JP2009229310A - Device and method for measuring spectrum phase of discrete spectrum - Google Patents

Device and method for measuring spectrum phase of discrete spectrum Download PDF

Info

Publication number
JP2009229310A
JP2009229310A JP2008076557A JP2008076557A JP2009229310A JP 2009229310 A JP2009229310 A JP 2009229310A JP 2008076557 A JP2008076557 A JP 2008076557A JP 2008076557 A JP2008076557 A JP 2008076557A JP 2009229310 A JP2009229310 A JP 2009229310A
Authority
JP
Japan
Prior art keywords
spectrum
light
measured light
measured
sum frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008076557A
Other languages
Japanese (ja)
Other versions
JP5170748B2 (en
Inventor
Takayuki Suzuki
隆行 鈴木
Masayuki Katsuragawa
眞幸 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electro Communications NUC
Original Assignee
University of Electro Communications NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electro Communications NUC filed Critical University of Electro Communications NUC
Priority to JP2008076557A priority Critical patent/JP5170748B2/en
Publication of JP2009229310A publication Critical patent/JP2009229310A/en
Application granted granted Critical
Publication of JP5170748B2 publication Critical patent/JP5170748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure the spectral phase of a discrete spectrum at a high speed and high sensitivity. <P>SOLUTION: A measuring device measures the spectral phase of the discrete spectrum observes a state, where each spectral ray mutually interferences with an observation device 16 by regarding one light to be measured L1a, L1a separated with a beam splitter 11 from laser lights L1, L2 as the exciting light; generates a wide-band discrete spectrum with a cell 12 for generating wide-band discrete spectrum including a non-linear medium 12A; gives a delay amount with a light delay unit 13 to the other lights to be measured L1b, L2b separated with the beam splitter 11; mixes a spectrum generated with the cell 12 for generating the wide-band discrete spectrum and the other lights to be measured L1b, L2b delayed by the light delay unit 13 to generate a sum frequency spectrum, by passing a non-linear optical crystal 14B of a sum frequency spectrum generator 14; and variably controls the delay amount given to the other lights to be measured L1b, L2b with the light delay unit 13 by a control part 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二波長の励起レーザー光の上記非線形媒質における差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生する広帯域離散スペクトル発生装置における離散スペクトルのスペクトル位相計測装置、及び、離散スペクトルのスペクトル位相計測方法及び、その周波数制御方法に関する。   The present invention provides a spectrum phase measurement of a discrete spectrum in a broadband discrete spectrum generator that generates a broadband discrete spectrum by inducing a coherent refractive index change of a frequency corresponding to the difference frequency in the nonlinear medium of the two-wavelength excitation laser light. The present invention relates to an apparatus, a spectral phase measurement method of a discrete spectrum, and a frequency control method thereof.

近年、気体分子の振動や回転状態を断熱的に励起し、特定の二準位間に最大値に迫る高いコヒーレンスを持つ分子を高密度に生成することが可能となった。高いコヒーレンスを持つ分子集団は対応する量子状態間の遷移周波数で周期的に屈折率変化をする媒質として振る舞い、通過する光を高効率に変調できる。この結果、ラマンサイドバンド光と呼ばれる広帯域な離散スペクトルが生成される。   In recent years, it has become possible to amplify the vibration and rotation states of gas molecules adiabatically and to generate molecules with high coherence approaching the maximum value between two specific levels at high density. A group of molecules having high coherence behaves as a medium that periodically changes the refractive index at the transition frequency between corresponding quantum states, and can modulate light passing therethrough with high efficiency. As a result, a broadband discrete spectrum called Raman sideband light is generated.

ラマンコヒーレンスの生成には、ラマン遷移に対応する周波数差を持つ二種類のレーザー光を同時に入射する。周波数差をラマン遷移の共鳴周波数からわずかに離調することで、断熱的に二準位間の重ね合わせ状態を生成できる。高いコヒーレンスを持つ分子集団による光変調では、周波数の変換効率が高いため、全てのラマンサイドバンド光が励起光と同軸に発生するという特徴を持つ。これはフーリエ合成による超短パルス生成にも有利に働き、超短パルス発生の現実的な新手法として注目されている。   For the generation of Raman coherence, two types of laser beams having a frequency difference corresponding to the Raman transition are simultaneously incident. By slightly detuning the frequency difference from the resonance frequency of the Raman transition, a superposition state between the two levels can be generated adiabatically. Optical modulation by a group of molecules having high coherence has a characteristic that all Raman sideband light is generated coaxially with the excitation light because of high frequency conversion efficiency. This works favorably for the generation of ultrashort pulses by Fourier synthesis, and is attracting attention as a realistic new technique for generating ultrashort pulses.

また、フェムト秒の超短パルス光は、非線形光学応答を利用した非破壊、非侵襲の物質測定、ガラスや金属や半導体の超精細加工、細胞の切削や操作などに利用できるだけでなく、光の干渉性を利用して物体内部を撮像するOCT(Optical Coherence Tomography)や多光子顕微鏡の光源、X線に代わる検査用電磁波となる波長30μm〜3nmのテラヘルツ波発生装置などへの応用が期待されている。   In addition, femtosecond ultra-short pulse light can be used not only for non-destructive and non-invasive substance measurement using nonlinear optical response, ultra-fine processing of glass, metal and semiconductor, cell cutting and manipulation, etc. Expected to be applied to OCT (Optical Coherence Tomography) that images the inside of an object using coherence, a light source of a multiphoton microscope, a terahertz wave generator with a wavelength of 30 μm to 3 nm, which becomes an electromagnetic wave for inspection instead of X-rays, etc. Yes.

特開2005−251810号公報JP-A-2005-251810

ところで、ラマン形共鳴からわずかに離調した2波長の高強度レーザー光を分子の照射すると、分子中に高いコヒ−レンスを生成することができ、この結果、ラマンサイドバンド光と呼ばれる広帯域な離散スペクトルを同時且つ同軸に生成できる。このサイドバンド光に適当な位相補償を行えば、スペクトルの離散性に起因する超高速繰り返しの超短パルスを生成することが可能となる。これは従来の超短パルス発生とは本質的に異なり、電気素子の応答限界を超える高い繰り返し周波数が達成できる。広帯域スペクトルから超短パルスを生成するにはパルス圧縮、すなわちスペクトル位相の補償が必要である。しかしこれまでのところ、このような離散スペクトルの位相測定法は確立されていなかったため、高度な分散補償は不可能であった。これまでは、適当なパルス生成後に自己相関計測を行う手法で評価されることがほとんどであったが、ある程度のパルス化がされないと評価できない、位相情報までは正しく評価できないなどの問題があった。   By the way, when a high-intensity laser beam having two wavelengths slightly detuned from Raman resonance is irradiated with a molecule, a high coherence can be generated in the molecule. As a result, a broadband discrete light called Raman sideband light is generated. The spectrum can be generated simultaneously and coaxially. If appropriate phase compensation is performed on the sideband light, it is possible to generate ultrafast pulses with ultrafast repetition due to spectral discreteness. This is essentially different from conventional ultrashort pulse generation, and a high repetition frequency exceeding the response limit of the electrical element can be achieved. Generating ultrashort pulses from a broadband spectrum requires pulse compression, ie, spectral phase compensation. However, so far, no phase measurement method for such a discrete spectrum has been established, so that advanced dispersion compensation has not been possible. Until now, it was mostly evaluated by the method of performing autocorrelation measurement after generating appropriate pulses, but there were problems such as that it could not be evaluated without a certain degree of pulsing, and phase information could not be evaluated correctly .

そこで、本発明の目的は、上述の如き従来の実情に鑑み、離散スペクトルのスペクトル位相を高速かつ高感度に測定可能な離散スペクトルのスペクトル位相計測装置、及び、離散スペクトルのスペクトル位相計測方法を提供することにある。   Accordingly, an object of the present invention is to provide a discrete spectrum spectrum phase measuring apparatus and a discrete spectrum spectrum phase measuring method capable of measuring the spectrum phase of a discrete spectrum at high speed and with high sensitivity in view of the conventional situation as described above. There is to do.

本発明のさらに他の目的、本発明によって得られる具体的な利点は、以下において図面を参照して説明される実施に形態から一層明らかにされる。   Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the embodiments described below with reference to the drawings.

本発明では、2つの周波数成分由来の離散スペクトルの位相を2種類の和周波スペクトル間の干渉から評価する。例えば、ラマンサイドバンドと、その発生に用いる二波長の基本波との和周波スペクトルを発生させ、二つの和周波スペクトル間の干渉を利用してスペクトル位相を測定する。基本波の遅延を制御すると離散スペクトルの各成分間の干渉条件を連続的に掃引でき、その干渉の様子からスペクトル位相を見積もることができる。   In the present invention, the phase of a discrete spectrum derived from two frequency components is evaluated from interference between two types of sum frequency spectra. For example, a sum frequency spectrum of a Raman sideband and a fundamental wave of two wavelengths used for the generation is generated, and the spectrum phase is measured using interference between the two sum frequency spectra. By controlling the delay of the fundamental wave, the interference condition between each component of the discrete spectrum can be continuously swept, and the spectrum phase can be estimated from the state of the interference.

すなわち、本発明は、離散スペクトルのスペクトル位相計測装置であって、被測定光である離散スペクトル発生用の2波長のレーザー光を一方の被測定光と他方の被測定光に分離するビームスプリッターと、上記ビームスプリッターにより分離された一方の被測定光が励起光として入射され、非線形媒質を含み、上記励起光として入射される上記一方の被測定光である上記2波長のレーザー光の上記非線形媒質における差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生する広帯域離散スペクトル生成用セルと、上記ビームスプリッターにより分離された他方の被測定光が入射される光遅延器と、上記一方の被測定光を励起光として上記広帯域離散スペクトル生成用セルにより生成される広帯域離散スペクトルと、上記光遅延器により遅延された上記他方の被測定光が混合されて入射される非線形光学結晶を通過させることにより和周波スペクトルを発生する和周波数スペクトル発生器と、上記光遅延器により上記他方の被測定光に与える遅延量を可変制御する制御部と、上記和周波数スペクトル発生器により発生される和周波数スペクトルを分光して観測する観測装置とを備え、上記制御部により上記光遅延器の遅延量を制御して、上記和周波数スペクトル発生器により発生される和周波数スペクトルの各スペクトル線が互いに干渉する様子を上記観測装置で観測することにより、各スペクトル線間の位相差から被測定光の位相を見積もることを特徴とする。   That is, the present invention is a discrete spectrum spectral phase measuring device, which is a beam splitter for separating laser light of two wavelengths for generating a discrete spectrum, which is measured light, into one measured light and the other measured light. The one measured light separated by the beam splitter is incident as excitation light, includes a nonlinear medium, and the nonlinear medium of the two-wavelength laser light that is the one measured light incident as the excitation light A broadband discrete spectrum generating cell for generating a broadband discrete spectrum by inducing a coherent refractive index change of a frequency corresponding to a difference frequency in the optical delay, and an optical delay in which the other measured light separated by the beam splitter is incident And a broadband generated by the broadband discrete spectrum generating cell using the one measured light as excitation light. A sum frequency spectrum generator for generating a sum frequency spectrum by passing a non-linear optical crystal in which the diffuse spectrum and the other measured light delayed by the optical delay device are mixed and incident; and the optical delay device A control unit that variably controls the amount of delay given to the other measured light by the above and an observation device that spectrally observes the sum frequency spectrum generated by the sum frequency spectrum generator, By controlling the delay amount of the delay device and observing with the observation device how the spectral lines of the sum frequency spectrum generated by the sum frequency spectrum generator interfere with each other, the phase difference between the spectral lines can be determined. The phase of the light to be measured is estimated.

本発明に係る離散スペクトルのスペクトル位相計測装置は、例えば、上記制御部により上記光遅延器の遅延量を制御して、上記他方の被測定光に与える遅延量を掃引することにより、離散スペクトルの周波数間隔の逆数に対応する光学遅延を1周期として全ての和周波成分の干渉条件を変化させて、上記観測装置により上記和周波数スペクトル発生器により発生される和周波数スペクトルを分光して観測する。   The discrete spectrum spectral phase measurement apparatus according to the present invention, for example, controls the delay amount of the optical delay device by the control unit and sweeps the delay amount to be given to the other measured light. The optical frequency corresponding to the reciprocal of the frequency interval is set to one period, the interference condition of all the sum frequency components is changed, and the sum frequency spectrum generated by the sum frequency spectrum generator is spectrally observed by the observation device.

また、本発明に係る離散スペクトルのスペクトル位相計測装置では、例えば、上記広帯域離散スペクトル生成用セルは、非線形媒質としてラマン媒質を含む。   In the discrete spectrum spectral phase measuring apparatus according to the present invention, for example, the broadband discrete spectrum generating cell includes a Raman medium as a nonlinear medium.

本発明は、離散スペクトルのスペクトル位相計測方法であって、被測定光である離散スペクトル発生用の2波長のレーザー光をビームスプリッターにより一方の被測定光と他方の被測定光に分離し、上記ビームスプリッターにより分離された一方の被測定光を励起光として非線形媒質を含む広帯域離散スペクトル生成用セルに入射して、上記一方の被測定光である上記2波長のレーザー光の上記非線形媒質における差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生するとともに、上記ビームスプリッターにより分離された他方の被測定光を光遅延器に入射して、上記他方の被測定光である上記2波長のレーザー光に遅延量を与え、上記一方の被測定光を励起光として上記広帯域離散スペクトル生成用セルにより生成される広帯域離散スペクトルと、上記光遅延器により遅延された上記他方の被測定光を混合して和周波数スペクトル発生器の非線形光学結晶を通過させることにより和周波スペクトルを発生し、上記光遅延器により上記他方の被測定光に与える遅延量を可変制御して、上記和周波数スペクトル発生器により発生される和周波数スペクトルの各スペクトル線が互いに干渉する様子を観測装置で観測することにより、各スペクトル線間の位相差から被測定光の位相を見積もることを特徴とする。   The present invention is a method for measuring a spectrum phase of a discrete spectrum, wherein a laser beam having two wavelengths for generating a discrete spectrum, which is a measured light, is separated into one measured light and the other measured light by a beam splitter, One of the measured light beams separated by the beam splitter is incident on a broadband discrete spectrum generating cell including a nonlinear medium as excitation light, and the difference in the two-wavelength laser light, which is the one measured light beam, in the nonlinear medium. A coherent refractive index change corresponding to the frequency is induced to generate a wideband discrete spectrum, and the other measured light separated by the beam splitter is incident on an optical delay device, so that the other measured A delay amount is given to the two-wavelength laser light that is light, and the broadband discrete spectrum is obtained using the one measured light as excitation light. A wideband discrete spectrum generated by the cell and the other measured light delayed by the optical delay device are mixed and passed through the nonlinear optical crystal of the sum frequency spectrum generator to generate a sum frequency spectrum. The delay amount given to the other measured light is variably controlled by the optical delay device, and the observation device observes how the spectral lines of the sum frequency spectrum generated by the sum frequency spectrum generator interfere with each other. Thus, the phase of the light to be measured is estimated from the phase difference between the spectral lines.

本発明によれば、離散スペクトルのスペクトル位相を高速かつ高感度に測定することができる。   According to the present invention, the spectrum phase of a discrete spectrum can be measured at high speed and with high sensitivity.

以下、本発明を実施するための最良の形態について図面を参照して詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

本発明は、例えば図1に示すような構成の離散スペクトルのスペクトル位相計測装置10に適用される。   The present invention is applied to, for example, a spectral phase measurement apparatus 10 for a discrete spectrum configured as shown in FIG.

このスペクトル位相計測装置10は、被測定光である離散スペクトル発生用の二波長のレーザー光L1,L2を一方の被測定光L1a,L2aと他方の被測定光L1b,L2bに分離するビームスプリッター11と、上記ビームスプリッター11により分離された一方の被測定光L1a,L2aが励起光として入射される広帯域離散スペクトル生成用セル12と、上記ビームスプリッター11により分離された他方の被測定光L1b,L2bが入射される光遅延器13と、上記一方の被測定光L1a,L2aを励起光として上記広帯域離散スペクトル生成用セル12により生成される広帯域離散スペクトルと、上記光遅延器13により遅延された上記他方の被測定光L1b,L2bを合成して和周波数スペクトルを発生する和周波数スペクトル発生器14と、上記光遅延器13により上記他方の被測定光L1b,L2bに与える遅延量を可変制御する制御部15と、上記和周波数スペクトル発生器14により発生される和周波数スペクトルを分光して観測する観測装置16とを備える。   This spectral phase measuring apparatus 10 is a beam splitter 11 that separates laser light L1 and L2 having two wavelengths for generating a discrete spectrum, which is measured light, into one measured light L1a and L2a and the other measured light L1b and L2b. A broadband discrete spectrum generating cell 12 on which one of the measured light beams L1a and L2a separated by the beam splitter 11 is incident as excitation light, and the other measured light beams L1b and L2b separated by the beam splitter 11 , The broadband discrete spectrum generated by the broadband discrete spectrum generating cell 12 using the one of the measured light beams L1a and L2a as pumping light, and the optical delayer 13 delayed by the optical delayer 13 A sum frequency spectrum for generating a sum frequency spectrum by combining the other measured light beams L1b and L2b The generator 14, the control unit 15 that variably controls the amount of delay given to the other measured light L1b, L2b by the optical delay device 13, and the sum frequency spectrum generated by the sum frequency spectrum generator 14 are spectrally separated. And an observation device 16 for observation.

上記被測定光である離散スペクトル発生用の2波長のレーザー光L1,L2を入射するレーザー光源20は、例えば、第1の周波数f1のレーザー光L1を発生する第1のレーザー光源20Aと、第2の周波数f2のレーザー光L2を発生する第2のレーザー光源20Bと、上記第1のレーザー光源20Aにより発生された第1のレーザー光L1と上記第2のレーザー光源20Bにより発生された第2のレーザー光l2を混合して二波長の励起レーザー光として出射する光学系20Cからなる。   The laser light source 20 that enters the laser light L1 and L2 having two wavelengths for generating a discrete spectrum, which is the measurement light, includes, for example, the first laser light source 20A that generates the laser light L1 having the first frequency f1, and the first laser light source 20A. A second laser light source 20B that generates laser light L2 having a frequency f2 of 2, a first laser light L1 generated by the first laser light source 20A, and a second laser light source 20B generated by the second laser light source 20B. And an optical system 20C for emitting two-wavelength excitation laser light.

上記広帯域離散スペクトル生成用セル12は、非線形媒質12Aを含んでおり、上記一方の被測定光L1a,L2aを励起光として、上記2波長のレーザー光L1a,L2aの上記非線形媒質12Aにおける差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生する。上記非線形媒質12Aとして、例えば、ラマン媒質(パラ水素)を用いられ、上記2波長のレーザー光L1a,L2aが入射されることにより、ラマン過程を経て高次のサイドバンドを発生させ、広帯域離散スペクトルを発生させる。   The broadband discrete spectrum generating cell 12 includes a nonlinear medium 12A, and the difference between the two laser light beams L1a and L2a of the two wavelengths in the nonlinear medium 12A using the one measured light L1a and L2a as excitation light. A broadband discrete spectrum is generated by inducing a coherent refractive index change of the corresponding frequency. As the nonlinear medium 12A, for example, a Raman medium (parahydrogen) is used, and when the two-wavelength laser beams L1a and L2a are incident, a high-order sideband is generated through a Raman process, and a broadband discrete spectrum is obtained. Is generated.

上記光遅延器13は、上記制御部15による制御信号に応じて、上記他方の被測定光L1b,L2bが通過する光路長を可変することにより、上記他方の被測定光L1b,L2bに与える遅延量を可変することができる。   The optical delay device 13 varies the optical path length through which the other measured light L1b, L2b passes in accordance with a control signal from the control unit 15, thereby providing a delay to the other measured light L1b, L2b. The amount can be varied.

そして、上記和周波数スペクトル発生器14は、上記一方の被測定光L1a,L2aを励起光として上記広帯域離散スペクトル生成用セル12により生成される広帯域離散スペクトルと、上記光遅延器13により遅延された上記他方の被測定光L1b,L2bを混合する光学系14Aと、この光学系14Aにより混合された上記広帯域離散スペクトルと遅延された上記他方の被測定光L1b,L2bが入射される非線形光学結晶14Bとからなる。   The sum frequency spectrum generator 14 is delayed by the broadband discrete spectrum generated by the broadband discrete spectrum generating cell 12 using the one measured light L1a and L2a as excitation light and the optical delay device 13. An optical system 14A for mixing the other measured light L1b and L2b, and a nonlinear optical crystal 14B on which the broadband discrete spectrum mixed by the optical system 14A and the other measured light L1b and L2b delayed are incident. It consists of.

この和周波数スペクトル発生器14では、上記広帯域離散スペクトルと遅延された上記他方の被測定光L1b,L2bを上記光学系14Aにより混合して上記非線形光学結晶14Bを通過させることにより和周波スペクトルを発生させる。このとき、2つの励起光のそれぞれに由来する2つの異なる和周波スペクトルが同時に生成される。これを観測装置16において分光器で分光して観測すると、和周波の各スペクトル線が周波数空間で重なり、互いに干渉する様子が観測できる。干渉の強め合い、もしくは弱め合いの条件は各スペクトル線間の位相差に対応し、これから被測定光の位相を見積もることができる。   The sum frequency spectrum generator 14 generates the sum frequency spectrum by mixing the broadband discrete spectrum and the delayed other measured light L1b, L2b by the optical system 14A and passing through the nonlinear optical crystal 14B. Let At this time, two different sum frequency spectra derived from the two excitation lights are simultaneously generated. When this is observed with a spectroscope in the observation device 16, it can be observed that the spectral lines of the sum frequency overlap in the frequency space and interfere with each other. The condition for strengthening or weakening the interference corresponds to the phase difference between the spectral lines, and from this, the phase of the light under measurement can be estimated.

すなわち、例えば図2に示すように、異なる位相で干渉の強弱が現れ、この情報からスペクトル位相がわかる。遅延を与えた向きと干渉スペクトルの変化の向きを解析すると2次の非線形効果でありながら超短パルスの前後方向に関しても情報を引き出すことができる。   That is, for example, as shown in FIG. 2, the intensity of interference appears at different phases, and the spectrum phase can be known from this information. Analyzing the direction in which the delay is applied and the direction of the change in the interference spectrum, it is possible to extract information about the front-rear direction of the ultrashort pulse, although it is a second-order nonlinear effect.

したがって、このスペクトル位相計測装置10では、上記制御部15により上記光遅延器13の遅延量を制御して、上記他方の被測定光L1b,L2bに与える遅延量を掃引すると、離散スペクトルの周波数間隔の逆数に対応する光学遅延を1周期として全ての和周波成分の干渉条件が変化する。   Therefore, in the spectral phase measuring apparatus 10, when the delay amount of the optical delay device 13 is controlled by the control unit 15 and the delay amount given to the other measured light L1b, L2b is swept, the frequency interval of the discrete spectrum is obtained. The interference condition of all sum frequency components changes with an optical delay corresponding to the reciprocal of 1 as one period.

すなわち、このスペクトル位相計測装置10では、被測定光である離散スペクトル発生用の2波長のレーザー光L1,L2をビームスプリッター11により分離し、上記ビームスプリッター11により分離された一方の被測定光L1a,L2aを励起光として非線形媒質12Aを含む広帯域離散スペクトル生成用セル12に入射して、上記一方の被測定光である上記2波長のレーザー光L1a,L2aの上記非線形媒質12Aにおける差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生するとともに、上記ビームスプリッター11により分離された他方の被測定光L1b,L2bを光遅延器13に入射して、上記他方の被測定光である上記2波長のレーザー光L1b,L2bに遅延量を与え、上記一方の被測定光L1a,L2aを励起光として上記広帯域離散スペクトル生成用セル12により生成される広帯域離散スペクトルと、上記光遅延器13により遅延された上記他方の被測定光を混合して和周波数スペクトル発生器14の非線形光学結晶14Aを通過させることにより和周波スペクトルを発生し、上記制御部15により上記光遅延器13により上記他方の被測定光L1b,L2bに与える遅延量を可変制御して、上記和周波数スペクトル発生器14により発生される和周波数スペクトルの各スペクトル線が互いに干渉する様子を観測装置16で観測することにより、各スペクトル線間の位相差から被測定光の位相を見積もる。   That is, in the spectrum phase measuring apparatus 10, the laser light L1 and L2 having two wavelengths for generating a discrete spectrum, which is the light to be measured, is separated by the beam splitter 11, and one of the light to be measured L1a separated by the beam splitter 11 is used. , L2a is incident on the broadband discrete spectrum generating cell 12 including the nonlinear medium 12A as excitation light, and corresponds to the difference frequency in the nonlinear medium 12A of the two-wavelength laser lights L1a and L2a, which is the one measured light. Inducing a coherent refractive index change of the frequency to generate a broadband discrete spectrum, and the other measured light L1b, L2b separated by the beam splitter 11 is incident on the optical delay device 13, and the other A delay amount is given to the laser light L1b and L2b of the above-mentioned two wavelengths, which are light to be measured A broadband discrete spectrum generated by the broadband discrete spectrum generating cell 12 using one of the measured light beams L1a and L2a as excitation light and the other measured light delayed by the optical delay device 13 are mixed to obtain a sum frequency. A sum frequency spectrum is generated by passing through the nonlinear optical crystal 14A of the spectrum generator 14, and the control unit 15 variably controls the delay amount given to the other measured light L1b, L2b by the optical delay device 13. The observation device 16 observes how the spectrum lines of the sum frequency spectrum generated by the sum frequency spectrum generator 14 interfere with each other, thereby estimating the phase of the light under measurement from the phase difference between the spectrum lines.

ここで、図3のフローチャートに示す手順に従って実行される初回の測定と、図4のフローチャートに示す手順に従って実行される2回目以降の測定によって、周波干渉スペクトルからスペクトル位相を特定することができる。   Here, the spectrum phase can be identified from the frequency interference spectrum by the first measurement executed according to the procedure shown in the flowchart of FIG. 3 and the second and subsequent measurements executed according to the procedure shown in the flowchart of FIG.

初回の測定では、先ず、和周波干渉スペクトルを基本波の遅延時間を掃引し測定する(ステップS1)。   In the first measurement, first, the sum frequency interference spectrum is measured by sweeping the delay time of the fundamental wave (step S1).

次に、各和周波スペクトルがそれぞれもっと強くなる、すなわち、干渉し強めあう遅延時間を記録する(ステップS2)。   Next, the delay time at which each sum frequency spectrum becomes stronger, that is, interferes and strengthens is recorded (step S2).

そして、上記ステップS2の遅延時間は元の離散スペクトルの隣り合う2つのスペクトル線間の位相差を表すので、それぞれの遅延時間tと離散スペクトルの周波数間隔df(例えば10.6THz)とから、各位相差を2pi dftと一義的に導き出す(ステップS3)。   Since the delay time in step S2 represents a phase difference between two adjacent spectral lines of the original discrete spectrum, each delay time t and the frequency interval df (eg, 10.6 THz) of the discrete spectrum are The phase difference is uniquely derived as 2 pi dft (step S3).

2回目以降の測定では、和周波干渉スペクトルをある適当な遅延時間で測定する(ステップS11)。   In the second and subsequent measurements, the sum frequency interference spectrum is measured with an appropriate delay time (step S11).

初回の測定ですでにわかっている干渉スペクトルの最大値と最小値を用い、測定されたスペクトル線の強度を−1〜1の範囲にする(ステップS12)。   Using the maximum and minimum values of the interference spectrum already known in the first measurement, the intensity of the measured spectral line is set in the range of −1 to 1 (step S12).

規格化された干渉スペクトル強度のアークコサインをとると符号抜きで位相が求まる(ステップS13)。   When the arc cosine of the standardized interference spectrum intensity is taken, the phase is obtained without code (step S13).

さらに、先程と違う遅延時間((1/4f)だけずらした場合が最も効率がよい)で再度干渉スペクトルを測定し、先程との変化を見ることで位相の符号を特定する(ステップS14)。   Further, the interference spectrum is measured again with a delay time different from the previous one (the best efficiency is obtained by shifting by (1 / 4f)), and the phase code is identified by seeing the change from the previous time (step S14).

スペクトルの測定時間は、非常に短く(ミリ秒)、2回目以降は準リアルタイムの高速計測を行うことができる。   The spectrum measurement time is very short (milliseconds), and from the second time onward, near real-time high-speed measurement can be performed.

したがって、上記スペクトル位相計測装置10では、離散スペクトルのスペクトル位相を高速かつ高感度に測定することができる。   Therefore, the spectral phase measuring apparatus 10 can measure the spectral phase of the discrete spectrum at high speed and with high sensitivity.

本発明よれば、離散スペクトルのスペクトル位相を高速かつ高感度に測定することができるので、離散スペクトルから超短パルスを高次分散の影響も考慮して補償することができようになる。スペクトルの離散性のために、高い繰り返し周波数を持つパルス列は、従来の超短パルスの単発の効果を短時間に集約することができる。これを化学反応の選択性の制御に応用すれば任意の反応性生成物を効率よく短時間に生成することもできる。   According to the present invention, since the spectrum phase of a discrete spectrum can be measured at high speed and with high sensitivity, an ultrashort pulse can be compensated from the discrete spectrum in consideration of the influence of high-order dispersion. Due to the discrete nature of the spectrum, a pulse train having a high repetition frequency can aggregate the single-shot effects of conventional ultrashort pulses in a short time. If this is applied to control the selectivity of a chemical reaction, an arbitrary reactive product can be efficiently produced in a short time.

また、位相情報を用いて高次分散を補償することで、フーリエ変換限界の超短パルスが生成できる。   In addition, by compensating high-order dispersion using phase information, an ultrashort pulse with a Fourier transform limit can be generated.

また、超短パルスの時間波形を任意に制御することにも応用でき、光領域のシンセサイザーに応用できる。   It can also be applied to arbitrarily control the time waveform of ultrashort pulses, and can be applied to synthesizers in the optical domain.

さらに、離散スペクトルの発生過程で付加される位相など、物理化学過程の解明に関して新たな知見を得ることができる。   Furthermore, new knowledge can be obtained regarding the elucidation of physicochemical processes, such as the phase added in the process of generating discrete spectra.

なお、本発明は、以上の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。   In addition, this invention is not limited only to the above embodiment, Of course, a various change is possible in the range which does not deviate from the summary of this invention.

本発明適用した離散スペクトルのスペクトル位相計測装置の全体構成を示す構成図である。It is a block diagram which shows the whole structure of the spectrum phase measurement apparatus of the discrete spectrum to which this invention is applied. 上記スペクトル位相計測装置で観測されたスペクトルの例を示す図である。It is a figure which shows the example of the spectrum observed with the said spectrum phase measurement apparatus. 上記スペクトル位相計測装置において、周波干渉スペクトルからスペクトル位相を特定するための初回の測定での処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the first measurement for specifying a spectrum phase from a frequency interference spectrum in the said spectrum phase measurement apparatus. 上記スペクトル位相計測装置において、周波干渉スペクトルからスペクトル位相を特定するための二回目以降の測定での処理手順を示すフローチャートである。In the said spectrum phase measuring device, it is a flowchart which shows the process sequence in the measurement after the 2nd for specifying a spectrum phase from a frequency interference spectrum.

符号の説明Explanation of symbols

10 スペクトル位相計測装置、11 ビームスプリッター、12 広帯域離散スペクトル生成用セル、12A 非線形媒質、13 光遅延器、14 和周波数スペクトル発生器、14A 光学系14B 非線形光学結晶、15 制御部、16 観測装置 DESCRIPTION OF SYMBOLS 10 Spectral phase measuring device, 11 Beam splitter, 12 Broadband discrete spectrum generating cell, 12A nonlinear medium, 13 optical delay device, 14 sum frequency spectrum generator, 14A optical system 14B nonlinear optical crystal, 15 control unit, 16 observation device

Claims (4)

被測定光である離散スペクトル発生用の二波長のレーザー光を一方の被測定光と他方の被測定光に分離するビームスプリッターと、
上記ビームスプリッターにより分離された一方の被測定光が励起光として入射され、非線形媒質を含み、上記励起光として入射される上記一方の被測定光である上記2波長のレーザー光の上記非線形媒質における差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生する広帯域離散スペクトル生成用セルと、
上記ビームスプリッターにより分離された他方の被測定光が入射される光遅延器と、
上記一方の被測定光を励起光として上記広帯域離散スペクトル生成用セルにより生成される広帯域離散スペクトルと、上記光遅延器により遅延された上記他方の被測定光が混合されて入射される非線形光学結晶を通過させることにより和周波スペクトルを発生する和周波数スペクトル発生器と、
上記光遅延器により上記他方の被測定光に与える遅延量を可変制御する制御部と、
上記和周波数スペクトル発生器により発生される和周波数スペクトルを分光して観測する観測装置とを備え、
上記制御部により上記光遅延器の遅延量を制御して、上記和周波数スペクトル発生器により発生される和周波数スペクトルの各スペクトル線が互いに干渉する様子を上記観測装置で観測することにより、各スペクトル線間の位相差から被測定光の位相を見積もることを特徴とする離散スペクトルのスペクトル位相計測装置。
A beam splitter that separates laser light of two wavelengths for generating a discrete spectrum, which is measured light, into one measured light and the other measured light;
One of the measured light beams separated by the beam splitter is incident as excitation light, includes a nonlinear medium, and the one of the measured light beams that is incident as the excitation light in the nonlinear medium. A broadband discrete spectrum generating cell that generates a broadband discrete spectrum by inducing a coherent refractive index change in a frequency corresponding to the difference frequency;
An optical delay device on which the other measured light separated by the beam splitter is incident;
A nonlinear optical crystal in which a broadband discrete spectrum generated by the broadband discrete spectrum generating cell using the one measured light as excitation light and the other measured light delayed by the optical delay device are mixed and incident A sum frequency spectrum generator that generates a sum frequency spectrum by passing
A control unit that variably controls a delay amount given to the other measured light by the optical delay device;
An observation device for spectroscopically observing the sum frequency spectrum generated by the sum frequency spectrum generator,
By controlling the delay amount of the optical delay unit by the control unit and observing with the observation device how the spectral lines of the sum frequency spectrum generated by the sum frequency spectrum generator interfere with each other. A spectral phase measurement device for a discrete spectrum characterized in that the phase of the light to be measured is estimated from the phase difference between the lines.
上記制御部により上記光遅延器の遅延量を制御して、上記他方の被測定光に与える遅延量を掃引することにより、離散スペクトルの周波数間隔の逆数に対応する光学遅延を1周期として全ての和周波成分の干渉条件を変化させて、上記観測装置により上記和周波数スペクトル発生器により発生される和周波数スペクトルを分光して観測することを特徴とする請求項1記載の離散スペクトルのスペクトル位相計測装置。   By controlling the delay amount of the optical delay device by the control unit and sweeping the delay amount given to the other measured light, the optical delay corresponding to the reciprocal of the frequency interval of the discrete spectrum is set as one period, and 2. The spectral phase measurement of a discrete spectrum according to claim 1, wherein the interference condition of the sum frequency component is changed and the sum frequency spectrum generated by the sum frequency spectrum generator is spectroscopically observed by the observation device. apparatus. 上記広帯域離散スペクトル生成用セルは、非線形媒質としてラマン媒質を含むことを特徴とする請求項1記載のスペクトル位相計測装置。   2. The spectral phase measuring apparatus according to claim 1, wherein the broadband discrete spectrum generating cell includes a Raman medium as a nonlinear medium. 被測定光である離散スペクトル発生用の2波長のレーザー光を一方の被測定光と他方の被測定光にビームスプリッターにより分離し、
上記ビームスプリッターにより分離された一方の被測定光を励起光として非線形媒質を含む広帯域離散スペクトル生成用セルに入射して、上記一方の被測定光である上記2波長のレーザー光の上記非線形媒質における差周波数に対応する周波数のコヒーレンスな屈折率変化を誘起して、広帯域離散スペクトルを発生するとともに、
上記ビームスプリッターにより分離された他方の被測定光を光遅延器に入射して、上記他方の被測定光である上記2波長のレーザー光に遅延量を与え、
上記一方の被測定光を励起光として上記広帯域離散スペクトル生成用セルにより生成される広帯域離散スペクトルと、上記光遅延器により遅延された上記他方の被測定光を混合して和周波数スペクトル発生器の非線形光学結晶を通過させることにより和周波スペクトルを発生し、
上記光遅延器により上記他方の被測定光に与える遅延量を可変制御して、上記和周波数スペクトル発生器により発生される和周波数スペクトルの各スペクトル線が互いに干渉する様子を観測装置で観測することにより、各スペクトル線間の位相差から被測定光の位相を見積もることを特徴とする離散スペクトルのスペクトル位相計測方法。
A laser beam having two wavelengths for generating a discrete spectrum, which is a measured light, is separated into one measured light and the other measured light by a beam splitter,
The one measured light separated by the beam splitter is incident as excitation light on a broadband discrete spectrum generating cell including a nonlinear medium, and the two-wavelength laser light as the one measured light in the nonlinear medium Inducing a coherent refractive index change of the frequency corresponding to the difference frequency to generate a broadband discrete spectrum,
The other measured light separated by the beam splitter is incident on an optical delay device, and a delay amount is given to the two-wavelength laser light that is the other measured light.
A broadband frequency spectrum generated by the broadband discrete spectrum generating cell using the one measured light as excitation light and the other measured light delayed by the optical delay unit are mixed to generate a sum frequency spectrum generator. Generate a sum frequency spectrum by passing through a nonlinear optical crystal,
The delay amount given to the other measured light by the optical delay device is variably controlled, and the observation device observes how the spectral lines of the sum frequency spectrum generated by the sum frequency spectrum generator interfere with each other. A method for measuring a spectral phase of a discrete spectrum, wherein the phase of the light to be measured is estimated from the phase difference between the spectral lines.
JP2008076557A 2008-03-24 2008-03-24 Discrete spectrum spectral phase measurement apparatus and discrete spectrum spectral phase measurement method Active JP5170748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076557A JP5170748B2 (en) 2008-03-24 2008-03-24 Discrete spectrum spectral phase measurement apparatus and discrete spectrum spectral phase measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076557A JP5170748B2 (en) 2008-03-24 2008-03-24 Discrete spectrum spectral phase measurement apparatus and discrete spectrum spectral phase measurement method

Publications (2)

Publication Number Publication Date
JP2009229310A true JP2009229310A (en) 2009-10-08
JP5170748B2 JP5170748B2 (en) 2013-03-27

Family

ID=41244874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076557A Active JP5170748B2 (en) 2008-03-24 2008-03-24 Discrete spectrum spectral phase measurement apparatus and discrete spectrum spectral phase measurement method

Country Status (1)

Country Link
JP (1) JP5170748B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171194A (en) * 2009-01-22 2010-08-05 Univ Of Electro-Communications Spectrum phase compensation method, and spectrum phase compensation device
CN107036714A (en) * 2017-04-25 2017-08-11 深圳大学 A kind of spectrum phase interference apparatus and system
CN109612955A (en) * 2019-01-07 2019-04-12 中国科学院力学研究所 A kind of Peace Park phase measurement device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012055562; 澤山純樹,他: '"SPIDER法の応用によるラマンサイドバンド光の位相計測"' 応用物理学関係連合講演会講演予稿集 Vol.55th No.3, 20080327, pp.1142 *
JPN6012055564; 桂川眞幸: '"ラマン過程の断熱操作と超短パルス光発生制御技術への展開 "' 応用物理 Vol.76 No.2, 20070210, pp.125-132 *
JPN6012055566; Takayuki Suzuki,他: '"Spectral phase measurements for broad Raman sidebands by using spectral interferometry"' Optics Letters Vol.33,Issue23, 20081201, pp.2809-2811 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010171194A (en) * 2009-01-22 2010-08-05 Univ Of Electro-Communications Spectrum phase compensation method, and spectrum phase compensation device
CN107036714A (en) * 2017-04-25 2017-08-11 深圳大学 A kind of spectrum phase interference apparatus and system
CN107036714B (en) * 2017-04-25 2019-02-12 深圳大学 A kind of spectrum phase interference apparatus and system
CN109612955A (en) * 2019-01-07 2019-04-12 中国科学院力学研究所 A kind of Peace Park phase measurement device
CN109612955B (en) * 2019-01-07 2023-11-24 中国科学院力学研究所 Sum frequency vibration spectrum phase measuring device

Also Published As

Publication number Publication date
JP5170748B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP4499091B2 (en) Single-pulse anti-Stokes Raman scattering microscopy and spectroscopy
CN103959045B (en) Measurement apparatus and measuring method
JP5100461B2 (en) LIGHT SOURCE DEVICE FOR NONLINEAR SPECTROSCOPY MEASUREMENT SYSTEM
JP4280654B2 (en) Multi-channel terahertz spectrum measuring method and measuring apparatus
US8120772B2 (en) Method for NRB-free nonlinear vibrational spectroscopy and miscroscopy
US8804117B2 (en) Method for detecting a resonant nonlinear optical signal and device for implementing said method
WO2019220863A1 (en) Optical pulse pair generation device, light detection device, and light detection method
WO2017169800A1 (en) Pulsed light waveform measurement method and waveform measurement device
Meneghin et al. Raman and 2D electronic spectroscopies: A fruitful alliance for the investigation of ground and excited state vibrations in chlorophyll a
Kumar et al. Two-photon excitation spectroscopy of 1, 5–Diphenyl-1, 3, 5-hexatriene using phase modulation
JP5170748B2 (en) Discrete spectrum spectral phase measurement apparatus and discrete spectrum spectral phase measurement method
JP5051744B2 (en) Multiphoton excitation spectrum and multiphoton absorption spectrum measurement equipment
US10132754B2 (en) Device and method for illuminating a sample
JP3691813B2 (en) Non-linear Raman spectroscopy method and apparatus
JP2015197513A (en) Light source device, and information acquisition device using the same
WO2014125775A1 (en) Infrared spectrum measuring device and method
JP6765648B2 (en) Photodetector, photodetector and photodetector
WO2024080301A1 (en) High-speed scan fourier transform spectrometer and spectroscopy method
WO2021177195A1 (en) Light detection device and light detection method
JP2009229386A (en) Sum frequency generating spectroscopic device and its spectroscopic method
JP2024056534A (en) Fast scanning Fourier transform spectrometer and spectroscopic method
WO2021038743A1 (en) Spectroscopic measurement device
Falamas et al. Measuring the frequency chirp of white-light continuum in a pump-probe system
JP2024508203A (en) High energy efficiency coherent Raman spectroscopy system and method using dual comb laser
Levitt et al. -Coherent Control in CARS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

R150 Certificate of patent or registration of utility model

Ref document number: 5170748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250