分解蛍光励起スペクトル
測定を行うには時間分解測定機能を付加する必要があ
る。
2. Description of the Related Art Conventional fluorescence excitation spectrum measurement involves irradiating a sample with light having an energy higher than the band gap of the sample, measuring the intensity at a certain wavelength of the fluorescence spectrum generated at that time, and irradiating the sample. The fluorescence excitation spectrum is measured by continuously scanning the wavelength of the light. However, this conventional example is limited to steady-state measurement, and it is necessary to add a time-resolved measurement function to perform time-resolved fluorescence excitation spectrum measurement.

【0003】図3は、従来の半導体から放出される蛍光
強度の時間分解測定をする装置の一例を示す図である。
同図において、17は少なくとも測定試料のバンドギャ
ップより高いエネルギーの光パルスを発生するための極
短光パルス光源、18は光パルスを試料に照射するため
の光学系、19は測定試料、20は分光器、21は測定
試料から放出される蛍光を集光し分光器に導入するため
の光学系、22は分光された蛍光を検出する光検出器、
23は光検出器の出力信号を計測するための信号解析装
置である。
FIG. 3 is a diagram showing an example of a conventional apparatus for time-resolved measurement of fluorescence intensity emitted from a semiconductor.
In the figure, 17 is an ultrashort optical pulse light source for generating an optical pulse having an energy higher than at least the band gap of the measurement sample, 18 is an optical system for irradiating the sample with the optical pulse, 19 is the measurement sample, and 20 is A spectroscope, 21 is an optical system for collecting and introducing the fluorescence emitted from the measurement sample into the spectroscope, 22 is a photodetector for detecting the dispersed fluorescence,
Reference numeral 23 is a signal analysis device for measuring the output signal of the photodetector.

【0004】そして、従来の時間分解蛍光測定は、極短
パルス光源17からの光パルスを測定試料19に照射
し、その際発生する蛍光を分光器20にて分光し、分光
された任意の波長における蛍光強度の時間変化を光検出
器22において検出し、その出力信号を信号解析装置2
3において時間分解した後蓄積、平均操作を行い、その
結果を出力させることで蛍光強度の時間変化を測定する
ものとなっている。
In the conventional time-resolved fluorescence measurement, the measurement sample 19 is irradiated with the light pulse from the ultrashort pulse light source 17, the fluorescence generated at that time is dispersed by the spectroscope 20, and the dispersed arbitrary wavelength is measured. Change in fluorescence intensity at time is detected by the photodetector 22, and the output signal is detected by the signal analysis device 2
In 3, the time-resolved data is stored and averaged, and the results are output to measure the change in fluorescence intensity over time.

【0005】[0005]

【発明が解決しようとする課題】従来の時間分解蛍光測
定装置を用いて時間分解蛍光励起スペクトルを測定する
ためには、上記したように、試料を励起するための光パ
ルスの波長を連続的に可変にさせ、蛍光スペクトルの任
意の波長における蛍光強度の波長依存性を測定する必要
がある。このとき、極短光パルス光源内に設けられた波
長選択素子を調整し波長可変を行うが、波長変化にとも
ない極短光パルス光源の光学長が変化してしまうため、
光パルスの発生が停止し、その結果、波長可変が行えな
くなり、時間分解蛍光励起スペクトルの測定が不可能に
なるといった欠点があった。
As described above, in order to measure a time-resolved fluorescence excitation spectrum using a conventional time-resolved fluorescence measurement apparatus, the wavelength of the light pulse for exciting the sample is continuously changed, as described above. It is necessary to make it variable and to measure the wavelength dependence of the fluorescence intensity at any wavelength of the fluorescence spectrum. At this time, wavelength tuning is performed by adjusting the wavelength selection element provided in the ultrashort optical pulse light source, but since the optical length of the ultrashort optical pulse light source changes as the wavelength changes,
The generation of the light pulse is stopped, and as a result, the wavelength cannot be tuned, and the time-resolved fluorescence excitation spectrum cannot be measured.

【0006】本発明の時間分解蛍光励起スペクトル測定
装置はこのような課題に着目してなされたものであり、
その目的とするところは、半導体材料から放出される蛍
光と光ゲートパルスの交差相関光の励起スペクトルを測
定することによって、半導体材料のバンドギャップ近傍
からバンドギャップより高いエネルギー領域にわたる蛍
光励起スペクトルの時間分解測定装置を提供することに
ある。
The time-resolved fluorescence excitation spectrum measuring apparatus of the present invention has been made in view of these problems.
The purpose is to measure the excitation spectrum of the cross-correlation light between the fluorescence emitted from the semiconductor material and the optical gate pulse, and obtain the time of the fluorescence excitation spectrum from near the band gap of the semiconductor material to the energy region higher than the band gap. It is to provide a decomposition measuring device.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の時間分解蛍光励起スペクトル測定装置
は、光パルス照射により発生する被測定半導体材料から
の蛍光と、ゲートパルス光の交差相関光を非線形光学結
晶中における非線形光学効果により発生させ、その強度
の時間変化の測定を行う時間分解蛍光測定装置と、波長
を連続的に変化させることのできる連続発振光源と、前
記交差相関光の強度の時間変化、連続発振光源の波長変
化、及び、それらに同期して交差相関光を自動制御する
ための制御器とを具備し、試料励起光により半導体材料
から放出される蛍光と、ゲートパルス光の交差相関光の
励起スペクトルを連続発振光の連続波長スキャンにより
測定し、任意の時刻に設定して再び交差相関光の励起ス
ペクトルの測定を行うことを繰り返すことで、蛍光励起
スペクトルの時間変化を測定する。
In order to achieve the above-mentioned object, the time-resolved fluorescence excitation spectrum measuring apparatus of the present invention has a structure in which fluorescence from a semiconductor material to be measured generated by light pulse irradiation intersects with gate pulse light. A time-resolved fluorescence measurement device that generates correlated light by a nonlinear optical effect in a nonlinear optical crystal and measures the time change of its intensity, a continuous wave light source that can continuously change the wavelength, and the cross-correlated light Of the fluorescence emitted from the semiconductor material by the sample excitation light, and a gate for automatically controlling the cross-correlated light in synchronization with them, The excitation spectrum of the cross-correlation light of the pulsed light is measured by continuous wavelength scanning of the continuous wave light, set at an arbitrary time, and the excitation spectrum of the cross-correlation light is measured again. By repeating the, measuring the time variation of the fluorescence excitation spectra.

【0008】[0008]

【作用】すなわち、本発明の時間分解蛍光励起スペクト
ル測定装置においては、測定試料からのバンドギャップ
近傍のエネルギーを有する蛍光とゲートパルス光を非線
形光学結晶に照射し、非線形光学結晶中において蛍光と
ゲートパルス光の相関光を発生させ、試料に照射される
連続発振光源からの光を連続波長スキャンさせることで
相関光の励起スペクトルを測定し、1回の波長スキャン
終了後、続いて、光学遅延路で遅延時間を変化させ、上
記した励起スペクトルの測定をおこなうことを繰り返す
ことで、時間分解蛍光励起スペクトルの測定を行う。
That is, in the time-resolved fluorescence excitation spectrum measuring apparatus of the present invention, the nonlinear optical crystal is irradiated with fluorescence having energy near the band gap and gate pulse light from the measurement sample, and fluorescence and gate are applied in the nonlinear optical crystal. The excitation spectrum of the correlated light is measured by generating the correlated light of the pulsed light and scanning the light from the continuous wave light source that irradiates the sample with the continuous wavelength. After one wavelength scan, the optical delay path is continuously measured. The time-resolved fluorescence excitation spectrum is measured by repeating the measurement of the excitation spectrum described above by changing the delay time with.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を用い
て詳細に説明する。図1は本発明の一実施例における時
間分解蛍光励起スペクトル測定装置のブロック図であ
る。図1において、1は極短光パルス光源、2は連続発
振光源、3は非線形光学結晶、4は非線形光学結晶を回
転させるための回転ステージ、5は光源1から発生する
光パルスを分岐するための光学素子、6は光パルスを測
定試料(半導体材料)16に照射するための光学系、7
は光源2から発生する連続発振光を測定試料16に照射
するための光学系、8は測定試料16から発生する蛍光
を集光し、非線形光学結晶に照射するための光学系、9
は光学遅延路、10はゲートパルス光を非線形光学結晶
に照射するための光学系、11は分光器、12は非線形
光学結晶中で蛍光とゲートパルス光の相関により変換さ
れる光を集光し、分光器に導入するための光学系、13
は分光器にて分光された変換光を検出するための光検出
器、14は光検出器からの信号を計測するための時間分
解蛍光測定装置としての信号解析装置、15は光源1の
波長を連続的に可変させ、これと同期して信号を解析装
置14に計測させると共に、光学遅延路による遅延時間
設定を行わせるための制御器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram of a time-resolved fluorescence excitation spectrum measuring apparatus in one embodiment of the present invention. In FIG. 1, 1 is an ultrashort optical pulse light source, 2 is a continuous oscillation light source, 3 is a non-linear optical crystal, 4 is a rotary stage for rotating the non-linear optical crystal, and 5 is for branching an optical pulse generated from the light source 1. , 6 is an optical system for irradiating a measurement sample (semiconductor material) 16 with a light pulse, 7
Is an optical system for irradiating the measurement sample 16 with continuous wave light generated from the light source 2, 8 is an optical system for condensing fluorescence emitted from the measurement sample 16 and irradiating it onto the nonlinear optical crystal, 9
Is an optical delay path, 10 is an optical system for irradiating the nonlinear optical crystal with gate pulse light, 11 is a spectroscope, 12 is light that is converted by the correlation between fluorescence and gate pulse light in the nonlinear optical crystal. , Optical system for introducing into spectroscope, 13
Is a photodetector for detecting the converted light dispersed by the spectroscope, 14 is a signal analysis device as a time-resolved fluorescence measuring device for measuring the signal from the photodetector, and 15 is the wavelength of the light source 1. This is a controller for continuously varying, causing the analyzer 14 to measure a signal in synchronization with this, and setting the delay time by the optical delay path.

【0010】極短パルス光源1から発生される光パルス
は光学素子5にて2光路に分岐される。一方は試料励起
光、他方はゲートパルス光である。試料励起光は光学系
6により測定試料16に照射され、このとき測定試料1
6から放出される蛍光は光学系8により集光され、非線
形光学結晶3の一点に照射される。ゲートパルス光は光
学遅延路9を経由し、光学系10により非線形光学結晶
3上の蛍光が照射された点と同一の点に照射される。
The optical pulse generated from the ultrashort pulse light source 1 is branched into two optical paths by the optical element 5. One is sample excitation light and the other is gate pulse light. The sample excitation light is irradiated onto the measurement sample 16 by the optical system 6, and at this time, the measurement sample 1
The fluorescence emitted from 6 is condensed by the optical system 8 and is applied to one point of the nonlinear optical crystal 3. The gate pulse light passes through the optical delay path 9 and is applied by the optical system 10 to the same point on the nonlinear optical crystal 3 as the point where the fluorescence is applied.

【0011】次に、非線形光学結晶3を回転ステージ4
にて回転させ、非線形光学結晶3中で蛍光とゲートパル
ス光による相関光が非線形光学効果で最も効率的に変換
されるよう回転角を設定する。発生した変換光は光学系
12により集光され、分光器11へ導入される。分光器
11にて分光された変換光は光検出器13にて検出さ
れ、電気信号に変換された後、信号解析装置14にて計
測される。
Next, the nonlinear optical crystal 3 is attached to the rotary stage 4
And the rotation angle is set so that the correlated light due to the fluorescence and the gate pulse light in the nonlinear optical crystal 3 is converted most efficiently by the nonlinear optical effect. The generated converted light is condensed by the optical system 12 and introduced into the spectroscope 11. The converted light split by the spectroscope 11 is detected by the photodetector 13, converted into an electric signal, and then measured by the signal analysis device 14.

【0012】ついで、極短パルス光源1から発生される
試料励起光の出力より少なくとも1桁以上低い出力の光
を連続発振光源2から発生させ、光学系7により測定試
料16に照射させ、このとき発生したキャリアにより増
加した変換光成分を信号解析装置14にて抽出及び計測
し、その波長依存性を連続発振光源2の波長を連続的に
変化させて測定することで、連続発振光源2の発振波長
範囲にわたり、任意の遅延時間における蛍光励起スペク
トルが測定される。更に、光学遅延路9の光路差を変化
させ、蛍光に対するゲートパルス光の遅延時間を新たに
設定し、上記した蛍光励起スペクトルの測定を行い、こ
れを制御器15にて繰り返すことで時間分解蛍光励起ス
ペクトルの測定が行えることになる。
Then, the continuous oscillation light source 2 generates light having an output at least one digit lower than the output of the sample excitation light generated from the ultrashort pulse light source 1, and the optical system 7 irradiates the measurement sample 16 at this time. The converted light component increased by the generated carriers is extracted and measured by the signal analysis device 14, and its wavelength dependence is measured by continuously changing the wavelength of the continuous wave light source 2 to oscillate the continuous wave light source 2. Fluorescence excitation spectra at any delay time are measured over a range of wavelengths. Further, the optical path difference of the optical delay path 9 is changed, the delay time of the gate pulse light with respect to the fluorescence is newly set, the above-described fluorescence excitation spectrum is measured, and the controller 15 repeats this to repeat the time-resolved fluorescence. The excitation spectrum can be measured.

【0013】図2は上記した測定方法により観測した試
料16から放出される蛍光励起スペクトルの時間分解測
定を示すグラフである。同図において遅延時間がt0
る時刻は光パルスの試料表面における散乱光とゲートパ
ルス光による自己相関波形の強度が最大となる時刻に対
応し、この時刻を時間軸の原点、即ち、測定試料に光パ
ルスが励起された瞬間とする。
FIG. 2 is a graph showing time-resolved measurement of the fluorescence excitation spectrum emitted from the sample 16 observed by the above-mentioned measuring method. In the figure, the time at which the delay time is t 0 corresponds to the time at which the intensity of the autocorrelation waveform due to the scattered light on the sample surface of the light pulse and the gate pulse light becomes maximum, and this time is the origin of the time axis, that is, the measurement sample. The moment when the light pulse is excited.

【0014】ついで、光学遅延路により蛍光に対するゲ
ートパルス光の遅延時間をt0 から任意の遅延時間だけ
ずらし、蛍光とゲートパルス光の交差相関光の励起スペ
クトルを測定する。光パルス励起直後では、光パルス照
射によって生成したキャリアの多くがまだ高いエネルギ
ー状態に分布し、測定試料の吸収係数はこれを反映する
ため、試料励起用光パルスの出力より少なくとも1桁以
下の出力を有する連続発振光を試料に照射し、その波長
を連続的に変化させると、相関光強度は測定試料の光パ
ルス励起直後における吸収係数を反映して変化する。し
たがって、相関光強度の波長依存性から光パルス励起直
後の蛍光励起スペクトルが測定できる。図2における時
刻t1 のスペクトルが、上記説明した光パルス励起直後
の蛍光励起スペクトルに対応している。
Then, the optical delay path shifts the delay time of the gate pulse light with respect to the fluorescence from t 0 by an arbitrary delay time, and the excitation spectrum of the cross-correlated light of the fluorescence and the gate pulse light is measured. Immediately after the light pulse excitation, most of the carriers generated by the light pulse irradiation are still distributed in a high energy state, and the absorption coefficient of the measurement sample reflects this, so the output of the light pulse for sample excitation is at least one digit or less. When the sample is irradiated with continuous wave light having a wavelength of, and the wavelength of the sample is continuously changed, the correlated light intensity changes reflecting the absorption coefficient of the measurement sample immediately after the optical pulse excitation. Therefore, the fluorescence excitation spectrum immediately after the light pulse excitation can be measured from the wavelength dependence of the correlated light intensity. The spectrum at time t 1 in FIG. 2 corresponds to the fluorescence excitation spectrum immediately after the above-described optical pulse excitation.

【0015】更に、時刻がt1 から経過するにつれ高い
エネルギー状態に分布したキャリアがバンド端にエネル
ギー緩和していくため、光学遅延路において設定された
時刻におけるキャリアのエネルギー分布を反映した吸収
係数の変化として、蛍光励起スペクトルが測定されるこ
とになる。
Further, since the carriers distributed in a high energy state relax toward the band edge as the time elapses from t 1, the absorption coefficient of the absorption coefficient reflecting the energy distribution of the carriers at the time set in the optical delay path. As a change, the fluorescence excitation spectrum will be measured.

【0016】本実施例においては、上記したように、時
間分解蛍光励起スペクトルを測定試料からの蛍光とゲー
トパルス光の、非線形光学効果により発生した交差相関
光の励起スペクトルの時間依存性の測定により求めるの
で、従来例のように測定試料のバンドギャップ近傍の狭
いエネルギー領域における時間分解励起スペクトルの測
定に限らず、連続発振光源の広い波長可変領域での時間
分解蛍光励起スペクトルの測定が可能となる。したがっ
て、励起スペクトルを測定するための連続発振光源につ
いては、測定したいエネルギー領域に応じて任意に選択
すること、また、複数台用いることも可能であることは
明白である。
In this embodiment, as described above, the time-resolved fluorescence excitation spectrum is measured by measuring the time dependence of the fluorescence of the measurement sample and the excitation spectrum of the cross-correlation light generated by the nonlinear optical effect of the gate pulse light. Therefore, it is possible to measure not only the time-resolved excitation spectrum in a narrow energy region near the band gap of the measurement sample as in the conventional example but also the time-resolved fluorescence excitation spectrum in a wide wavelength variable region of the continuous wave light source. . Therefore, it is obvious that the continuous wave light source for measuring the excitation spectrum can be arbitrarily selected according to the energy region to be measured, and a plurality of light sources can be used.

【0017】また、本実施例における時間分解能は非線
形光学効果に基づいているため、従来例における光検出
器や信号解析装置内において行われる電気的信号処理に
基づく時間分解能にて制限されることは無く、光パルス
の時間幅、非線形光学結晶の寸法及び種類、光学遅延路
における光路差量にて決定される。したがって、要求す
る時間分解能、相関光強度に応じて任意に光パルスの時
間幅、非線形光学結晶の種類、寸法及び光学遅延路にお
ける光路差量を任意に設定できることは明白である。
Further, since the time resolution in this embodiment is based on the non-linear optical effect, it is not limited by the time resolution based on the electrical signal processing performed in the photodetector or the signal analysis device in the conventional example. Instead, it is determined by the time width of the optical pulse, the size and type of the nonlinear optical crystal, and the optical path difference amount in the optical delay path. Therefore, it is obvious that the time width of the optical pulse, the type and size of the nonlinear optical crystal, and the optical path difference amount in the optical delay path can be arbitrarily set according to the required time resolution and the correlated light intensity.

【0018】また、本実施例においては、測定試料の時
間分解蛍光励起スペクトルを測定する例について説明し
たが、本発明に関しては以下の測定方法に関しても適用
が可能である。即ち、連続発振光の波長を任意に設定
し、これを試料に照射し、このとき発生したキャリアに
より増加した変換光成分の強度の時間変化を、光学遅延
路の光路差を変化させることにより、任意に設定した波
長における蛍光の寿命測定に適用できることは明白であ
る。また、上記した操作を制御器15にて繰り返すこと
により、波長分解蛍光寿命の測定に適用できることも明
白である。
In this embodiment, an example of measuring the time-resolved fluorescence excitation spectrum of the measurement sample has been described, but the present invention can be applied to the following measuring methods. That is, the wavelength of continuous wave light is arbitrarily set, the sample is irradiated with this, and the time change of the intensity of the converted light component increased by the carriers generated at this time is changed by changing the optical path difference of the optical delay path. It is obvious that it can be applied to the lifetime measurement of fluorescence at an arbitrarily set wavelength. It is also apparent that the controller 15 can be applied to the measurement of the wavelength-resolved fluorescence lifetime by repeating the above operation.

【0019】[0019]

【発明の効果】以上説明したように、本発明の時間分解
蛍光励起スペクトル測定装置は半導体材料から放出され
る蛍光と光ゲートパルスの交差相関光の励起スペクトル
を測定するようにしたので、従来不可能であった広いエ
ネルギー領域にわたる時間分解蛍光励起スペクトルの測
定が可能となる。更に、非線形光学効果に基づく測定で
あるため、高時間分解能測定が行える。
As described above, since the time-resolved fluorescence excitation spectrum measuring apparatus of the present invention measures the excitation spectrum of the cross-correlation light of the fluorescence emitted from the semiconductor material and the optical gate pulse, it is not possible to use the conventional method. It is possible to measure the time-resolved fluorescence excitation spectrum over a wide energy range that was possible. Furthermore, since the measurement is based on the nonlinear optical effect, high time resolution measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関わる時間分解蛍光励起スペクトル測
定装置の構成図である。
FIG. 1 is a configuration diagram of a time-resolved fluorescence excitation spectrum measuring apparatus according to the present invention.

【図2】本発明の時間分解蛍光励起スペクトル測定装置
による蛍光励起スペクトルの時間分解測定例を示す図で
ある。
FIG. 2 is a diagram showing an example of time-resolved measurement of a fluorescence excitation spectrum by the time-resolved fluorescence excitation spectrum measuring apparatus of the present invention.

【図3】従来の時間分解蛍光スペクトル測定方法を適用
した装置の構成図である。
FIG. 3 is a configuration diagram of an apparatus to which a conventional time-resolved fluorescence spectrum measuring method is applied.

【符号の説明】[Explanation of symbols]

1…極短光パルス光源、2…連続発振光源、3…非線形
光学結晶、4…回転ステージ、5…光学素子、6,7,
8,10,12…光学系、9…光学遅延路、11…分光
器、13…光検出器、14…信号解析装置、15…制御
器、16…測定試料。
1 ... Ultrashort pulse light source, 2 ... Continuous oscillation light source, 3 ... Non-linear optical crystal, 4 ... Rotation stage, 5 ... Optical element, 6, 7,
8, 10, 12 ... Optical system, 9 ... Optical delay path, 11 ... Spectrometer, 13 ... Photodetector, 14 ... Signal analysis device, 15 ... Controller, 16 ... Measurement sample.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光パルス照射により発生する被測定半導
体材料からの蛍光と、ゲートパルス光の交差相関光を非
線形光学結晶中における非線形光学効果により発生さ
せ、その強度の時間変化の測定を行う時間分解蛍光測定
装置と、 波長を連続的に変化させることのできる連続発振光源
と、 前記交差相関光の強度の時間変化、連続発振光源の波長
変化、及び、それらに同期して交差相関光を自動制御す
るための制御器とを具備し、 試料励起光により半導体材料から放出される蛍光と、ゲ
ートパルス光の交差相関光の励起スペクトルを連続発振
光の連続波長スキャンにより測定し、任意の時刻に設定
して再び交差相関光の励起スペクトルの測定を行うこと
を繰り返すことで、蛍光励起スペクトルの時間変化を測
定するようにしたことを特徴とする時間分解蛍光励起ス
ペクトル測定装置。
1. A time for measuring cross-correlation light of fluorescence from a semiconductor material to be measured generated by light pulse irradiation and gate pulse light by a non-linear optical effect in a non-linear optical crystal, and measuring a time change of its intensity. Decomposition fluorescence measurement device, continuous wave light source capable of continuously changing wavelength, time change of intensity of the cross-correlated light, wavelength change of continuous wave light source, and automatic cross-correlation light synchronized with them Equipped with a controller to control, the fluorescence emitted from the semiconductor material by the sample excitation light, and the excitation spectrum of the cross-correlation light of the gate pulse light is measured by continuous wavelength scanning of continuous oscillation light, and at any time It is characterized in that the time change of the fluorescence excitation spectrum is measured by repeating the setting and measurement of the excitation spectrum of the cross-correlated light again. Time-resolved fluorescence excitation spectrum analyzer.
JP34473892A 1992-12-24 1992-12-24 Time-resolved fluorescence excitation spectrum analyzer Expired - Fee Related JP2702047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34473892A JP2702047B2 (en) 1992-12-24 1992-12-24 Time-resolved fluorescence excitation spectrum analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34473892A JP2702047B2 (en) 1992-12-24 1992-12-24 Time-resolved fluorescence excitation spectrum analyzer

Publications (2)

Publication Number Publication Date
JPH06194312A true JPH06194312A (en) 1994-07-15
JP2702047B2 JP2702047B2 (en) 1998-01-21

Family

ID=18371596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34473892A Expired - Fee Related JP2702047B2 (en) 1992-12-24 1992-12-24 Time-resolved fluorescence excitation spectrum analyzer

Country Status (1)

Country Link
JP (1) JP2702047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040816A (en) * 2013-08-23 2015-03-02 株式会社Screenホールディングス Inspection apparatus and inspection method
JP2016007105A (en) * 2014-06-20 2016-01-14 株式会社Screenホールディングス Inspection device and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040816A (en) * 2013-08-23 2015-03-02 株式会社Screenホールディングス Inspection apparatus and inspection method
JP2016007105A (en) * 2014-06-20 2016-01-14 株式会社Screenホールディングス Inspection device and inspection method

Also Published As

Publication number Publication date
JP2702047B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
Tanaka et al. New method of superheterodyne light beating spectroscopy for Brillouin scattering using frequency-tunable lasers
US5293213A (en) Utilization of a modulated laser beam in heterodyne interferometry
RU2371684C2 (en) Method and device for measuring time-domain spectrum of terahertz radiation pulses
EP0783680B1 (en) High-speed multiple wavelength illumination source in quantitative luminescence ratio microscopy
JPH08335617A (en) Method and equipment for response analysis of semiconductor material using optical stimulation
US7280215B2 (en) Photothermal system with spectroscopic pump and probe
US7369234B2 (en) Method of performing optical measurement on a sample
US3565567A (en) Method of and apparatus for measuring the presence and/or concentration of an element in an atomic vapor
KR20090023191A (en) Measurement equipment
US7126690B2 (en) Modulated reflectance measurement system using UV probe
JP2001141567A (en) Infrared spectroscope
CN111999278B (en) Ultrafast time-resolved transient reflected light, transmitted light and related Raman spectrum imaging system
JPS5811567B2 (en) Back ground
WO2003010519A1 (en) Time resolution transient absorption measuring device
US20070171420A1 (en) Pulsed ellipsometer device
JP2702047B2 (en) Time-resolved fluorescence excitation spectrum analyzer
JP2004061411A (en) Method and apparatus for nonlinear raman spectroscopy
JP2007005410A (en) Intermediate infrared light/ultraviolet light emitting device
JP2705021B2 (en) Method and apparatus for measuring carrier conduction time
JPH11295159A (en) Stress measuring device
JP4955863B2 (en) Sum frequency generation spectroscopic apparatus and method
JPH0776711B2 (en) High time resolved total internal reflection spectroscopy and measurement equipment
JP2009229310A (en) Device and method for measuring spectrum phase of discrete spectrum
EP1595135A1 (en) Method of performing optical measurement on a sample
KR100449654B1 (en) Method and apparatus for monitoring the density of Gadolinium atomic vapor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091003

LAPS Cancellation because of no payment of annual fees