JPH06194257A - Method and device for measuring gas leak of container - Google Patents

Method and device for measuring gas leak of container

Info

Publication number
JPH06194257A
JPH06194257A JP34634792A JP34634792A JPH06194257A JP H06194257 A JPH06194257 A JP H06194257A JP 34634792 A JP34634792 A JP 34634792A JP 34634792 A JP34634792 A JP 34634792A JP H06194257 A JPH06194257 A JP H06194257A
Authority
JP
Japan
Prior art keywords
container
measured
differential pressure
time
thermal equilibrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34634792A
Other languages
Japanese (ja)
Other versions
JP3054508B2 (en
Inventor
Seiyo Ko
正余 賈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Steel Co Ltd
Taiyo Ltd
Original Assignee
Taiyo Steel Co Ltd
Taiyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Steel Co Ltd, Taiyo Ltd filed Critical Taiyo Steel Co Ltd
Priority to JP4346347A priority Critical patent/JP3054508B2/en
Publication of JPH06194257A publication Critical patent/JPH06194257A/en
Application granted granted Critical
Publication of JP3054508B2 publication Critical patent/JP3054508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To accurately measure the air leakage of different containers to be measured by using the same reference container by measuring a differential pressure between the respective containers at a point of later when the compressed gases in respective containers attains a thermal equilibium state after the container to be measured and the reference container are filled with a compressed gas. CONSTITUTION:After a solenoid valve SV1 is turned on, the valves SV2 and SV3 are simultaneously turned on to supply a compressed air to a reference container MV and a container to be measured WV from a compressed air source S. The pressures in the containers MV and WV raise and at a point when the both reach a supply pressure PS, the filling is completed and the differential pressure becomes zero. Then, when the supply of compressed air is stopped at a point of time tb, the pressure Pm in the container MV gradually drops due to the temperature change of the compressed air, and the pressure Pw of the container WV due to the temperature change of the compressed air and leakage, respectively, thereby generating a differential pressure D. After the differential pressure D shows its peak at a point of time tc, it attains thermal equilibium state at a point of time ts. A differential meter DPS measures the differential pressure D (t) with time elapse caused by only leakage at the point ts or later and calculates a leake ratio q.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、容器(被測定容器)の
ガス漏れを差圧方式によって正確に計測するための方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for accurately measuring gas leakage of a container (measurement container) by a differential pressure method.

【0002】[0002]

【従来の技術】従来において、被測定容器の空気漏れを
計測するために、被測定容器と全く同一の形状及び容積
を有し且つ空気漏れの全くない容器(バランス容器)を
製作し、被測定容器及びバランス容器に対して圧縮空気
を供給して互いに同一の圧力となるように充填した後、
圧縮空気の供給を停止し、その後のこれらの容器間にお
ける差圧を測定することが行われている。
2. Description of the Related Art Conventionally, in order to measure air leakage of a container to be measured, a container (balance container) having exactly the same shape and volume as the container to be measured and having no air leakage was manufactured, and the container to be measured was measured. After supplying compressed air to the container and the balance container and filling them so that they have the same pressure,
It is practiced to stop the supply of compressed air and then measure the differential pressure between these vessels.

【0003】差圧が測定されると、差圧と被測定容器の
容積から被測定容器の空気漏れ量を推定することができ
る。
When the differential pressure is measured, it is possible to estimate the air leakage amount of the measured container from the differential pressure and the volume of the measured container.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
の方法では、圧縮空気の圧縮又は膨張にともなう温度変
化の影響をなくすため、被測定容器と全く同一の形状及
び容積のバランス容器を用いる必要がある。
However, in the above-mentioned conventional method, in order to eliminate the influence of temperature change due to compression or expansion of compressed air, it is necessary to use a balance container having exactly the same shape and volume as the container to be measured. There is.

【0005】したがって、被測定容器が異なる毎にそれ
ぞれに対応したバランス容器を製作し、且つそれを配管
接続して取り付けなければならず、その手間が大変であ
り実用上極めて不便であった。
Therefore, it is necessary to manufacture a balance container corresponding to each different container to be measured, and to connect it by pipe connection, which is troublesome and extremely inconvenient in practical use.

【0006】しかも、正確に計測するためには、バラン
ス容器は空気漏れの全くないものでなければならないの
で、バランス容器の製作が容易ではなく、空気漏れの計
測に多大の時間とコストとを要していた。
Moreover, in order to perform accurate measurement, the balance container must have no air leakage at all, so it is not easy to manufacture the balance container, and it takes a lot of time and cost to measure the air leakage. Was.

【0007】本発明は、上述の問題に鑑み、異なる被測
定容器に対し、同一の基準容器を用いて空気漏れを正確
に計測する方法及び装置を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a method and an apparatus for accurately measuring air leakage for different containers to be measured by using the same reference container.

【0008】[0008]

【課題を解決するための手段】請求項1の発明に係る方
法は、上述の課題を解決するため、被測定容器のガス漏
れを計測する方法であって、被測定容器及び基準容器に
対して圧縮ガスを供給して充填した後に圧縮ガスの供給
を停止し、これら各容器内の圧縮ガスが共に熱平衡状態
に達した時点ts以降におけるそれらの間の差圧の時間
変化に基づいてガス漏れを計測する。
In order to solve the above-mentioned problems, a method according to the invention of claim 1 is a method for measuring gas leakage of a container to be measured, wherein After the compressed gas is supplied and filled, the supply of the compressed gas is stopped, and the gas leakage is prevented based on the time change of the differential pressure between the compressed gas in each of the containers after the time ts when they reach the thermal equilibrium state. measure.

【0009】請求項2の発明に係る方法は、前記熱平衡
状態に達した時点tsを、各容器内の圧縮ガスの温度変
化が一次遅れ要素のインディシャル応答であるとみなし
た場合の熱平衡時定数thに基づいて求める。
In the method according to the second aspect of the present invention, the thermal equilibrium time constant when the time ts when the thermal equilibrium state is reached is regarded as the indial response of the first-order lag element in the temperature change of the compressed gas in each container. Calculate based on th.

【0010】請求項3の発明に係る方法は、前記被測定
容器の熱平衡時定数thwを、基準容器の熱平衡時定数
thm、圧縮ガスの充填完了の時点ta、圧縮ガスの供
給を停止した時点tb、圧縮ガスの供給を停止した後に
差圧が極値となった時点tc、及び、時点tbにおける
差圧の微分値についての関数として求める。
In the method according to the third aspect of the present invention, the thermal equilibrium time constant thw of the container to be measured is calculated as follows: the thermal equilibrium time constant thm of the reference container, the time ta at which the compressed gas is completely charged, and the time tb at which the supply of the compressed gas is stopped. , As a function of the differential value of the differential pressure at time tc when the differential pressure becomes an extreme value after stopping the supply of the compressed gas and at the time tb.

【0011】請求項4の発明に係る装置は、被測定容器
に接続するための配管接続部と、漏れがなく熱平衡時定
数thmが既知の基準容器と、前記基準容器及び被測定
容器に対して圧縮ガスを供給するための圧縮ガス源と、
前記基準容器及び前記被測定容器と前記圧縮ガス源との
間にそれぞれ設けられた開閉弁と、前記基準容器及び前
記被測定容器と前記各開閉弁との間に設けられた絞り弁
と、前記基準容器と前記被測定容器との間の差圧Dを、
少なくとも各容器内の圧縮ガスが共に熱平衡状態に達し
た時点ts以降において計測するための差圧計と、を有
して構成される。
According to a fourth aspect of the present invention, there is provided a pipe connecting portion for connecting to a container to be measured, a reference container having no leak and a known thermal equilibrium time constant thm, and the reference container and the container to be measured. A compressed gas source for supplying compressed gas,
An opening / closing valve respectively provided between the reference container and the measured container and the compressed gas source, and a throttle valve provided between the reference container and the measured container and each of the opening / closing valves, The differential pressure D between the reference container and the measured container is
And a differential pressure gauge for measuring at least after the time point ts when both the compressed gases in the respective containers reach the thermal equilibrium state.

【0012】[0012]

【作用】被測定容器のガス漏れは、同一の基準容器を用
い、これらの容器に対して圧縮ガスを供給して充填し且
つ圧縮ガスの供給を停止した後、これら各容器内の圧縮
ガスが共に熱平衡状態に達した時点ts以降における差
圧の時間変化に基づいて計測行される。
The gas leakage of the containers to be measured is performed by using the same reference container, supplying compressed gas to these containers to fill them and stopping the supply of compressed gas, Both are measured based on the time change of the differential pressure after the time ts when the thermal equilibrium state is reached.

【0013】各容器内の圧縮ガスの温度変化は一次遅れ
要素のインディシャル応答であるとみなされ、その熱平
衡時定数thに基づいて時点tsが求められる。被測定
容器の熱平衡時定数thwは、熱平衡時定数thm、時
点ta、tb、tc、及び時点tbにおける差圧の微分
値についての関数として求められる。
The temperature change of the compressed gas in each container is regarded as the indial response of the first-order lag element, and the time ts is obtained based on the thermal equilibrium time constant th. The thermal equilibrium time constant thw of the measured container is obtained as a function of the thermal equilibrium time constant thm, the time points ta, tb, tc, and the differential value of the differential pressure at the time point tb.

【0014】[0014]

【実施例】図1は本発明に係る計測装置1の構成を示す
回路図である。図1において、計測装置1は、圧縮空気
源PS、フィルタFT、圧力調整弁RV、ソレノイドバ
ルブSV1〜3、絞り弁SE1〜2、基準容器(マスタ
容器)MV、差圧計DPS、記録計RE、被測定容器W
Vを接続するための配管接続部21などから構成されて
いる。
1 is a circuit diagram showing the configuration of a measuring apparatus 1 according to the present invention. In FIG. 1, the measuring device 1 includes a compressed air source PS, a filter FT, a pressure adjusting valve RV, solenoid valves SV1 to SV3, throttle valves SE1 to SE2, a reference container (master container) MV, a differential pressure gauge DPS, and a recorder RE. Measured container W
It is composed of a pipe connection portion 21 for connecting V and the like.

【0015】基準容器MVは、全ての被測定容器WVに
対して共通に用いられるものであり、漏れが全くなく、
熱平衡時定数thmが既知である。熱平衡時定数thm
については後述する。
The reference container MV is commonly used for all the measured containers WV and has no leakage.
The thermal equilibrium time constant thm is known. Thermal equilibrium time constant thm
Will be described later.

【0016】差圧計DPSは、基準容器MVと被測定容
器WVとの間の微少な差圧D(t)を計測するためのも
のである。記録計REは、差圧D(t)をメモリ上に記
録するものである。記録された差圧D(t)の時間的な
変化はマイクロコンピュータなどによって処理される。
The differential pressure gauge DPS is for measuring a minute differential pressure D (t) between the reference container MV and the measured container WV. The recorder RE records the differential pressure D (t) on the memory. The recorded time change of the differential pressure D (t) is processed by a microcomputer or the like.

【0017】圧縮空気源PSは、基準容器MV及び被測
定容器WVに対して圧縮空気を供給するためのものであ
り、圧力調整弁RVによって適当な圧力に調整される。
ソレノイドバルブSV1〜3は、基準容器MV又は被測
定容器WVへの圧縮空気の供給及び停止を制御するため
のものであり、ソレノイドバルブSV2、3を閉じた状
態では、これら容器MV、WVへの空気の流通は完全に
遮断される。
The compressed air source PS is for supplying compressed air to the reference container MV and the measured container WV, and is adjusted to an appropriate pressure by the pressure adjusting valve RV.
The solenoid valves SV1 to SV3 are for controlling the supply and stop of compressed air to the reference container MV or the container to be measured WV. When the solenoid valves SV2 and 3 are closed, the solenoid valves SV1 to WV are supplied to these containers MV and WV. The air flow is completely cut off.

【0018】絞り弁SE1〜2は、基準容器MV及び被
測定容器WVへの圧縮空気の流量を調整することによっ
て、圧縮空気の供給時においてこれら容器MV、WV間
にできるだけ差圧を発生させないようにするためのもの
である。したがって、被測定容器WVの側の絞り弁SE
2は可変絞りとなっており、被測定容器WVの容積に応
じて調整を行う。
The throttle valves SE1 and SE2 adjust the flow rates of the compressed air to the reference container MV and the measured container WV so that the differential pressure between the containers MV and WV is not generated as much as possible when the compressed air is supplied. It is for Therefore, the throttle valve SE on the measured container WV side
Reference numeral 2 denotes a variable diaphragm, which is adjusted according to the volume of the container WV to be measured.

【0019】図2は計測装置1によって空気漏れの計測
を行う場合の各機器の動作タイミングを示す図である。
図2においては、基準容器MV内の圧力Pm(t)及び
被測定容器WV内の圧力Pw(t)の縦軸のスケールは
互いに等しく、これらに対して差圧D(t)の縦軸のス
ケールは拡大されている。
FIG. 2 is a diagram showing the operation timing of each device when the measurement device 1 measures the air leakage.
In FIG. 2, the vertical scales of the pressure Pm (t) in the reference container MV and the pressure Pw (t) in the measured container WV are equal to each other, and the vertical scale of the differential pressure D (t) is The scale has been expanded.

【0020】ソレノイドバルブSV1がオンし、その後
にソレノイドバルブSV2、3が同時にオンすることに
よって、基準容器MV及び被測定容器WVへの圧縮空気
の供給が開始される。供給の開始時点to=0である。
これによって、圧縮空気は絞り弁SE1〜2を通ってそ
れぞれの容器MV、WV内に流入し、それぞれの圧力P
m(t)、Pw(t)が上昇する。
When the solenoid valve SV1 is turned on and then the solenoid valves SV2 and 3 are turned on at the same time, the supply of compressed air to the reference container MV and the measured container WV is started. The supply start time point to = 0.
As a result, the compressed air flows through the throttle valves SE1 and SE2 into the respective containers MV and WV, and the respective pressures P
m (t) and Pw (t) rise.

【0021】この間に、差圧D(t)が発生するが、圧
力Pm(t)、Pw(t)が共に供給圧力Psに達した
時点ta、つまり両容器MV、WVへの充填が完了した
時点で差圧D(t)が0になる。
During this period, the differential pressure D (t) is generated, but at the time ta when both the pressures Pm (t) and Pw (t) reach the supply pressure Ps, that is, the filling into both the containers MV and WV is completed. At that time, the differential pressure D (t) becomes zero.

【0022】その後の時点tbにおいて、ソレノイドバ
ルブSV2、3をオフし、両容器MV、WVへの圧縮空
気の供給を停止する。そうすると、基準容器MVにおい
ては圧縮空気の温度変化によって、被測定容器WVにお
いては圧縮空気の温度変化と漏れによって、それぞれ圧
力Pm(t)、Pw(t)が低下するため、図に示すよ
うな差圧D(t)が発生する。このとき、時点tcにお
いて、差圧D(t)の最初のピークが発生する。その
後、差圧D(t)は一旦0となり、正負が逆になって徐
々に増大する。
At a subsequent time point tb, the solenoid valves SV2, 3 are turned off, and the supply of compressed air to both the containers MV, WV is stopped. Then, the pressure Pm (t) and Pw (t) in the reference container MV decrease due to the temperature change of the compressed air and the temperature change and leakage of the compressed air in the measured container WV, respectively. A differential pressure D (t) is generated. At this time, at time tc, the first peak of the differential pressure D (t) occurs. After that, the differential pressure D (t) once becomes 0, the positive and negative are reversed, and gradually increases.

【0023】両容器MV、WV内の圧縮空気は、時点t
sにおいて熱平衡状態となり、それ以降においては被測
定容器WVの漏れのみによって差圧D(t)が変化す
る。時点tsから適当な時間を経過した後、ソレノイド
バルブSV1がオフの状態でソレノイドバルブSV2、
3をオンし、両容器MV、WV内の圧縮空気を排出す
る。その後、ソレノイドバルブSV2、3をオフし、差
圧D(t)の測定を終了する。
The compressed air in both vessels MV and WV is at time t.
At s, a thermal equilibrium state is reached, and thereafter, the differential pressure D (t) changes only due to the leakage of the measured container WV. After an appropriate time has passed from the time point ts, the solenoid valve SV1 is off and the solenoid valve SV2,
3 is turned on, and the compressed air in both containers MV and WV is discharged. Then, the solenoid valves SV2, 3 are turned off, and the measurement of the differential pressure D (t) is completed.

【0024】このようにして測定した差圧D(t)の時
点ts以降における時間変化に基づいて、被測定容器W
Vの漏れ率qを求めることができる。つまり、漏れ率q
は、被測定容器WV内における空気量に対する単位時間
当たりに漏れた空気の割合であり、次の(1)式によっ
て求められる。
Based on the time change of the differential pressure D (t) thus measured after time ts, the container W to be measured is measured.
The leak rate q of V can be obtained. That is, the leakage rate q
Is the ratio of air leaked per unit time to the amount of air in the measured container WV, and is calculated by the following equation (1).

【0025】 q=〔1/Po〕・dD(t)/dt(t=ts) ……(1) 上述したように、計測装置1を用いた計測では、被測定
容器WVの形状及び容積などに係わらず、つまり被測定
容器WVを種々取り替えた場合でも、同一の基準容器M
Vを用い、基準容器MVを取り替えることをしない。そ
の代わり、これら容器MV、WVの形状及び容積が相違
することによる圧縮空気の温度変化の影響をなくすた
め、熱平衡状態となった時点ts以降における差圧D
(t)の時間変化に基づいて漏れ率q求めるのである。
Q = [1 / Po] · dD (t) / dt (t = ts) (1) As described above, in the measurement using the measuring device 1, the shape and volume of the measured container WV, etc. Irrespective of the fact, that is, even when various containers WV to be measured are replaced, the same reference container M
V is used and the reference container MV is not replaced. Instead, in order to eliminate the influence of the temperature change of the compressed air due to the difference in shape and volume of the containers MV and WV, the differential pressure D after the time ts when the thermal equilibrium state is reached.
The leak rate q is obtained based on the time change of (t).

【0026】なお、図2に示す差圧D(t)の波形は、
被測定容器WVの熱平衡時定数thwが基準容器MVの
熱平衡時定数thmよりも小さい場合(thw≦th
m)のものであるが、図3はその逆の場合(thw>t
hm)の差圧D(t)の波形の例を示す図である。
The waveform of the differential pressure D (t) shown in FIG.
When the thermal equilibrium time constant thw of the measured container WV is smaller than the thermal equilibrium time constant thm of the reference container MV (thw ≦ th
m), but FIG. 3 shows the opposite case (thw> t).
It is a figure which shows the example of the waveform of the differential pressure D (t) of (hm).

【0027】次に、熱平衡状態に達する時点tsを求め
る方法について説明する。まず、本発明の発明者は、容
器の壁を介する熱伝達による容器内の圧縮空気の温度変
化を、一次遅れ要素のインディシャル応答であると近似
した。そうすると、容器内の圧縮空気の温度T(t)
は、時定数thを用いて次の(2)式によって示され
る。
Next, a method for obtaining the time ts at which the thermal equilibrium state is reached will be described. First, the inventor of the present invention approximated the temperature change of the compressed air in the container due to heat transfer through the wall of the container as the indial response of the first-order lag element. Then, the temperature T (t) of the compressed air in the container
Is expressed by the following equation (2) using the time constant th.

【0028】 T(t)=To+〔T(0)−To〕・e-t/th ……(2) 但し、Toは容器の周囲温度T(0)はt=0における
容器の温度そして、容器内の圧縮空気の熱平衡時定数は
(2)式の時定数thである、と定義できることを発見
し、それを実験的に確かめた。
T (t) = To + [T (0) −To] · e −t / th (2) where To is the ambient temperature of the container T (0) is the temperature of the container at t = 0, and It was discovered that the thermal equilibrium time constant of the compressed air in the container can be defined as the time constant th of the equation (2), and it was confirmed experimentally.

【0029】被測定容器WV内の圧縮空気の熱平衡時定
数thwは、次のようにして求められる。まず、容器の
熱伝達性質に関する定数(熱伝達定数)Hを H=f(Sh,ht,V) ……(3) と定義する。ここで、Shは容器の熱伝達面積を、Vは
容積を、htは熱伝達率を、それぞれ表す。この(3)
式に基づいて、基準容器MVの熱伝達定数Hmを実験的
に求めておく。
The thermal equilibrium time constant thw of the compressed air in the container to be measured WV is obtained as follows. First, the constant (heat transfer constant) H relating to the heat transfer property of the container is defined as H = f (Sh, ht, V) (3). Here, Sh represents the heat transfer area of the container, V represents the volume, and ht represents the heat transfer coefficient. This (3)
The heat transfer constant Hm of the reference container MV is experimentally obtained based on the equation.

【0030】なお、理論的には、熱平衡時定数thと熱
伝達定数Hとの間には、 th=f(H,ρo,ρ) ……(4) の関係式が成り立つ。また、容器内の圧縮空気圧力Pと
温度Tとの間には、 P=R・ρ・T ……(5) の関係式が成り立つ。ここで、Rは空気のガス定数を、
ρoは大気の密度を、ρは容器内の圧縮空気の密度を、
それぞれ表す。
Theoretically, the relational expression of th = f (H, ρo, ρ) (4) holds between the thermal equilibrium time constant th and the heat transfer constant H. Further, between the compressed air pressure P in the container and the temperature T, the relational expression P = R · ρ · T (5) holds. Where R is the gas constant of air,
ρo is the density of the atmosphere, ρ is the density of the compressed air in the container,
Represent each.

【0031】さらに具体的には、熱平衡時定数thmと
熱伝達定数Hmとの関係は次の(6)式で示される。 thm=(ρm/ρo)・(1/Hm) ……(6) ここで、ρmは次の(7)式で求められる。
More specifically, the relationship between the thermal equilibrium time constant thm and the heat transfer constant Hm is expressed by the following equation (6). thm = (ρm / ρo) · (1 / Hm) (6) Here, ρm is obtained by the following equation (7).

【0032】[0032]

【数1】 [Equation 1]

【0033】さて、時刻(時点)tにおける基準容器M
Vと被測定容器WVとの間の差圧D(t)については、 D(t)=Pm(t)−Pw(t) =f〔t,Hm,thw,ρo,ρm,Tm(0),ρ
w,Tw(0),…〕 ……(8) という論理式が得られる。この(8)式を用いて導くこ
とによって、熱平衡時定数thwについての計算式であ
る次の(9)式が得られる。
Now, the reference container M at time (time) t
Regarding the differential pressure D (t) between V and the measured container WV, D (t) = Pm (t) −Pw (t) = f [t, Hm, thw, ρo, ρm, Tm (0) , Ρ
w, Tw (0), ...] (8) A logical expression is obtained. By using this formula (8) to derive, the following formula (9), which is a calculation formula for the thermal equilibrium time constant thw, is obtained.

【0034】[0034]

【数2】 [Equation 2]

【0035】ここで、ta、tb、tcは、測定した差
圧D(t)のグラフから求められ、dD(t)/dtは
時点tbにおける差圧D(t)の数値微分により求めら
れる。また、基準容器MVの熱伝達定数Hmは実験的に
求めたものである。
Here, ta, tb, tc are obtained from the graph of the measured differential pressure D (t), and dD (t) / dt is obtained by the numerical differentiation of the differential pressure D (t) at the time point tb. Further, the heat transfer constant Hm of the reference container MV is experimentally obtained.

【0036】したがって、計測装置1のソレノイドバル
ブSV1〜3の切り替えタイミングを適切に調整して差
圧D(t)のグラフを得、上述の(9)式を用いること
によって被測定容器WVの熱平衡時定数thwが推定さ
れるのである。
Therefore, the graph of the differential pressure D (t) is obtained by properly adjusting the switching timing of the solenoid valves SV1 to SV1 of the measuring device 1, and the thermal equilibrium of the measured container WV is obtained by using the above equation (9). The time constant thw is estimated.

【0037】このようにして被測定容器WV内の圧縮空
気の熱平衡時定数thwが求められると、これから時点
tsが次のようにして求められる。つまり、時点tsは
容器内の圧縮空気の熱平衡時間であるから、時点tsは
次の(10)式により求められる。
When the thermal equilibrium time constant thw of the compressed air in the container to be measured WV is obtained in this way, the time point ts can be obtained from this as follows. That is, since the time point ts is the thermal equilibrium time of the compressed air in the container, the time point ts is obtained by the following equation (10).

【0038】 ts=tb−th・ln〔x(ts)〕 ……(10) この(10)式においては、時刻tにおける熱伝達の影
響をx(t)で評価しており、ここでのx(ts)は定
数(=10-7)とみなすことができる。
Ts = tb-th · ln [x (ts)] (10) In this equation (10), the effect of heat transfer at time t is evaluated by x (t). x (ts) can be regarded as a constant (= 10 −7 ).

【0039】したがって、時点tsは、 ts=tb+16.1・thw ……(11) なお、上述の(9)式は、熱伝達定数Hmを熱平衡時定
数thmに変えることにより、次の(12)式のように
表すことができる。
Therefore, the time point ts is as follows: ts = tb + 16.1 · thw (11) The above equation (9) changes the heat transfer constant Hm to the thermal equilibrium time constant thm to obtain the following (12). It can be expressed as an expression.

【0040】[0040]

【数3】 [Equation 3]

【0041】この(12)式は次の(13)式から導か
れている。
This equation (12) is derived from the following equation (13).

【0042】[0042]

【数4】 [Equation 4]

【0043】但し、(13)式において、However, in the equation (13),

【0044】[0044]

【数5】 [Equation 5]

【0045】[0045]

【数6】 [Equation 6]

【0046】ここで、κは比熱比を、Poは大気圧を、
Psは供給圧力をそれぞれ示す。上述したように、差圧
方式による漏れ率qの算出に当たっては、圧縮空気の温
度変化による影響を無視することができないが、原理的
には、容器内の圧縮空気の温度変化を理論式によって定
量的に評価することができれば、その問題を解決するこ
とが可能である。また、容器内の圧縮空気の熱平衡時定
数thを与え、さらに容器内の圧縮空気の初期状態及び
容器外の環境などを表す諸パラメータを与えれば、容器
内の圧縮空気の温度変化を表す理論式が求められる。
Where κ is the specific heat ratio, Po is the atmospheric pressure,
Ps represents the supply pressure, respectively. As described above, in calculating the leak rate q by the differential pressure method, the influence of the temperature change of the compressed air cannot be ignored, but in principle, the temperature change of the compressed air in the container can be quantified by a theoretical formula. If it is possible to evaluate it, it is possible to solve the problem. Further, if the thermal equilibrium time constant th of the compressed air in the container is given and further various parameters representing the initial state of the compressed air in the container and the environment outside the container are given, a theoretical formula expressing the temperature change of the compressed air in the container is given. Is required.

【0047】但し、熱平衡時定数thは容器の熱伝達性
質などに支配されているため、検査対象の被測定容器W
Vについての熱平衡時定数thwは、漏れ率qの計測の
前には未定の定数である。
However, since the thermal equilibrium time constant th is governed by the heat transfer property of the container, etc., the measured container W to be inspected
The thermal equilibrium time constant thw for V is an undetermined constant before the measurement of the leakage rate q.

【0048】そこで、上述の計測装置1を用いた計測方
法では、熱平衡時定数thwを、差圧D(t)の計測の
実行時における圧縮空気の充填及び熱平衡といった段階
で差圧方式によって推定することとしたのである。
Therefore, in the measuring method using the above-described measuring device 1, the thermal equilibrium time constant thw is estimated by the differential pressure method at the stage of filling compressed air and thermal equilibrium during the measurement of the differential pressure D (t). It was decided.

【0049】このように推定された熱平衡時定数thw
から時点tsが求められ、時点ts以降における差圧D
(t)の時間変化に基づいて漏れ率q求められるから、
同一の基準容器MVを用いても被測定容器WVとの相違
による温度変化の影響を受けることがなく、正確に漏れ
率qを計測することができる。
Thermal equilibrium time constant thw estimated in this way
From the time point ts, the time point ts is obtained from the differential pressure D
Since the leakage rate q is obtained based on the time change of (t),
Even if the same reference container MV is used, the leak rate q can be accurately measured without being affected by the temperature change due to the difference from the measured container WV.

【0050】したがって、被測定容器WVが異なる毎に
それぞれに対応した基準容器MVを製作したりそれを配
管接続して取り付けたりする必要がなく、計測のための
作業が極めて簡便になる。しかも、1個の空気漏れのな
い基準容器MVを製作すればよいので、時間とコストを
大幅に低減することができる。
Therefore, it is not necessary to manufacture a reference container MV corresponding to each different container to be measured WV or to attach it by pipe connection, and the work for measurement becomes extremely simple. Moreover, since it is only necessary to manufacture one reference container MV without air leakage, it is possible to significantly reduce time and cost.

【0051】また、基準容器MVと被測定容器WVとの
容積が大きく異なる場合には、計測の全過程における充
填、平衡、及び測定などといった各段階におけるソレノ
イドバルブSV1〜3の切り替えタイミングによって、
差圧計DPSの測定レンジよりもかなり大きいオーバー
プレッシャーが測定時に発生する可能性がある。しか
し、絞り弁SE2を調整することによってそれぞれの充
填完了までの時間がほぼ同じになるように調整し、差圧
D(t)が余り大きくならないようにすることができ
る。
When the volumes of the reference container MV and the measured container WV are significantly different, the switching timings of the solenoid valves SV1 to SV1 to SV3 at each stage such as filling, equilibrium, and measurement in the whole process of measurement may be changed.
Overpressure that is considerably larger than the measurement range of the differential pressure gauge DPS may occur during measurement. However, by adjusting the throttle valve SE2, it is possible to adjust the time until completion of filling of each to be substantially the same, and prevent the differential pressure D (t) from becoming too large.

【0052】つまり、差圧D(t)は、被測定容器WV
の空気漏れによる以外に、被測定容器WVと基準容器M
Vとの容積差、及び温度変化の影響によっても発生す
る。図2に示される時点ta以前の差圧D(t)は前者
により、時点ta以降の差圧D(t)は後者により、そ
れぞれ発生することが判明している。
That is, the differential pressure D (t) is determined by the measured container WV.
In addition to the air leak, the measured container WV and the reference container M
It also occurs due to the volume difference from V and the effect of temperature change. It is known that the differential pressure D (t) before the time point ta shown in FIG. 2 is generated by the former and the differential pressure D (t) after the time point ta is generated by the latter.

【0053】この内、時点ta以前の差圧D(t)は絞
り弁SE2の調整により軽減される。時点ta以降の差
圧D(t)については、その極値〔D(tc)〕及び熱
平衡状態すなわち時点ts以降の差圧D(t)の値が時
点tbなどの関数となっているので、ソレノイドバルブ
SV1〜3の切り替えタイミングによって時点tbを調
整することによって、オーバープレッシャーを無くし又
は軽減することができる。
Among these, the differential pressure D (t) before the time point ta is reduced by adjusting the throttle valve SE2. As for the differential pressure D (t) after the time point ta, its extreme value [D (tc)] and the thermal equilibrium state, that is, the value of the differential pressure D (t) after the time point ts is a function of the time point tb. By adjusting the time point tb according to the switching timing of the solenoid valves SV1 to SV3, it is possible to eliminate or reduce the overpressure.

【0054】なお、基準容器MVの熱伝達定数Hmは、
時点tbからの基準容器内空気の圧力Pm(t)を実験
的に測定し、次式を用いて最小二乗法により求められ
る。
The heat transfer constant Hm of the reference container MV is
The pressure Pm (t) of the air inside the reference container from the time point tb is experimentally measured and is obtained by the least square method using the following equation.

【0055】[0055]

【数7】 [Equation 7]

【0056】但し、時点ta以前の加圧工程において
は、容器内空気の渦流れなどの影響によって、容器壁の
熱伝達率thmが加圧工程以外の場合に比べてかなり大
きくなり、基準容器MVの熱伝達定数Hmは上述の方法
で求めたものよりもかなり大きくなることが予想され
る。このため、加圧工程における熱伝達定数Hmの値の
みを次式を用いて実験的に求める必要がある。
However, in the pressurizing process before the time point ta, the heat transfer coefficient thm of the container wall becomes considerably larger than in the case other than the pressurizing process due to the influence of the vortex flow of the air in the container, and the reference container MV The heat transfer constant Hm of is expected to be considerably larger than that obtained by the above method. Therefore, it is necessary to experimentally obtain only the value of the heat transfer constant Hm in the pressurizing step using the following equation.

【0057】[0057]

【数8】 [Equation 8]

【0058】上述の実施例において、被測定容器WV及
び基準容器MVの流路の開閉のためにソレノイドバルブ
SV1〜3を用いたが、これ以外の種々の弁を用いるこ
とができる。絞り弁SE1を可変としてもよい。その
他、計測装置1の構成は本発明の主旨に沿って種々変更
することができる。本発明は、自動車業界、バルブ業
界、医療器具業界、電機業界、その他の種々の業界にお
ける種々の容器のガス漏れの計測に適用することができ
る。
In the above embodiment, the solenoid valves SV1 to SV1 to 3 are used to open and close the flow paths of the container to be measured WV and the reference container MV, but various valves other than this can be used. The throttle valve SE1 may be variable. In addition, the configuration of the measuring device 1 can be variously changed in accordance with the gist of the present invention. INDUSTRIAL APPLICABILITY The present invention can be applied to measurement of gas leakage of various containers in various industries such as the automobile industry, the valve industry, the medical device industry, the electrical equipment industry, and the like.

【0059】[0059]

【発明の効果】本発明によると、異なる被測定容器に対
し、同一の基準容器を用いて空気漏れを正確に計測する
ことができる。
According to the present invention, it is possible to accurately measure air leakage for different containers to be measured by using the same reference container.

【0060】請求項2又は3の発明によると、漏れの計
測において時点tsを求めることができ、熱平衡状態に
達したことをより早く知って計測を短時間で行うことが
できる。
According to the second or third aspect of the invention, the time ts can be obtained in the leak measurement, and the fact that the thermal equilibrium state has been reached can be known earlier and the measurement can be performed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る計測装置の構成を示す回路図であ
る。
FIG. 1 is a circuit diagram showing a configuration of a measuring device according to the present invention.

【図2】計測装置によって空気漏れの計測を行う場合の
各機器の動作タイミングを示す図である。
FIG. 2 is a diagram showing an operation timing of each device when an air leak is measured by a measuring device.

【図3】基準容器の熱平衡時定数が被測定容器の熱平衡
時定数よりも小さい場合の差圧の波形の例を示す図であ
る。
FIG. 3 is a diagram showing an example of a waveform of a differential pressure when the thermal equilibrium time constant of the reference container is smaller than the thermal equilibrium time constant of the measured container.

【符号の説明】[Explanation of symbols]

1 計測装置 21 配管接続部 WV 被測定容器 MV 基準容器 th、thw、thm 熱平衡時定数 ta、tb、tc、ts 時点 D(t) 差圧 PS 圧縮空気源(圧縮ガス源) SV1〜3 ソレノイドバルブ(開閉弁) SE1〜2 絞り弁 DPS 差圧計 1 Measuring device 21 Piping connection part WV Measured container MV Reference container th, thw, thm Thermal equilibrium time constant ta, tb, tc, ts time point D (t) Differential pressure PS Compressed air source (compressed gas source) SV1 to 3 Solenoid valve (Open / close valve) SE1-2 throttle valve DPS differential pressure gauge

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年12月13日[Submission date] December 13, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】[0012]

【作用】被測定容器のガス漏れは、同一の基準容器を用
い、これらの容器に対して圧縮ガスを供給して充填し且
つ圧縮ガスの供給を停止した後、これら各容器内の圧縮
ガスが共に熱平衡状態に達した時点ts以降における差
圧の時間変化に基づいて計測が行われる。
The gas leakage of the containers to be measured is performed by using the same reference container, supplying compressed gas to these containers to fill them and stopping the supply of compressed gas, The measurement is performed based on the time change of the differential pressure after the time ts when both reach the thermal equilibrium state.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0047[Correction target item name] 0047

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0047】但し、熱平衡時定数thは容器の熱伝達性
質などに支配されているため、検査対象の被測定容器W
Vについての熱平衡時定数thwは、漏れ率qの計測の
前には未知の定数である。
However, since the thermal equilibrium time constant th is governed by the heat transfer property of the container, etc., the measured container W to be inspected
The thermal equilibrium time constant thw for V is an unknown constant before the measurement of the leakage rate q.

【手続補正書】[Procedure amendment]

【提出日】平成5年12月13日[Submission date] December 13, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被測定容器のガス漏れを計測する方法であ
って、 被測定容器及び基準容器に対して圧縮ガスを供給して充
填した後に圧縮ガスの供給を停止し、これら各容器内の
圧縮ガスが共に熱平衡状態に達した時点(ts)以降に
おけるそれらの間の差圧の時間変化に基づいてガス漏れ
を計測することを特徴とする容器のガス漏れを計測する
方法。
1. A method for measuring gas leakage in a container to be measured, which comprises supplying compressed gas to a container to be measured and a reference container, filling the compressed gas, and then stopping the supply of the compressed gas. A method for measuring gas leakage in a container, which comprises measuring gas leakage based on the time change of the differential pressure between the compressed gas and the time point (ts) after reaching a thermal equilibrium state.
【請求項2】前記熱平衡状態に達した時点(ts)を、
各容器内の圧縮ガスの温度変化が一次遅れ要素のインデ
ィシャル応答であるとみなした場合の熱平衡時定数(t
h)に基づいて求めることを特徴とする請求項1記載の
容器のガス漏れを計測する方法。
2. The time point (ts) when the thermal equilibrium state is reached,
The thermal equilibrium time constant (t when the temperature change of the compressed gas in each container is regarded as the indial response of the first-order lag element)
The method for measuring gas leakage in a container according to claim 1, wherein the method is based on h).
【請求項3】前記被測定容器の熱平衡時定数(thw)
を、基準容器の熱平衡時定数(thm)、圧縮ガスの充
填完了の時点(ta)、圧縮ガスの供給を停止した時点
(tb)、圧縮ガスの供給を停止した後に差圧が極値と
なった時点(tc)、及び、時点(tb)における差圧
の微分値についての関数として求めることを特徴とする
請求項2記載の容器のガス漏れを計測する方法。
3. A thermal equilibrium time constant (thw) of the container to be measured.
The thermal equilibrium time constant (thm) of the reference container, the time point (ta) when the compressed gas was completely filled, the time point (tb) when the supply of the compressed gas was stopped, and the differential pressure became the extreme value after the supply of the compressed gas was stopped. 3. The method for measuring gas leakage of a container according to claim 2, wherein the differential value of the differential pressure at the time point (tc) and the time point (tb) is obtained as a function.
【請求項4】被測定容器に接続するための配管接続部
と、 漏れがなく熱平衡時定数(thm)が既知の基準容器
と、 前記基準容器及び被測定容器に対して圧縮ガスを供給す
るための圧縮ガス源と、 前記基準容器及び前記被測定容器と前記圧縮ガス源との
間にそれぞれ設けられた開閉弁と、 前記基準容器及び前記被測定容器と前記各開閉弁との間
に設けられた絞り弁と、 前記基準容器と前記被測定容器との間の差圧Dを、少な
くとも各容器内の圧縮ガスが共に熱平衡状態に達した時
点(ts)以降において計測するための差圧計と、 を有することを特徴とする容器のガス漏れを計測する装
置。
4. A pipe connecting portion for connecting to a container to be measured, a reference container having no leakage and a known thermal equilibrium time constant (thm), and for supplying compressed gas to the reference container and the container to be measured. A compressed gas source, and an on-off valve provided between the reference container and the measured container and the compressed gas source, and between the reference container and the measured container and each of the on-off valves. A throttle valve, and a differential pressure gauge for measuring the differential pressure D between the reference container and the measured container at least after the time point (ts) when the compressed gas in each container has reached a thermal equilibrium state. An apparatus for measuring gas leakage in a container, comprising:
JP4346347A 1992-12-25 1992-12-25 Method and apparatus for measuring gas leakage in a container Expired - Fee Related JP3054508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4346347A JP3054508B2 (en) 1992-12-25 1992-12-25 Method and apparatus for measuring gas leakage in a container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4346347A JP3054508B2 (en) 1992-12-25 1992-12-25 Method and apparatus for measuring gas leakage in a container

Publications (2)

Publication Number Publication Date
JPH06194257A true JPH06194257A (en) 1994-07-15
JP3054508B2 JP3054508B2 (en) 2000-06-19

Family

ID=18382799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4346347A Expired - Fee Related JP3054508B2 (en) 1992-12-25 1992-12-25 Method and apparatus for measuring gas leakage in a container

Country Status (1)

Country Link
JP (1) JP3054508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182501B1 (en) * 1997-10-21 2001-02-06 Cosmo Instruments, Co., Ltd. Leak test method and apparatus
WO2003078955A1 (en) * 2002-03-15 2003-09-25 Olympus Corporation Leak tester

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4911824B2 (en) 2001-02-23 2012-04-04 キヤノン株式会社 Image forming apparatus and method
JP5811557B2 (en) 2011-03-18 2015-11-11 株式会社リコー Image forming apparatus and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182501B1 (en) * 1997-10-21 2001-02-06 Cosmo Instruments, Co., Ltd. Leak test method and apparatus
WO2003078955A1 (en) * 2002-03-15 2003-09-25 Olympus Corporation Leak tester
US7290440B2 (en) 2002-03-15 2007-11-06 Olympus Corporation Leak tester
CN100447545C (en) * 2002-03-15 2008-12-31 奥林巴斯株式会社 Leak tester

Also Published As

Publication number Publication date
JP3054508B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP2941092B2 (en) Container volume measuring method and device
EP0139752B1 (en) Pressure variation detecting type leakage inspection equipment
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
AU606096B2 (en) Procedure and arrangement for testing the airtightness of at least one hollow body, and the application of the procedure
JP4994494B2 (en) Differential pressure measurement method and apparatus
JP2019144275A (en) System and method for integrity testing of flexible containers
US7899629B2 (en) Method for determining the total leak rate of systems impinged upon by pressure, and control apparatus for carrying out said method
US4640122A (en) Apparatus for leak testing at least one wall portion and/or a volume delimited by said wall portion, and a method of determining optimum parameters for said leak testing
JP3054508B2 (en) Method and apparatus for measuring gas leakage in a container
JP2012255687A (en) Pressure leakage measuring method
JP5113894B2 (en) Flow rate measuring method and flow rate measuring apparatus using the same
JP2000039347A (en) Flowrate inspection device
JP3143299B2 (en) How to measure gas leaks from containers
JP2500788B2 (en) Mass flow controller device and its calibration method
JP6775434B2 (en) Leak inspection device Leak inspection method
JP2017116387A (en) Differential pressure change amount calculation device and differential pressure change amount calculation method
JP2001141597A (en) Temperature measuring device of leakage test device and leakage test device
JP3310224B2 (en) Method and apparatus for measuring gas leakage in a container
CN216410347U (en) Mass flowmeter calibration system
CN116202937A (en) Device and method for measuring flow characteristic parameters of porous medium
TWI780625B (en) Liquid supply system and an auxiliary judgment method of liquid amount
JP2002022592A (en) Method for generating drift correction factor for leak test method for calculating drift correction value in leak test and leak test apparatus
JP2017067714A (en) Leakage inspection device and method
JPH0240515Y2 (en)
JPH10300624A (en) Inspection method for gas leakage

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees